High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Sample Collection and Processing
2.3. IdyllaTM System Analysis
2.4. Next-Generation Sequencing Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Performance of the IdyllaTM System Detection
3.3. Comparison with NGS Results
3.4. Statistical Analysis and False Positive Rates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 24 July 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. World Health Organization. Available online: https://gco.iarc.who.int/media/globocan/factsheets/cancers/15-trachea-bronchus-and-lung-fact-sheet.pdf (accessed on 24 July 2024).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA: Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Alduais, Y.; Zhang, H.; Fan, F.; Chen, J.; Chen, B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine 2023, 102, e32899. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Suda, K.; Wiens, J.; Bunn, P.A. New and emerging targeted treatments in advanced non-small-cell lung cancer. Lancet 2016, 388, 1012–1024. [Google Scholar] [CrossRef]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.K.; Arcila, M.E.; Fara, M.; Sima, C.S.; Miller, V.A.; Kris, M.G.; Ladanyi, M.; Riely, G.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 2011, 29, 2046–2051. [Google Scholar] [CrossRef]
- Wu, S.G.; Liu, Y.N.; Tsai, M.F.; Chang, Y.L.; Yu, C.J.; Yang, P.C.; Yang, J.C.-H.; Wen, Y.-F.; Shih, J.-Y. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 2016, 7, 12404–12413. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, Y.W.; Xia, Y. Responsiveness to Full-Dose Afatinib in a Patient with Lung Adenocarcinoma Harboring EGFR S768I and V769L Mutations. J. Thorac. Oncol. 2019, 14, e25–e27. [Google Scholar] [CrossRef] [PubMed]
- Niogret, J.; Coudert, B.; Boidot, R. Primary Resistance to Afatinib in a Patient with Lung Adenocarcinoma Harboring Uncommon EGFR Mutations: S768I and V769L. J. Thorac. Oncol. 2018, 13, e113. [Google Scholar] [CrossRef] [PubMed]
- Oxnard, G.R.; Lo, P.C.; Nishino, M.; Dahlberg, S.E.; Lindeman, N.I.; Butaney, M.; Jackman, D.M.; Johnson, B.E.; Jänne, P.A. Natural history and molecular characteristics of lung cancers harboring EGFR exon 20 insertions. J. Thorac. Oncol. 2013, 8, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.; Butori, C.; Lassalle, S.; Heeke, S.; Piton, N.; Sabourin, J.C.; Tanga, V.; Washetine, K.; Long-Mire, E.; Maitre, P.; et al. Optimization of EGFR mutation detection by the fully-automated qPCR-based Idylla system on tumor tissue from patients with non-small cell lung cancer. Oncotarget 2017, 8, 103055–103062. [Google Scholar] [CrossRef] [PubMed]
- Uguen, A.; Troncone, G. A review on the Idylla platform: Towards the assessment of actionable genomic alterations in one day. J. Clin. Pathol. 2018, 71, 757–762. [Google Scholar] [CrossRef]
- Idylla EGFR. Mutation Test. Available online: https://www.biocartis.com/en/meet-idylla/idylla-oncology-tests/idylla-egfr-mutation-test (accessed on 9 October 2024).
- Tan, L.Y.; Walker, S.M.; Lonergan, T.; Lima, N.E.; Todd, A.V.; Mokany, E. Superior Multiplexing Capacity of PlexPrimers Enables Sensitive and Specific Detection of SNPs and Clustered Mutations in qPCR. PLoS ONE 2017, 12, e0170087. [Google Scholar] [CrossRef] [PubMed]
- Bocciarelli, C.; Cohen, J.; Pelletier, R.; Tran Van Nhieu, J.; Derman, J.; Favre, L.; Bourgogne, A.; Monnet, I.; Chouaid, C.; Pujals, A. Evaluation of the Idylla system to detect the EGFR T790M mutation using extracted DNA. Pathol. Res. Pract. 2020, 216, 152773. [Google Scholar] [CrossRef] [PubMed]
- Thermo Fisher Scientific Inc. Oncomine Focus Assay-ES. Available online: https://www.thermofisher.com/es/es/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-focus-assay.html (accessed on 9 October 2024).
- Thermo Fisher Scientific Inc. Oncomine Precision Assay-ES. Available online: https://www.thermofisher.com/es/es/home/clinical/preclinical-companion-diagnostic-development/oncomine-oncology/oncomine-precision-assay.html.html (accessed on 9 October 2024).
- Sequist, L.V.; Yang, J.C.-H.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.-M.; Boyer, M.; et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients with Metastatic Lung Adenocarcinoma With EGFR Mutations. J. Clin. Oncol. 2023, 41, 2869–2876. [Google Scholar] [CrossRef]
- Heeke, S.; Hofman, P. EGFR Mutation Analysis in Non-small Cell Lung Carcinoma from Tissue Samples Using the Fully Automated IdyllaTM qPCR System. Methods Mol. Biol. 2019, 2054, 147–155. [Google Scholar]
- Duan, H.; Peng, Y.; Cui, H.; Qiu, Y.; Li, Q.; Zhang, J.; Shen, W.; Sun, C.; Luo, C. Effectiveness of afatinib after ineffectiveness of gefitinib in an advanced lung adenocarcinoma patient with a single EGFR exon 20 S768I mutation: A case report. OncoTargets Ther. 2018, 11, 2303–2309. [Google Scholar] [CrossRef]
- Ellison, G.; Donald, E.; McWalter, G.; Knight, L.; Fletcher, L.; Sherwood, J.; Cantarini, M.; Orr, M.; Speake, G. A comparison of ARMS and DNA sequencing for mutation analysis in clinical biopsy samples. J. Exp. Clin. Cancer Res. 2010, 29, 132. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.K.; Man, J.; Lord, S.; Cooper, W.; Links, M.; Gebski, V.; Herbst, R.S.; Gralla, R.J.; Mok, T.; Yang, J.C.-H. Clinical and Molecular Characteristics Associated with Survival Among Patients Treated with Checkpoint Inhibitors for Advanced Non-Small Cell Lung Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Maren, N.A.; Kosentka, P.Z.; Liao, Y.Y.; Lu, H.; Duduit, J.R.; Huang, D.; Ashrafi, H.; Zhao, T.; Huerta, A.I.; et al. An optimized protocol for stepwise optimization of real-time RT-PCR analysis. Hortic. Res. 2021, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Evrard, S.M.; Taranchon-Clermont, E.; Rouquette, I.; Murray, S.; Dintner, S.; Nam-Apostolopoulos, Y.-C.; Bellosillo, B.; Varela-Rodriguez, M.; Nadal, E.; Wiedorn, K.H.; et al. Multicenter Evaluation of the Fully Automated PCR-Based Idylla EGFR Mutation Assay on Formalin-Fixed, Paraffin-Embedded Tissue of Human Lung Cancer. J. Mol. Diagn. 2019, 21, 1010–1024. [Google Scholar] [CrossRef]
- Huang, H.; Springborn, S.; Haug, K.; Bartow, K.; Samra, H.; Menon, S.; Mackinnon, A.C. Evaluation, Validation, and Implementation of the Idylla System as Rapid Molecular Testing for Precision Medicine. J. Mol. Diagn. 2019, 21, 862–872. [Google Scholar] [CrossRef]
- Boureille, A.; Ferraro-Peyret, C.; Pontarollo, G.; Confavreux, C.; Pialat, J.-B.; Isaac, S.; Forest, F.; Yvorel, V.; Watkin, E.; Girard, N.; et al. Rapid detection of EGFR mutations in decalcified lung cancer bone metastasis. J. Bone Oncol. 2020, 21, 100277. [Google Scholar] [CrossRef] [PubMed]
- Delgado-García, M.; Weynand, B.; Gómez-Izquierdo, L.; Hernández, M.J.; Blanco, Á.M.; Varela, M.; Matias-Guiu, X.; Nadal, E.; Márquez-Lobo, B.; Alarcão, A.; et al. Clinical performance evaluation of the IdyllaTM EGFR Mutation Test on formalin-fixed paraffin-embedded tissue of non-small cell lung cancer. BMC Cancer 2020, 20, 275. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, L.; Jia, L.; Ren, M.; Xue, T.; Bai, Q.; Yao, Q.; Wei, R.; Zhou, X.; Zhu, X. Evaluation of the IdyllaTM EGFR Mutation Test on formalin-fixed, paraffin-embedded tissue of human lung cancer. J. Thorac. Dis. 2024, 16, 40–50. [Google Scholar] [CrossRef] [PubMed]
Sample | Age | Gender | Tumor Area | % Tumor Cells | Tumor Type | Stage |
---|---|---|---|---|---|---|
95 | 75 | M | 17 mm2 | 60% | High-grade neuroendocrine tumor, suspicious for large cell neuroendocrine carcinoma | T4N2M1b (IVA) |
107 | 72 | M | 24 mm2 | 80% | NSCLC, most likely adenocarcinoma | T4N2M1a (IVA) |
132 | 59 | F | 4 mm2 | 65% | NSCLC, compatible with adenocarcinoma | T4N3M1c (IVB) |
142 | 73 | M | 4 mm2 | 25% | Lung neoplasm | Unknown (IVA) |
143 | 64 | M | 15 mm2 | 80% | NSCLC, most likely squamous cell carcinoma | T4N0M1a (IVA) |
195 | 62 | M | 44 mm2 | 20% | NSCLC, most likely squamous cell carcinoma | T3N3M1c (IVB) |
Sample | Sample Type | Quantity | Result | Cq (Total EGFR) | Cq (S768I) | ΔCq |
---|---|---|---|---|---|---|
95 | Biopsy | 2 slides (3 µm each) | Positive | 24.04 | 32.12 | 8.08 |
95-R1 | Extracted DNA | 100 ng | Negative | 21.59 | - | - |
107 | Biopsy | 1 slide (5 µm) | Positive | 22.65 | 27.89 | 5.24 |
107-R1 | Biopsy | 1 slide (5 µm) | Positive | 22.47 | 27.01 | 4.54 |
132 | Cell block | 2 slides (3 µm each) | Positive | 24.04 | 30.57 | 6.53 |
132-R1 | Extracted DNA | 126 ng | Negative | 22.29 | - | - |
142 | Biopsy | 1 slide (5 µm) | Negative | 30.44 | - | - |
142-R1 | Extracted DNA | 40.8 ng | Positive | 24.90 | 34.97 | 10.07 |
143 | Biopsy | 2 slides (5 µm each) | Positive | 24.52 | 34.23 | 9.71 |
143-R1 | Extracted DNA | 155.2 ng | Negative | 22.22 | - | - |
195 | Biopsy | 2 slides (3 µm each) | Positive | 21.94 | 31.54 | 9.60 |
195-R1 | Extracted DNA | 101.16 ng | Negative | 21.30 | - | - |
Sample | [DNA] | Read Depth | Result |
---|---|---|---|
95 | 3.18 ng/µL | 1995 | Negative |
107 | 9.40 ng/µL | 1944 | Positive |
132 | 4.20 ng/µL | 1995 | Negative |
142 | 1.02 ng/µL | 1993 | Negative |
143 | 19.4 ng/µL | 1996 | Negative |
195 | 5.62 ng/µL | 4739 | Negative |
Sample | Sample Type | Idylla1 Result | Idylla2 Result | NGS Result | Method Concordance |
---|---|---|---|---|---|
95 | Biopsy | Positive | Negative | Negative | Idylla2 = NGS |
107 | Biopsy | Positive | Positive | Positive | Both = NGS |
132 | Cell Block | Positive | Negative | Negative | Idylla2 = NGS |
142 | Biopsy | Negative | Positive | Negative | Idylla1 = NGS |
143 | Biopsy | Positive | Negative | Negative | Idylla2 = NGS |
195 | Biopsy | Positive | Negative | Negative | Idylla2 = NGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carnero-Gregorio, M.; Perera-Gordo, E.; de-la-Peña-Castro, V.; González-Martín, J.M.; Delgado-Sánchez, J.J.; Rodríguez-Cerdeira, C. High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients. Diagnostics 2025, 15, 321. https://doi.org/10.3390/diagnostics15030321
Carnero-Gregorio M, Perera-Gordo E, de-la-Peña-Castro V, González-Martín JM, Delgado-Sánchez JJ, Rodríguez-Cerdeira C. High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients. Diagnostics. 2025; 15(3):321. https://doi.org/10.3390/diagnostics15030321
Chicago/Turabian StyleCarnero-Gregorio, Miguel, Enzo Perera-Gordo, Vanesa de-la-Peña-Castro, Jesús María González-Martín, Julio José Delgado-Sánchez, and Carmen Rodríguez-Cerdeira. 2025. "High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients" Diagnostics 15, no. 3: 321. https://doi.org/10.3390/diagnostics15030321
APA StyleCarnero-Gregorio, M., Perera-Gordo, E., de-la-Peña-Castro, V., González-Martín, J. M., Delgado-Sánchez, J. J., & Rodríguez-Cerdeira, C. (2025). High Incidence of False Positives in EGFR S768I Mutation Detection Using the Idylla qPCR System in Non-Small Cell Lung Cancer Patients. Diagnostics, 15(3), 321. https://doi.org/10.3390/diagnostics15030321