Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
- (a)
- Anonymised blood samples (n = 230) from Spanish returning travellers or immigrants coming from Sub-Saharan Africa, India, Pakistan, and Venezuela were sent to the Parasitology Reference and Research Laboratory at the National Microbiology Centre-Instituto de Salud Carlos III for testing for malaria and other tropical diseases. These samples were part of the repository of the Spanish National Biobanks (Registry number: C.0001392), including the samples used in this study, which came from three research projects for the study of imported malaria in Spain, which were approved by the Ethics Committee of the Instituto de Salud Carlos III and the Research Ethics Committee of the 12 de Octubre University Hospital in Madrid (ISCIII CEI PI 74_2020 Date: 30 September 2020; ISCIII CEI PI 100_2022 Date: 26 January 2022; and H12O CEtm:.18/021 Date: 8 February 2022). They consisted of 119 Plasmodium-positive samples, including P. falciparum (n = 81), P. vivax (n = 13), P. ovale (n = 8), P. malariae (n = 8), and mixed infections by two Plasmodium species (n = 9). In addition, 33 samples for Filariae (Loa loa, n = 24; Mansonella perstans, n = 7; and mixed infections by L. loa + M perstans, n = 2), 9 samples for Trypanosomatidae (Trypanosoma brucei, n = 4; Leishmania infantum, n = 3; and Trypanosoma cruzi, n = 2), and 69 negative samples were also available for the survey.
- (b)
- We analysed faecal samples (n = 58) from wild chimpanzees (Pan troglodytes verus) collected in the Dindéfélo Community Nature Reserve (Senegal). These samples were a subset of the initial panel (n = 234) originally used to screen for the presence of intestinal and hematic parasites [17]. The animal study protocol was approved by the Research Ethics committee of the Instituto de Salud Carlos III (protocol code CEI PI 90_2018-v2), and the study was conducted in strict accordance with the Code of Best Practices for Field Primatology of the International Primatological Society [19,20]. They included 2 Plasmodium-positive samples (P. malariae, n = 1; Plasmodium spp., n = 1), 16 Trypanosomatidae-positive samples (T. brucei sp., n = 1; Phytomonas sp., n = 8; Trypanosomatidae spp., n = 5; Bodo sp., n = 1; Neobodo sp., n = 1), 9 Filariae-positive samples (M. perstans, n = 8; Mansonella spp., n = 1), and 31 negative samples. No experimentation was conducted on chimpanzees; all faecal samples were collected non-invasively from the ground without disrupting any wild animal.
2.2. DNA Extraction and Purification
2.3. Primer and Probe Design
2.4. Real-Time PCR for Blood Parasites (RT-PCR-bp) Groups
2.5. Validation
2.6. Analytical Sensitivity and Specificity
2.7. Intra-Assay Precision
2.8. Inter-Assay Precision
2.9. Statistical Analysis
2.10. Operational Features
3. Results
3.1. Validation
3.2. Analytical Sensitivity and Specificity
3.3. Intra-Assay Precision
3.4. Inter-Assay Precision
3.5. Diagnostic Performance of the RT-PCR-bp Assay
3.6. Operational Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2023; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (accessed on 14 May 2024).
- World Health Organization. Global Report on Neglected Tropical Diseases 2024; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/teams/control-of-neglected-tropical-diseases/global-report-on-neglected-tropical-diseases-2024 (accessed on 14 May 2024).
- Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The impact of climate change on neglected tropical diseases: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Hotez, P.J.; Remme, J.H.F.; Buss, P.; Alleyne, G.; Morel, C.; Breman, J.G. Combating tropical infectious diseases: Report of the Disease Control Priorities in Developing Countries Project. Clin. Infect. Dis. 2004, 38, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Short, E.E.; Caminade, C.; Thomas, B.N. Climate change contribution to the emergence or re-emergence of parasitic diseases. Infect. Dis. 2017, 10, 1178633617732296. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Control and surveillance of human African trypanosomiasis. WHO Tech. Rep. Ser. 2013, 984, 1–237. [Google Scholar]
- Büscher, P.; Bart, J.M.; Boelaert, M.; Bucheton, B.; Cecchi, G.; Chitnis, N.; Courtin, D.; Figueiredo, L.M.; Franco, J.R.; Grébaut, P.; et al. Do cryptic reservoirs threaten Gambiense-sleeping sickness elimination? Trends Parasitol. 2018, 34, 197–207. [Google Scholar] [CrossRef]
- González-Macea, O.; Martínez-Ávila, M.C.; Pérez, M.; Tibocha Gordon, I.; Arroyo Salgado, B. Concurrent dengue-malaria infection: The importance of acute febrile illness in endemic zones. Clin. Med. Insights Case Rep. 2023, 16, 11795476221144585. [Google Scholar] [CrossRef]
- Dacal, E.; Köster, P.C.; Carmena, D. Diagnóstico molecular de parasitosis intestinales. Enferm. Infecc. Microbiol. Clin. 2020, 38 (Suppl. S1), 24–31. [Google Scholar] [CrossRef]
- Rougemont, M.; Van Saanen, M.; Sahli, R.; Hinrikson, H.P.; Bille, J.; Jaton, K. Detection of four Plasmodium species in blood from humans by 18S rRNA gene subunit-based and species-specific real-time PCR assays. J. Clin. Microbiol. 2004, 42, 5636–5643. [Google Scholar] [CrossRef]
- Putaporntip, C.; Buppan, P.; Jongwutiwes, S. Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin. Microbiol. Infect. 2011, 17, 1484–1491. [Google Scholar] [CrossRef]
- Haanshuus, C.G.; Mohn, S.C.; Mørch, K.; Langeland, N.; Blomberg, B.; Hanevik, K. A novel, single-amplification PCR targeting mitochondrial genome highly sensitive and specific in diagnosing malaria among returned travellers in Bergen, Norway. Malar. J. 2013, 12, 26. [Google Scholar] [CrossRef]
- Krungkrai, J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004, 129, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Rubio, J.M.; Post, R.J.; van Leeuwen, W.M.; Henry, M.C.; Lindergard, G.; Hommel, M. Alternative polymerase chain reaction method to identify Plasmodium species in human blood samples: The semi-nested multiplex malaria PCR (SnM-PCR). Trans. R. Soc. Trop. Med. Hyg. 2002, 96 (Suppl. S1), S199–S204. [Google Scholar] [CrossRef] [PubMed]
- Ta, T.H.; Hisam, S.; Lanza, M.; Jiram, A.I.; Ismail, N.; Rubio, J.M. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar. J. 2014, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.H.; López-Vélez, R.; Lanza, M.; Shelley, A.J.; Rubio, J.M.; Luz, S.L. Nested PCR to detect and distinguish the sympatric filarial species Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans in the Amazon Region. Mem. Inst. Oswaldo Cruz 2010, 105, 823–828. [Google Scholar] [CrossRef]
- Köster, P.C.; Renelies-Hamilton, J.; Dotras, L.; Llana, M.; Vinagre-Izquierdo, C.; Prakas, P.; Sneideris, D.; Dashti, A.; Bailo, B.; Lanza, M.; et al. Molecular detection and characterization of intestinal and blood parasites in wild chimpanzees (Pan troglodytes verus) in Senegal. Animals 2021, 11, 3291. [Google Scholar] [CrossRef]
- García-Fernández, S.; Vergara-Gómez, A.; Sánchez-Díaz, A.M.; Albert Vicent, E. Estudios de Evaluación del Rendimiento Analítico y Clínico de Productos Sanitarios para Diagnóstico In Vitro; Cercenado Mansilla, E., Cantón Moreno, R., Eds.; García-Fernández, S., Coordinador; Procedimientos en Microbiología Clínica; Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC): Madrid, Spain, 2022; Volume 76. [Google Scholar]
- Gilardi, K.V.; Gillespie, T.R.; Leendertz, F.H.; Macfie, E.J.; Travis, D.A.; Whittier, C.A.; Williamson, E.A. Best Practice Guidelines for Health Monitoring and Disease Control in Great Ape Populations. Available online: https://portals.iucn.org/library/sites/library/files/documents/ssc-op-056.pdf (accessed on 2 December 2024).
- MacKinnon, K.; Riley, E.; Garber, P.; Setchell, J.; Fernandez-Duque, E. Code of Best Practices for Field Primatology; The Duke Lemur Cente: Durhan, NC, USA, 2014. [Google Scholar]
- Kaltenboeck, B.; Wang, C. Advances in real-time PCR: Application to clinical laboratory diagnostics. Adv. Clin. Chem. 2005, 40, 219–259. [Google Scholar] [CrossRef]
- Billard, A.; Laval, V.; Fillinger, S.; Leroux, P.; Lachaise, H.; Beffa, R.; Debieu, D. The allele-specific probe and primer amplification assay, a new real-time PCR method for fine quantification of single-nucleotide polymorphisms in pooled DNA. Appl. Environ. Microbiol. 2012, 78, 1063–1068. [Google Scholar] [CrossRef]
- World Health Organization. Basic Malaria Microscopy: Part I. Learner’s Guide, 2nd ed.; World Health Organization: Geneva, Switzerland, 2010; ISBN 978 92 4 154782 6. [Google Scholar]
- World Health Organization. Bench Aids for the Diagnosis of Filarial Infections; World Health Organization: Geneva, Switzerland, 1997; ISBN 92 41544899. [Google Scholar]
- World Health Organization. Basic Laboratory Methods in Medical Parasitology; World Health Organization: Geneva, Switzerland, 1991; Available online: https://iris.who.int/handle/10665/40793 (accessed on 14 May 2024).
- Saah, A.J.; Hoover, D.R. Sensitivity and specificity reconsidered: The meaning of these terms in analytical and diagnostic settings. Ann. Int. Med. 1997, 126, 91–94. [Google Scholar] [CrossRef]
- Mitra, A.K.; Mawson, A.R. Neglected tropical diseases: Epidemiology and global burden. Trop. Med. Infect. Dis. 2017, 5, 36. [Google Scholar] [CrossRef]
- Klepac, P.; Hsieh, J.L.; Ducker, C.L.; Assoum, M.; Booth, M.; Byrne, I.; Dodson, S.; Martin, D.L.; Turner, C.M.R.; van Daalen, K.R.; et al. Climate change, malaria and neglected tropical diseases: A scoping review. Trans. R. Soc. Trop. Med. Hyg. 2024, 118, 561–579. [Google Scholar] [CrossRef]
- Forbes, K.; Basáñez, M.G.; Hollingsworth, T.D.; Anderson, R.M. Introduction to the special issue: Challenges and opportunities in the fight against neglected tropical diseases: A decade from the London Declaration on NTDs. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2023, 378, 20220272. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.K.; Jun, H.; Louis, J.M.; Mazigo, E.; Lee, W.J.; Youm, H.C.; Shin, J.; Lungu, D.K.; Kanyemba, C.; Ahmed, M.A.; et al. Enhancing malaria detection in resource-limited areas: A high-performance colorimetric LAMP assay for Plasmodium falciparum screening. PLoS ONE 2024, 19, e0298087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belachew, M.; Wolde, M.; Nega, D.; Gidey, B.; Negash, L.; Assefa, A.; Tasew, G.; Woyessa, A.; Abera, A. Evaluating performance of multiplex real time PCR for the diagnosis of malaria at elimination targeted low transmission settings of Ethiopia. Malar. J. 2022, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.M.; Tang, T.H.T.; Suárez, M.L.; Fernández, A.Á.; García, C.M.; Hisam, S.; Rubio, J.M. Assessment of Commercial Real-Time PCR Assays for Detection of Malaria Infection in a Non-Endemic Setting. Am. J. Trop. Med. Hyg. 2021, 105, 1732–1737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mangold, K.A.; Manson, R.U.; Koay, E.S.C.; Stephens, L.; Regner, M.; Thomson, R.B., Jr.; Peterson, L.R.; Kaul, K.L. Real-Time PCR for Detection and Identification of Plasmodium spp. J. Clin. Microbiol. 2005, 43, 2435–2440. [Google Scholar] [CrossRef]
- Masiga, D.K.; Smyth, A.J.; Hayes, P.; Bromidge, T.J.; Gibson, W.C. Sensitive detection of trypanosomes in tsetse flies by DNA amplification. Int. J. Parasitol. 1992, 22, 909–918. [Google Scholar] [CrossRef]
- Gummery, L.; Jallow, S.; Raftery, A.G.; Bennet, E.; Rodgers, J.; Sutton, D.G.M. Comparison of loop-mediated isothermal amplification (LAMP) and PCR for the diagnosis of infection with Trypanosoma brucei ssp. in equids in The Gambia. PLoS ONE 2020, 15, e0237187. [Google Scholar] [CrossRef]
- Sá, A.R.N.; Kimoto, K.Y.; Steindel, M.; Grisard, E.C.; Gomes, M.L. Limit of detection of PCR/RFLP analysis of cytochrome oxidase II for the identification of genetic groups of Trypanosoma cruzi and Trypanosoma rangeli in biological material from vertebrate hosts. Parasitol. Res. 2018, 117, 2403–2410. [Google Scholar] [CrossRef]
- Seiringer, P.; Pritsch, M.; Flores-Chavez, M.; Marchisio, E.; Helfrich, K.; Mengele, C.; Hohnerlein, S.; Bretzel, G.; Löscher, T.; Hoelscher, M.; et al. Comparison of four PCR methods for efficient detection of Trypanosoma cruzi in routine diagnostics. Diagn. Microbiol. Infect. Dis. 2017, 88, 225–232. [Google Scholar] [CrossRef]
- Schijman, A.G.; Bisio, M.; Orellana, L.; Sued, M.; Duffy, T.; Mejia Jaramillo, A.M.; Cura, C.; Auter, F.; Veron, V.; Qvarnstrom, Y.; et al. International study to evaluate PCR methods for detection of Trypanosoma cruzi DNA in blood samples from Chagas disease patients. PLoS Negl. Trop. Dis. 2011, 5, e931. [Google Scholar] [CrossRef]
- Formenti, F.; Tang, T.T.; Tamarozzi, F.; Silva, R.; La Marca, G.; Pajola, B.; Piubelli, C.; Perandin, F.; Rubio, J.M.; Escolar, E.M.; et al. Preliminary comparison between an in-house real-time PCR vs microscopy for the diagnosis of Loa loa and Mansonella perstans. Acta Trop. 2021, 216, 105838. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.T.; Romano, F.; Wampfler, R.; Mühlethaler, K.; Tannich, E.; Oberli, A. Case Report: Diagnostic Challenges in the Detection of a Mixed Plasmodium vivax/ovale Infection in a Non-Endemic Setting. Am. J. Trop. Med. Hyg. 2020, 103, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- Imboumy-Limoukou, R.K.; Biteghe-Bi-Essone, J.-C.; Lendongo Wombo, J.B.; Lekana-Douki, S.E.; Rougeron, V.; Ontoua, S.-S.; Oyegue-Liabagui, L.S.; Mbani Mpega Ntigui, C.N.; Kouna, L.C.; Lekana-Douki, J.-B. Detection of Plasmodium falciparum in saliva and stool samples from children living in Franceville, a highly endemic region of Gabon. Diagnostics 2023, 13, 3271. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Löwa, A.; Ulrich, M.; Ellerbrok, H.; Goffe, A.S.; Blasse, A.; Zommers, Z.; Couacy-Hymann, E.; Babweteera, F.; Zuberbühler, K.; et al. Wild chimpanzees infected with 5 Plasmodium species. Emerg. Infect. Dis. 2010, 16, 1956–1959. [Google Scholar] [CrossRef]
- Gaillard, C.M.; Pion, S.D.; Hamou, H.; Sirima, C.; Bizet, C.; Lemarcis, T.; Rodrigues, J.; Esteban, A.; Peeters, M.; Mpoudi Ngole, E.; et al. Detection of DNA of filariae closely related to Mansonella perstans in faecal samples from wild non-human primates from Cameroon and Gabon. Parasit. Vectors 2020, 13, 313. [Google Scholar] [CrossRef]
- Jirků, M.; Votýpka, J.; Petrželková, K.J.; Jirků-Pomajbíková, K.; Kriegová, E.; Vodička, R.; Lankester, F.; Leendertz, S.A.; Wittig, R.M.; Boesch, C.; et al. Wild chimpanzees are infected by Trypanosoma brucei. Int. J. Parasitol. Parasites Wildl. 2015, 4, 277–282. [Google Scholar] [CrossRef]
- Votýpka, J.; Pafčo, B.; Modrý, D.; Mbohli, D.; Tagg, N.; Petrželková, K.J. An unexpected diversity of trypanosomatids in faecal samples of great apes. Int. J. Parasitol. Parasites Wildl. 2018, 7, 322–325. [Google Scholar] [CrossRef]
Primer | Sequence (5′–3′) | Specificity | Final Concentration (µM) |
---|---|---|---|
JM-U-0011F | CAAGTCTGGTGCCAGCA | Universal | 0.2 |
JM-T-349R | CCAACAAAAGECGAAACGGTGGCC | Trypanosomatidae | 0.2 |
JM-Fi-0015R | CAAGGTAAACTTGCTAGCCAC | Filariae | 0.2 |
JM-P-COI2F | GGTGTGTACAAGGCAACAATAC | Plasmodium spp. | 0.2 |
JM-P-COI1R | CATATAACGGTAAGAAGGTTCGC | Plasmodium spp. | 0.2 |
IC-Forw | GAGCCGCCTGGATACCGC | Mammals | 0.2 |
IC-Rev | GACGGTATCTGATCGTCTTC | Mammals | 0.2 |
Tryp 681 | TxRd–GCTGTTGCTGTTAAAGGGTTCGTAG–BHQ2 | Trypanosomatidae | 0.15 |
Fi 101 | Cy5.5–GGTCCATYCATTGGATGAGAACT–BHQ2 | Filariae | 0.15 |
MALCOI 2 | Cy5–ATTGGCACCTCCATGTCGTCTCAT–BHQ2 | Plasmodium spp. | 0.15 |
IC | Hex–TCGCTCTGGTCCGTCTTG–BHQ1 | Mammals | 0.06 |
Parasite | Initial Parasitaemia or Microfilaremia | LoD |
---|---|---|
Plasmodium falciparum | 73,000 parasites/µL | 0.73 parasites/µL |
Plasmodium vivax | 301 parasites/µL | 3.01 parasites/µL |
Plasmodium ovale | 6110 parasites/µL | 0.61 parasites/µL |
Plasmodium malariae | 107 parasites/µL | 1.07 parasites/µL |
Trypanosoma brucei | 1800 parasites/µL | 0.0018 parasites/µL |
Loa loa | 200 microfilariae/mL | 2 microfilariae/mL |
Species | Parasitaemia | Day 1 | Day 2 | Day 3 | Standard Deviation | Precision (%) |
---|---|---|---|---|---|---|
Plasmodium spp. | High | 6.98 × 104 | 7.08 × 104 | 7.30 × 104 | 1.64 × 103 | 97.70 |
Medium | 7.02 × 103 | 7.19 × 103 | 7.30 × 103 | 1.41 × 102 | 98.03 | |
Low | 4.84 × 101 | 4.22 × 101 | 5.36 × 101 | 5.71 × 100 | 88.13 | |
Trypanosomatidae | High | 1.84 × 104 | 1.80 × 104 | 1.84 × 104 | 2.29 × 102 | 98.75 |
Medium | 1.82 × 103 | 1.74 × 103 | 1.68 × 103 | 7.26 × 101 | 95.85 | |
Low | 6.30 × 101 | 8.10 × 101 | 6.30 × 101 | 1.04 × 101 | 84.94 | |
Filariae | High | 1.19 × 105 | 1.27 × 102 | 1.19 × 102 | 4.85 × 103 | 96.00 |
Medium | 2.00 × 102 | 2.03 × 102 | 2.15 × 102 | 7.94 × 100 | 96.15 | |
Low | 9.20 × 101 | 6.60 × 101 | 5.40 × 101 | 1.94 × 101 | 72.51 |
Species | Parasitaemia | M1 | M2 | M3 | Standard Deviation | Precision (%) |
---|---|---|---|---|---|---|
Plasmodium spp. | High | 2.59 × 103 | 2.31 × 103 | 2.01 × 103 | 2.90 × 102 | 87.41 |
Medium | 3.83 × 102 | 4.30 × 102 | 5.24 × 102 | 7.18 × 101 | 83.89 | |
Low | 2.90 × 100 | 5.01 × 100 | 4.62 × 100 | 1.12 × 100 | 73.12 | |
Trypanosomatidae | High | 1.38 × 104 | 1.37 × 104 | 1.24 × 104 | 7.81 × 102 | 94.13 |
Medium | 2.52 × 103 | 2.61 × 103 | 1.38 × 103 | 6.86 × 102 | 68.40 | |
Low | 1.41 × 102 | 1.44 × 102 | 2.54 × 102 | 6.43 × 101 | 64.16 | |
Filariae | High | 3.24 × 103 | 2.83 × 103 | 2.92 × 103 | 2.15 × 102 | 92.81 |
Medium | 3.12 × 102 | 2.48 × 102 | 3.53 × 102 | 5.29 × 101 | 82.61 | |
Low | 1.72 × 101 | 6.57 × 101 | 2.24 × 101 | 9.54 × 100 | 61.99 |
Reference PCR Methods | RT-PCR-bp | |
---|---|---|
Plasmodium spp. | 119 | 119 |
Plasmodium falciparum | 81 | |
Plasmodium vivax | 13 | |
Plasmodium malariae | 8 | |
Plasmodium ovale | 8 | |
Mixed Infections | 9 | |
Trypanosomatidae | 9 | 9 |
Leishmania infantum | 3 | |
Trypanosoma brucei | 4 | |
Trypanosoma cruzi | 2 | |
Filariae | 33 | 31 |
Mansonella perstans | 7 | |
Loa loa | 24 | |
Mixed Infections | 2 | |
Negative | 69 | 71 |
Total | 230 | 230 |
Plasmodium spp. | Filariae | |||
---|---|---|---|---|
Values (%) | 95% CIs | Values (%) | 95% CIs | |
Sensibility | 100 | 94.0–100 | 93.9 | 80.4–98.3 |
Specificity | 100 | 81.6–100 | 100 | 81.6–100 |
PPV | 100 | 94.0–100 | 100 | 89.0–100 |
NPV | 100 | 81.6–100 | 89.5 | 68.6–97.1 |
Kappa index | 1.00 | 1.00–1.00 | 0.91 | 0.80–1.03 |
Plasmodium spp. | Trypanosomatidae | Filariae | Coinfected | Total Infected | |
---|---|---|---|---|---|
RT-PCR-bp n (%) | 12 (20.7) | 17 (29.3) | 14 (24.1) | 9 (15.5) | 34 (58.6) |
Reference PCR method n (%) | 2 (3.4) | 16 (27.6) | 9 (15.5) | 3 (5.2) | 27 (46.5) |
RT-PCR-bp | SnM-PCR | nFil-PCR | RT-PCR-Tryp | |
---|---|---|---|---|
Sample processing | 1 h | 1 h | 1 h | 1 h |
First PCR setup | 30 min | 30 min | 30 min | 30 min |
First PCR amplification | 1 h 30 min | 2 h | 2 h | 1 h 30 min |
Second PCR setup | - | 30 min | 30 min | - |
Second PCR amplification | - | 1 h 15 min | 1 h 15 min | - |
Electrophoresis | - | 30 min | 30 min | - |
Result analysis | 30 min | 15 min | 15 min | 30 min |
Total | 3 h 30 min | 6 h | 6 h | 3 h 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceballos-Caro, Á.; Antón-Berenguer, V.; Lanza, M.; Renelies-Hamilton, J.; Barciela, A.; Köster, P.C.; Carmena, D.; Flores-Chávez, M.; Chanove, E.; Rubio, J.M. Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates. Diagnostics 2025, 15, 620. https://doi.org/10.3390/diagnostics15050620
Ceballos-Caro Á, Antón-Berenguer V, Lanza M, Renelies-Hamilton J, Barciela A, Köster PC, Carmena D, Flores-Chávez M, Chanove E, Rubio JM. Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates. Diagnostics. 2025; 15(5):620. https://doi.org/10.3390/diagnostics15050620
Chicago/Turabian StyleCeballos-Caro, Ángela, Víctor Antón-Berenguer, Marta Lanza, Justinn Renelies-Hamilton, Amanda Barciela, Pamela C. Köster, David Carmena, María Flores-Chávez, Emeline Chanove, and José Miguel Rubio. 2025. "Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates" Diagnostics 15, no. 5: 620. https://doi.org/10.3390/diagnostics15050620
APA StyleCeballos-Caro, Á., Antón-Berenguer, V., Lanza, M., Renelies-Hamilton, J., Barciela, A., Köster, P. C., Carmena, D., Flores-Chávez, M., Chanove, E., & Rubio, J. M. (2025). Development and Assessment of a Multiple-Analysis System for Diagnosing Malaria and Other Blood Parasite Infections in Humans and Non-Human Primates. Diagnostics, 15(5), 620. https://doi.org/10.3390/diagnostics15050620