Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics
Abstract
:1. Introduction
2. Search for Exosome-Derived Cancer Markers in Blood
2.1. Blood Exosomes in Breast Cancer Patients
2.2. Blood Exosomes of Lung Cancer Patients
2.3. Blood Exosomes of Pancreatic Cancer Patients
2.4. Blood Exosomes in Colorectal Cancer Patients
2.5. Blood Exosomes in Other Cancer Patients
3. Search for Exosome-Derived Cancer Markers in Urine
3.1. Urinary Exosomes in Patients with Bladder Cancer
3.2. Urinary Exosomes of Prostate Cancer Patients
3.3. Urinary Exosomes of Other Cancer Patients
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chigira, M. Selfish cells in altruistic cell society—A theoretical oncology. Int. J. Oncol. 1993, 3, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Axelrod, R.; Axelrod, D.E.; Pienta, K.J. Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. USA 2006, 103, 13474–13479. [Google Scholar] [CrossRef] [PubMed]
- Brutovský, B. Scales of Cancer Evolution: Selfish Genome or Cooperating Cells? Cancers 2022, 14, 3253. [Google Scholar] [CrossRef] [PubMed]
- Nong, S.; Han, X.; Xiang, Y.; Qian, Y.; Wei, Y.; Zhang, T.; Tian, K.; Shen, K.; Yang, J.; Ma, X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. Medcomm 2023, 4, e218. [Google Scholar] [CrossRef]
- Schiliro, C.; Firestein, B.L. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Wang, D.; Liu, S.; Xiao, T.; Gu, W.; Yang, H.; Wang, H.; Yang, M.; Chen, P.; et al. Metabolic reprogramming and immune evasion: The interplay in the tumor microenvironment. Biomark. Res. 2024, 12, 96. [Google Scholar] [CrossRef]
- Crosby, D.; Bhatia, S.; Brindle, K.M.; Coussens, L.M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R.C.; Gambhir, S.S.; Kuhn, P.; et al. Early detection of cancer. Science 2022, 375, eaay9040. [Google Scholar] [CrossRef]
- Duffy, M.J. Tumor markers in clinical practice: A review focusing on common solid cancers. Med. Princ. Pract. 2013, 22, 4–11. [Google Scholar] [CrossRef]
- Prasanth, B.K.; Sawarkar, G.; Dharshini, B.D.; Prasanth, K.; Alkhowaiter, S.S.; Dharshini, D.; Baskaran, A.R. Unlocking Early Cancer Detection: Exploring Biomarkers, Circulating DNA, and Innovative Technological Approaches. Cureus 2023, 15, e51090. [Google Scholar] [CrossRef]
- Tenchov, R.; Sapra, A.K.; Sasso, J.; Ralhan, K.; Tummala, A.; Azoulay, N.; Zhou, Q.A. Biomarkers for Early Cancer Detection: A Landscape View of Recent Advancements, Spotlighting Pancreatic and Liver Cancers. ACS Pharmacol. Transl. Sci. 2024, 7, 586–613. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tian, L.; Lu, J.; Ng, I.O.-L. Exosomes and cancer—Diagnostic and prognostic biomarkers and therapeutic vehicle. Oncogenesis 2022, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Zhang, W.; Niraj, M.; Yang, F.; Guo, C.; Shen, L.; Xu, T.; Liu, S.; Zhang, J.; et al. Urinary exosomes: Potential diagnostic markers and application in bladder cancer. Heliyon 2024, 10, e32621. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Li, Y.; Wang, M.; Gu, J.; Xu, W.; Cai, H.; Fang, X.; Zhang, X. Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 2022, 21, 56. [Google Scholar] [CrossRef]
- Calero, J.B.; López, M.A.C.; Monge, P.G.C.; Portillo, J.D.; García, A.B.; Roldán, F.N. Analysis of blood markers for early colorectal cancer diagnosis. J. Gastrointest. Oncol. 2022, 13, 2259–2268. [Google Scholar] [CrossRef]
- Bayo, J.; Castaño, M.A.; Rivera, F.; Navarro, F. Analysis of blood markers for early breast cancer diagnosis. Clin. Transl. Oncol. 2018, 20, 467–475. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Zhao, Y.; Liu, Z.; Wang, C.; Bu, J.; Sun, T.; Wei, J. Liquid biopsy in cancer: Current status, challenges and future prospects. Signal Transduct. Target. Ther. 2024, 9, 336. [Google Scholar] [CrossRef]
- Mo, J.-L.; Li, X.; Lei, L.; Peng, J.; Liang, X.-S.; Zhou, H.-H.; Liu, Z.-Q.; Hong, W.-X.; Yin, J.-Y. A machine learning model revealed that exosome small RNAs may participate in the development of breast cancer through the chemokine signaling pathway. BMC Cancer 2024, 24, 1435. [Google Scholar] [CrossRef]
- Qiao, P.; Du, H.; Guo, X.; Yu, M.; Zhang, C.; Shi, Y. Serum exosomal miR-200c is a potential diagnostic biomarker for breast cancer. Biomarkers 2024, 29, 419–426. [Google Scholar] [CrossRef]
- Yang, L.M.; Fan, J.M.; Dong, C.M.; Wang, X.M.; Ma, B.M. Correlative expression of exosomal miRNAs in chemotherapy resistance of triple-negative breast cancer: An observational study. Medicine 2024, 103, e38549. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, W.; Feng, B.; Shen, H.; Chen, X.; Yu, S. Surface protein analysis of breast cancer exosomes using visualized strategy on centrifugal disk chip. Int. J. Biol. Macromol. 2024, 280, 135651. [Google Scholar] [CrossRef] [PubMed]
- Inubushi, S.; Kunihisa, T.; Kuniyasu, M.; Inoue, S.; Yamamoto, M.; Yamashita, Y.; Miki, M.; Mizumoto, S.; Baba, M.; Hoffman, R.M.; et al. Serum Exosomes Expressing CD9, CD63 and HER2 From Breast-Cancer Patients Decreased After Surgery of the Primary Tumor: A Potential Biomarker of Tumor Burden. Cancer Genom. Proteom. 2024, 21, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Lee, C.-H.; Noh, H.; Kang, G.; Lee, J.; Bae, J.-H.; Moon, H.; Park, J.; Kong, S.; Baek, M.-C.; et al. High-precision extracellular-vesicle isolation-analysis integrated platform for rapid cancer diagnosis directly from blood plasma. Biosens. Bioelectron. 2025, 267, 116863. [Google Scholar] [CrossRef]
- Hassanin, A.A.I.; Ramos, K.S. Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers. Cells 2024, 13, 1562. [Google Scholar] [CrossRef]
- Bafiti, V.; Thanou, E.; Ouzounis, S.; Kotsakis, A.; Georgoulias, V.; Lianidou, E.; Katsila, T.; Markou, A. Profiling Plasma Extracellular Vesicle Metabotypes and miRNAs: An Unobserved Clue for Predicting Relapse in Patients with Early-Stage NSCLC. Cancers 2024, 16, 3729. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z.; Xu, W.; Wang, J.; Feng, X. The diagnostic value of serum exosomal SNORD116 and SNORA21 for NSCLC patients. Clin. Transl. Oncol. 2024, 27, 650–659. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, H.; Tang, L.; Fang, K.; Lin, N.; Huang, Y.; Zhang, Y.; Le, H. Identification of a Plasma Exosomal lncRNA- and circRNA-Based ceRNA Regulatory Network in Patients With Lung Adenocarcinoma. Clin. Respir. J. 2024, 18, e70026. [Google Scholar] [CrossRef]
- Shah, K.A.; Rawal, R.M. A novel algorithm to differentiate between primary lung tumors and distant liver metastasis in lung cancers using an exosome based multi gene biomarker panel. Sci. Rep. 2024, 14, 13769. [Google Scholar] [CrossRef]
- Jahani, M.M.; Mashayekhi, P.; Omrani, M.D.; Khosravi, A.; Dehghanifard, A.; Manjiri, S.A.; Zahraie, M.; Mabani, M.; Seifi, S.; Salimi, B.; et al. Assessing the Sensitivity of Nested PCR Followed by Direct Sequencing on Exosomal DNA for EGFR Mutation Detection in NSCL. Iran. Biomed. J. 2024, 28, 208–215. [Google Scholar] [CrossRef]
- Amato, L.; De Rosa, C.; De Rosa, V.; Sheikhhossein, H.H.; Ariano, A.; Franco, P.; Nele, V.; Capaldo, S.; Di Guida, G.; Sepe, F.; et al. Immune-Cell-Derived Exosomes as a Potential Novel Tool to Investigate Immune Responsiveness in SCLC Patients: A Proof-of-Concept Study. Cancers 2024, 16, 3151. [Google Scholar] [CrossRef]
- Lu, D.; Shangguan, Z.; Su, Z.; Lin, C.; Huang, Z.; Xie, H. Artificial intelligence-based plasma exosome label-free SERS profiling strategy for early lung cancer detection. Anal. Bioanal. Chem. 2024, 416, 5089–5096. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Su, Y.; Rittenhouse-Olson, K.; Attwood, K.M.; Mojica, W.; Reid, M.E.; Dy, G.K.; Wu, Y. Exosomal Thomsen–Friedenreich Glycoantigen: A New Liquid Biopsy Biomarker for Lung and Breast Cancer Diagnoses. Cancer Res. Commun. 2024, 4, 1933–1945. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, L.; Di, Y.; Li, W.; Zhang, X.; Bai, Z.; Wang, Z.; Liu, S.; Corpe, C.; Wang, J. Plasma-derived exosomal long noncoding RNAs of pancreatic cancer patients as novel blood-based biomarkers of disease. BMC Cancer 2024, 24, 961. [Google Scholar] [CrossRef]
- Ueda, H.; Takahashi, H.; Kobayashi, S.; Kubo, M.; Sasaki, K.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Asaoka, T.; Noda, T.; et al. miR-6855-5p Enhances Radioresistance and Promotes Migration of Pancreatic Cancer by Inducing Epithelial-Mesenchymal Transition via Suppressing FOXA1: Potential of Plasma Exosomal miR-6855-5p as an Indicator of Radiosensitivity in Patients with Pancreatic Cancer. Ann. Surg. Oncol. 2025, 32, 720–735. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cai, J.; Yang, K.; Sun, B.; Liu, W.; Li, Y.; Hu, H. Molecular beacon-peptide probe based double recycling amplification for multiplexed detection of serum exosomal microRNAs. Anal. Methods 2024, 16, 5202–5211. [Google Scholar] [CrossRef] [PubMed]
- Ueda, H.; Takahashi, H.; Sakaniwa, R.; Kitamura, T.; Kobayashi, S.; Tomimaru, Y.; Kubo, M.; Sasaki, K.; Iwagami, Y.; Yamada, D.; et al. Preoperative treatment response prediction for pancreatic cancer by multiple microRNAs in plasma exosomes: Optimization using machine learning and network analysis. Pancreatology 2024, 24, 1097–1106. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, C.; Liu, X.; Cheng, S.-Q. A novel tumor-derived exosomal gene signature predicts prognosis in patients with pancreatic cancer. Transl. Cancer Res. 2024, 13, 4324–4340. [Google Scholar] [CrossRef]
- Rizk, N.I.; Kassem, D.H.; Abulsoud, A.I.; AbdelHalim, S.; Yasser, M.B.; Kamal, M.M.; Hamdy, N.M. Revealing the role of serum exosomal novel long non-coding RNA NAMPT-AS as a promising diagnostic/prognostic biomarker in colorectal cancer patients. Life Sci. 2024, 352, 122850. [Google Scholar] [CrossRef]
- Min, L.; Bu, F.; Meng, J.; Liu, X.; Guo, Q.; Zhao, L.; Li, Z.; Li, X.; Zhu, S.; Zhang, S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024, 12, RP88675. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Y.; Zhou, Y.; Wang, Y.; Si, H.; Li, L.; Tang, B. DNAzyme-RCA-based colorimetric and lateral flow dipstick assays for the point-of-care testing of exosomal m5C-miRNA-21. Chem. Sci. 2024, 15, 9345–9352. [Google Scholar] [CrossRef]
- Yin, H.; Xie, J.; Xing, S.; Lu, X.; Yu, Y.; Ren, Y.; Tao, J.; He, G.; Zhang, L.; Yuan, X.; et al. Machine learning-based analysis identifies and validates serum exosomal proteomic signatures for the diagnosis of colorectal cancer. Cell Rep. Med. 2024, 5, 101689. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Nishi, M.; Yoshikawa, K.; Takasu, C.; Tokunaga, T.; Nakao, T.; Kashihara, H.; Yoshimoto, T.; Shimada, M. Circulating Exosomal MicroRNA Signature Predicts Peritoneal Metastasis in Patients with Advanced Gastric Cancer. Ann. Surg. Oncol. 2024, 31, 5997–6006. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Chen, Z.; He, X.; Yan, C.; Lv, H.; Chen, Z.; Liu, Y.; Wang, L.; Song, C. Branched hybridization chain reaction and tetrahedral DNA-based trivalent aptamer powered SERS sensor for ultra-highly sensitive detection of cancer-derived exosomes. Biosens. Bioelectron. 2025, 267, 116737. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, G.; Feng, G.; Deng, C.; Zhang, Q.; Chen, S. Developing an advanced diagnostic model for hepatocellular carcinoma through multi-omics integration leveraging diverse cell-death patterns. Front. Immunol. 2024, 15, 1410603. [Google Scholar] [CrossRef] [PubMed]
- Resch, U.; Hackl, H.; Pereyra, D.; Santol, J.; Brunnthaler, L.; Probst, J.; Jankoschek, A.S.; Aiad, M.; Nolte, H.; Krueger, M.; et al. SILAC-Based Characterization of Plasma-Derived Extracellular Vesicles in Patients Undergoing Partial Hepatectomy. Int. J. Mol. Sci. 2024, 25, 10685. [Google Scholar] [CrossRef]
- Arima, J.; Yoshino, H.; Fukumoto, W.; Kawahara, I.; Saito, S.; Li, G.; Fukuda, I.; Iizasa, S.; Mitsuke, A.; Sakaguchi, T.; et al. LncRNA BCYRN1 as a Potential Therapeutic Target and Diagnostic Marker in Serum Exosomes in Bladder Cancer. Int. J. Mol. Sci. 2024, 25, 5955. [Google Scholar] [CrossRef]
- Solheim, E.T.; Thomsen, L.C.V.; Bjørge, L.; Anandan, S.; Peter, E.; Desestret, V.; Totland, C.; Vedeler, C.A. Altered exosomal miRNA profiles in patients with paraneoplastic cerebellar degeneration. Ann. Clin. Transl. Neurol. 2024, 11, 3255–3266. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, F.; Wu, X.; Zhao, W.; Xia, Q. The expression and clinical significance of serum exosomal-long non-coding RNA DLEU1 in patients with cervical cancer. Ann. Med. 2025, 57, 2442537. [Google Scholar] [CrossRef]
- Supradit, K.; Wongprasert, K.; Tangphatsornruang, S.; Yoocha, T.; Sonthirod, C.; Pootakham, W.; Thitapakorn, V.; Butthongkomvong, K.; Phanaksri, T.; Kunjantarachot, A.; et al. microRNA profiling of exosomes derived from plasma and their potential as biomarkers for Opisthorchis viverrini-associated cholangiocarcinoma. Acta Trop. 2024, 258, 107362. [Google Scholar] [CrossRef]
- Bocchetti, M.; Luce, A.; Iannarone, C.; Pasquale, L.S.; Falco, M.; Tammaro, C.; Abate, M.; Ferraro, M.G.; Addeo, R.; Ricciardiello, F.; et al. Exosomes multiplex profiling, a promising strategy for early diagnosis of laryngeal cancer. J. Transl. Med. 2024, 22, 582. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, D.; Wang, Y.; Liu, C.; Wang, L.; Yuan, Y.; Xu, X.; Jiang, Y. Urinary exosomes: A promising biomarker of drug-induced nephrotoxicity. Front. Med. 2023, 10, 1251839. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, X.; Luo, H.; Chen, C.; Li, J.; Sun, R.; Li, D.; Sun, Z. Exosomal Long Non-Coding Ribonucleic Acid Ribonuclease Component of Mitochondrial Ribonucleic Acid Processing Endoribonuclease Is Defined as a Potential Non-Invasive Diagnostic Biomarker for Bladder Cancer and Facilitates Tumorigenesis via the miR-206/G6PD Axis. Cancers 2023, 15, 5305. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, X.; Wang, X.; Sun, R.; Li, Y.; Li, J.; Quan, W.; Yao, Y.; Hou, Y.; Li, D.; et al. The clinical value of rapidly detecting urinary exosomal lncRNA RMRP in bladder cancer with an RT-RAA-CRISPR/Cas12a method. Clin. Chim. Acta 2024, 562, 119855. [Google Scholar] [CrossRef]
- Qiu, T.; Xue, M.; Li, X.; Li, F.; Liu, S.; Yao, C.; Chen, W. Comparative evaluation of long non-coding RNA-based biomarkers in the urinary sediment and urinary exosomes for non-invasive diagnosis of bladder cancer. Mol. Omics 2022, 18, 938–947. [Google Scholar] [CrossRef]
- Liu, C.; Xu, P.; Shao, S.; Wang, F.; Zheng, Z.; Li, S.; Liu, W.; Li, G. The value of urinary exosomal lncRNA SNHG16 as a diagnostic biomarker for bladder cancer. Mol. Biol. Rep. 2023, 50, 8297–8304. [Google Scholar] [CrossRef]
- Yang, F.; Tian, C.; Zhou, L.; Guan, T.; Chen, G.; Zheng, Y.; Cao, Z. The value of urinary exosomal microRNA-21 in the early diagnosis and prognosis of bladder cancer. Kaohsiung J. Med. Sci. 2024, 40, 660–670. [Google Scholar] [CrossRef]
- Strømme, O.; Heck, K.A.; Brede, G.; Lindholm, H.T.; Otterlei, M.; Arum, C.-J. tRNA-Derived Fragments as Biomarkers in Bladder Cancer. Cancers 2024, 16, 1588. [Google Scholar] [CrossRef]
- Hou, J.; Huang, H.; Xie, J.; Yu, W.; Hao, H.; Li, H. KLHDC7B as a novel diagnostic biomarker in urine exosomal mRNA promotes bladder urothelial carcinoma cell proliferation and migration, inhibits apoptosis. Mol. Carcinog. 2024, 63, 286–300. [Google Scholar] [CrossRef]
- Murakami, T.; Minami, K.; Harabayashi, T.; Maruyama, S.; Takada, N.; Kashiwagi, A.; Miyata, H.; Sato, Y.; Matsumoto, R.; Kikuchi, H.; et al. Cross-sectional and longitudinal analyses of urinary extracellular vesicle mRNA markers in urothelial bladder cancer patients. Sci. Rep. 2024, 14, 6801. [Google Scholar] [CrossRef]
- Wang, X.; Song, D.; Zhu, B.; Jin, Y.; Cai, C.; Wang, Z. Urinary exosomal mRNA as a biomarker for the diagnosis of bladder cancer. AntiCancer Drugs 2024, 35, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Feng, J.; Zhang, Q.; Deng, C.; Yang, C.; Li, Y. Magnetic 3D macroporous MOF oriented urinary exosome metabolomics for early diagnosis of bladder cancer. J. Nanobiotechnol. 2024, 22, 671. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qi, Y.; Yang, C.; Tai, Q.; Zhang, M.; Shen, X.-Z.; Deng, C.; Guo, J.; Jiang, S.; Sun, N. Heterogeneous MXene Hybrid-Oriented Exosome Isolation and Metabolic Profiling for Early Screening, Subtyping and Follow-up Evaluation of Bladder Cancer. ACS Nano 2023, 17, 23924–23935. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Li, J.; Deng, C.; Sun, N. Resol/triblock copolymer composite-guided smart fabrication of carbonized mesopores for efficiently decoding exosomal glycans. Microchim. Acta 2023, 190, 319. [Google Scholar] [CrossRef]
- Steiner, L.; Eldh, M.; Offens, A.; Veerman, R.E.; Johansson, M.; Hemdan, T.; Netterling, H.; Huge, Y.; Aljabery, F.A.-S.; Alamdari, F.; et al. Protein profile in urinary extracellular vesicles is a marker of malignancy and correlates with muscle invasiveness in urinary bladder cancer. Cancer Lett. 2025, 609, 217352. [Google Scholar] [CrossRef]
- Li, B.; Kugeratski, F.G.; Kalluri, R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. eLife 2024, 12, RP90390. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tang, X.; Deng, R.; Feng, L.; Xie, S.; Chen, M.; Zheng, J.; Chang, K. Dumbbell Dual-Hairpin Triggered DNA Nanonet Assembly for Cascade-Amplified Sensing of Exosomal MicroRNA. ACS Omega 2024, 9, 19723–19731. [Google Scholar] [CrossRef]
- Chiou, Y.-E.; Yu, K.-J.; Pang, S.-N.; Yang, Y.-L.; Pang, S.-T.; Weng, W.-H. A Highly Sensitive Urinary Exosomal miRNAs Biosensor Applied to Evaluation of Prostate Cancer Progression. Bioengineering 2022, 9, 803. [Google Scholar] [CrossRef]
- Yu, J.; Yu, C.; Jiang, K.; Yang, G.; Yang, S.; Tan, S.; Li, T.; Liang, H.; He, Q.; Wei, F.; et al. Unveiling potential: Urinary exosomal mRNAs as non-invasive biomarkers for early prostate cancer diagnosis. BMC Urol. 2024, 24, 163. [Google Scholar] [CrossRef]
- Choi, J.Y.; Park, S.; Shim, J.S.; Park, H.J.; Kuh, S.U.; Jeong, Y.; Park, M.G.; Noh, T.I.; Yoon, S.G.; Park, Y.M.; et al. Explainable artificial intelligence-driven prostate cancer screening using exosomal multi-marker based dual-gate FET biosensor. Biosens. Bioelectron. 2025, 267, 116773. [Google Scholar] [CrossRef]
- Wang, C.-B.; Chen, S.-H.; Zhao, L.; Jin, X.; Chen, X.; Ji, J.; Mo, Z.-N.; Wang, F.-B. Urine-derived exosomal PSMA is a promising diagnostic biomarker for the detection of prostate cancer on initial biopsy. Clin. Transl. Oncol. 2023, 25, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Niu, R.; Tan, Y.; Huang, Y.; Ren, W.; Zhou, W.; Wu, H.; Zhang, J.; Xu, M.; Zhou, X.; et al. Exosomal PSM-E inhibits macrophage M2 polarization to suppress prostate cancer metastasis through the RACK1 signaling axis. Biomark. Res. 2024, 12, 138. [Google Scholar] [CrossRef]
- Wei, C.; Chen, X.; Ji, J.; Xu, Y.; He, X.; Zhang, H.; Mo, Z.; Wang, F. Urinary exosomal prostate-specific antigen is a noninvasive biomarker to detect prostate cancer: Not only old wine in new bottles. Int. J. Cancer 2023, 152, 1719–1727. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Natsume, A.; Yanagida, T.; Nagashima, K.; Washio, T.; Ichikawa, Y.; Chattrairat, K.; Naganawa, T.; Iida, M.; Kitano, Y.; et al. Early Cancer Detection via Multi-microRNA Profiling of Urinary Exosomes Captured by Nanowires. Anal. Chem. 2024, 96, 17145–17153. [Google Scholar] [CrossRef]
- Jin, S.; Liu, T.; Wang, W.; Li, T.; Liu, Z.; Zhang, M. Lymphocyte migration regulation related proteins in urine exosomes may serve as a potential biomarker for lung cancer diagnosis. BMC Cancer 2023, 23, 1125. [Google Scholar] [CrossRef]
- Yoshizawa, N.; Sugimoto, K.; Tameda, M.; Inagaki, Y.; Ikejiri, M.; Inoue, H.; Usui, M.; Ito, M.; Takei, Y. miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol. Lett. 2020, 19, 2677–2684. [Google Scholar] [CrossRef]
- Cheng, X.; Yu, W.; Liu, Y.; Jia, S.; Wang, D.; Hu, L. Proteomic Characterization of Urinary Exosomes with Pancreatic Cancer by Phosphatidylserine Imprinted Polymer Enrichment and Mass Spectrometry Analysis. J. Proteome Res. 2024, 24, 111–120. [Google Scholar] [CrossRef]
- Wu, D.; Xie, W.; Chen, X.; Sun, H. LRG1 Is Involved in the Progression of Ovarian Cancer via Modulating FAK/AKT Signaling Pathway. Front. Biosci. 2023, 28, 101. [Google Scholar] [CrossRef]
- Shnaider, P.V.; Petrushanko, I.Y.; Aleshikova, O.I.; Babaeva, N.A.; Ashrafyan, L.A.; Borovkova, E.I.; Dobrokhotova, J.E.; Borovkov, I.M.; Shender, V.O.; Khomyakova, E. Expression level of CD117 (KIT) on ovarian cancer extracellular vesicles correlates with tumor aggressiveness. Front. Cell Dev. Biol. 2023, 11, 1057484. [Google Scholar] [CrossRef]
- Park, C.; Chung, S.; Kim, H.; Kim, N.; Son, H.Y.; Kim, R.; Lee, S.; Park, G.; Rho, H.W.; Park, M.; et al. All-in-One Fusogenic Nanoreactor for the Rapid Detection of Exosomal MicroRNAs for Breast Cancer Diagnosis. ACS Nano 2024, 18, 26297–26314. [Google Scholar] [CrossRef]
- Qi, G.; Diao, X.; Tian, Y.; Sun, D.; Jin, Y. Electroactivated SERS Nanoplatform for Rapid and Sensitive Detection and Identification of Tumor-Derived Exosome miRNA. Anal. Chem. 2024, 96, 18519–18527. [Google Scholar] [CrossRef] [PubMed]
- Walter-Rodriguez, B.; Ricketts, C.J.; Linehan, W.M.; Merino, M.J. Evaluating the Urinary Exosome microRNA Profile of von Hippel Lindau Syndrome Patients with Clear Cell Renal Cell Carcinoma. Genes 2024, 15, 905. [Google Scholar] [CrossRef]
- Grützmann, K.; Salomo, K.; Krüger, A.; Lohse-Fischer, A.; Erdmann, K.; Seifert, M.; Baretton, G.; Aust, D.; William, D.; Schröck, E.; et al. Identification of novel snoRNA-based biomarkers for clear cell renal cell carcinoma from urine-derived extracellular vesicles. Biol. Direct 2024, 19, 38. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, A.; Wilson, C.; Swaroop, P.; Kumar, S.; Yadav, D.K.; Jain, V.; Agarwala, S.; Husain, M.; Sharawat, S.K. Exosomal long non-coding RNA MALAT1: A candidate of liquid biopsy in monitoring of Wilms’ tumor. Pediatr. Surg. Int. 2024, 40, 57. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.; Park, J.; Kim, K.H.; Ku, J.Y.; Ha, H.K.; Cho, Y. Alix-normalized exosomal programmed death-ligand 1 analysis in urine enables precision monitoring of urothelial cancer. Cancer Sci. 2024, 115, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yu, H.; Zhu, Y.; Xu, K.; Zhao, A.; Ding, L.; Gao, H.; Zhang, M. Isolation and proteomic profiling of urinary exosomes from patients with colorectal cancer. Proteome Sci. 2023, 21, 3. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Shih, S.-R.; Chen, K.-Y.; Huang, P.-J. Urinary Exosomal Tissue TIMP and Angiopoietin-1 Are Preoperative Novel Biomarkers of Well-Differentiated Thyroid Cancer. Biomedicines 2022, 11, 24. [Google Scholar] [CrossRef]
- Feng, X.; Jia, S.; Ali, M.M.; Zhang, G.; Li, D.; Tao, W.A.; Hu, L. Proteomic Discovery and Array-Based Validation of Biomarkers from Urinary Exosome by Supramolecular Probe. J. Proteome Res. 2023, 22, 2516–2524. [Google Scholar] [CrossRef]
- Chen, C.; Demirkhanyan, L.; Gondi, C.S. The Multifaceted Role of miR-21 in Pancreatic Cancers. Cells 2024, 13, 948. [Google Scholar] [CrossRef]
- di Luccio, E.; Morishita, M.; Hirotsu, T. C. elegans as a Powerful Tool for Cancer Screening. Biomedicines 2022, 10, 2371. [Google Scholar] [CrossRef]
- Inaba, S.; Shimozono, N.; Yabuki, H.; Enomoto, M.; Morishita, M.; Hirotsu, T.; di Luccio, E. Accuracy evaluation of the C. elegans cancer test (N-NOSE) using a new combined method. Cancer Treat. Res. Commun. 2021, 27, 100370. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Meng, S.; Arao, Y.; Saito, Y.; Inoue, K.; Rennie, S.; Ofusa, K.; Doki, Y.; Eguchi, H.; Kitagawa, T.; et al. Recent advances in noncoding RNA modifications of gastrointestinal cancer. Cancer Sci. 2024, 116, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Meng, S.; Sato, H.; Tatekawa, S.; Sasaki, K.; Takeda, Y.; Tsuji, Y.; Arao, Y.; Ofusa, K.; Kitagawa, T.; et al. High N6-methyladenosine-activated TCEAL8 mRNA is a novel pancreatic cancer marker. Cancer Sci. 2024, 115, 2360–2370. [Google Scholar] [CrossRef]
- Konno, M.; Koseki, J.; Asai, A.; Yamagata, A.; Shimamura, T.; Motooka, D.; Okuzaki, D.; Kawamoto, K.; Mizushima, T.; Eguchi, H.; et al. Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat. Commun. 2019, 10, 3888. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, A.L.; Cerasuolo, A.; Starita, N.; Amiranda, S.; Cimmino, T.P.; Bonelli, P.; Tuccillo, F.M.; Buonaguro, F.M.; Buonaguro, L.; Tornesello, M.L. Emerging role of endogenous peptides encoded by non-coding RNAs in cancer biology. Non Coding RNA Res. 2025, 10, 231–241. [Google Scholar] [CrossRef]
- Hara, T.; Meng, S.; Tsuji, Y.; Arao, Y.; Saito, Y.; Sato, H.; Motooka, D.; Uchida, S.; Ishii, H. RN7SL1 may be translated under oncogenic conditions. Proc. Natl. Acad. Sci. USA 2024, 121, e2312322121. [Google Scholar] [CrossRef]
- Chothani, S.P.; Adami, E.; Widjaja, A.A.; Langley, S.R.; Viswanathan, S.; Pua, C.J.; Zhihao, N.T.; Harmston, N.; D’agostino, G.; Whiffin, N.; et al. A high-resolution map of human RNA translation. Mol. Cell 2022, 82, 2885–2899.e8. [Google Scholar] [CrossRef]
Candidate Cancer Markers | Molecular Types | Isolation Methods | Analysis Methods | Cancer Types | References |
---|---|---|---|---|---|
piR-36,340, piR-33,161, miR-484, miR-548ah-5p, miR-4282, and miR-6853-3p | piRNA or miRNA | exoEasy maxi kit (QIAGEN, Hilden, Germany) | RT-qPCR | Breast | [19] |
miR-200c | miRNA | Hhieff® quick exosome isolation kit (YEASEN, Shanghai, China) | RT-qPCR | Breast | [20] |
miR-6831-5P | miRNA | Exosome rapid extraction reagent kit (YEASEN, Shanghai, China) | RT-qPCR | Breast | [21] |
CEA, CA125, and EGFR | Glycoprotein/protein | Integrated centrifugal disk chip | ELISA | Breast | [22] |
CD9 and Her2 | Protein | Antibody-conjugated disk | ELISA | Breast | [23] |
PD-L1, EpCAM, and EGFR | Protein | DEP–ELISA chip | ELISA | Breast, colon, and lung | [24] |
miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-7b-5p, miR-146a-5p, miR-222-3p, and miR-9-5p | miRNA | exoEasy maxi kit (QIAGEN, Hilden, Germany) | RT-qPCR | Lung | [25] |
miR-29a-3p | miRNA | Macherey-Nagel™ exosome precipitation solution for serum/plasma (Fisher Scientific, Waltham, MA, USA) | RT-qPCR | Lung | [26] |
SNORD116 and SNORA21 | snRNA | Ultracentrifugation | Microarray | Lung | [27] |
circ-0033861, circ-0043273, and circ-0011959 | circRNA | Ultracentrifugation | Microarray | Lung | [28] |
CXCL12, TFBR2, CD44v6, HIF1A, and KRT7 | mRNA | Total exosome isolation kit (Invitogen, Carlsbad, CA, USA) | RT-qPCR | Lung | [29] |
EGFR mutations | DNA | XCFTM Exosomal DNA isolation kit (System Biosciences, Palo Alto, CA, USA) | RT-qPCR | Lung | [30] |
c-Myc, Snail, MAVS, and STING | Protein | Ultracentrifugation | Western blot | Lung | [31] |
Raman spectrum | Exosome | Ultracentrifugation | Raman spectrum | Lung | [32] |
TF-Ag-α | Glycoprotein | Ultracentrifugation | Surface plasmon resonance (SPR) | Lung and breast | [33] |
LINC01268, LINC02802, AC124854.1, and AL132657.1 | lncRNA | exoRNeasy midi kit (QIAGEN, Hilden, Germany) | RNA-seq | Pancrea | [34] |
miR-6855-5p | miRNA | qEVTM original 35 nm size exclusion column (Izon Science, Christchurch, New Zealand) | RNA-seq | Pancrea | [35] |
miR-21, miR-191, and miR-451a | miRNA | ExoQuick (System Biosciences, Palo Alto, CA, USA) | RT-qPCR | Pancrea | [36] |
miR-6891-5p, miR-6732-5p, and miR-1234-3p | miRNA | qEVTM original 35 nm size exclusion column (Izon Science, Christchurch, New Zealand) | Microarray | Pancrea | [37] |
ARNTL2, FHL2, KRT19, MMP1, CDCA5, and KIF11 | mRNA | ExoRBase 2.0 database | RNA-seq | Pancrea | [38] |
lncRNA NAMPT-AS | lncRNA | Exosome isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) | RNA-seq | Colon | [39] |
miR-425–5 p, Let-7f-5p, C19orf43, TOP1, PPDPF, LNC-EV-9572, lnc-MKRN2-42:1, HIST2H2AA4, and MT-ND2 | miRNA, mRNA, and lncRNA | Ultracentrifugation | RNA-seq | Colon | [40] |
5-methylcytosine miRNA-21 | Modified miRNA | Ultracentrifugation | DNAzyme-triggered rolling circle amplification | Colon | [41] |
PF4 and AACT | Protein | Ultracentrifugation | ELISA | Colon | [42] |
miR-21-5p, miR-320, miR-191-5p, and miR-451 | miRNA | Total exosome isolation kit (Thermo Fisher Scientific, Waltham, MA, USA) | RNA-seq | Gastric | [43] |
MUC1 | Protein | Ultracentrifugation | Raman spectrum | Gastric | [44] |
TRIB3 and NQO1 | mRNA | Ultracentrifugation | RNA-seq | Hepatocellular carcinoma | [45] |
DRAP1, GGCT, NSUN2, RAB13, PPCS, SDHA, CTSB, TIMM44, VTN, KATNAL2, and RPL27A | Protein | Ultracentrifugation | Mass spectrometry | Hepatocellular carcinoma | [46] |
lncRNA brain cytoplasmic RNA 1 (BCYRN1) | lncRNA | exoEasy maxi Kit (QIAGEN, Hilden, Germany) | RNA-seq | Bladder | [47] |
miR-483-5p, miR-4488, and miR-200c-3p | miRNA | exoRNeasy midi kit (QIAGEN, Hilden, Germany) | RNA-seq | Ovarian | [48] |
lncRNA DLEU1 | lncRNA | Ultracentrifugation | RT-qPCR | Cervical | [49] |
miR-92a-3p, miR-203a-3p, miR-192–5p, miR-223–3p, miR-26a-5p, and miR-194–5p | miRNA | exoRNeasy serum/plasma midi kit (QIAGEN, Hilden, Germany) | RNA-seq | Cholangiocarcinoma | [50] |
CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 | Protein | Exosome isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) | Flow cytometry | Laryngeal | [51] |
Candidate Cancer Markers | Molecular Types | Isolation Methods | Analysis Methods | Cancer Types | References |
---|---|---|---|---|---|
lncRNA RMRP | lncRNA | ExoQuick kit (Bestbio, Shanghai, China) | RT-qPCR | Bladder | [53,54] |
lncRNA RMRP, UCA1, and MALAT1 | lncRNA | Ultracentrifugation | RT-qPCR | Bladder | [55] |
lncRNA SNHG16 | lncRNA | Exosome RNA isolation kit (Rengen Biosciences, Shenyang, China) | RT-qPCR | Bladder | [56] |
miR-21 | miRNA | Ultracentrifugation | RT-qPCR | Bladder | [57] |
tRF-16-F1R3WEE, tRF-17-8R6546J, tRF-17-I7XUK8N, tRF-17-D9W1X6K, tRF-18-HR1PF7D2, tRF-18-MBQ4NKDJ, tRF-20-40KK5Y93, tRF-21-86J8WPMNB, tRF-25-7P596VW631, tRF-26-IK9NJ4S2I7D, tRF-27-J87383RPD95, tRF-31-PER8YP9LON4VD, tRF-32-PER8YP9LON4V3, and tRF-38-PNR8YP9LON4VN18 | Transfer RNA-derived fragment | exoRNeasy kit (QIAGEN, Hilden, Germany) | RNA-seq | Bladder | [58] |
KLHDC7B | mRNA | Ultracentrifugation | RT-qPCR | Bladder | [59] |
KRT17, GPRC5A, SLC2A1, MDK, and CXCR2 | mRNA | ExoComplete tube kit (Showa Denko Materials, Tokyo, Japan) | RT-qPCR | Bladder | [60] |
tmeff1, SDPR, ACBD7, SCG2, and COL6A2 | mRNA | Ultracentrifugation | RNA-seq | Bladder | [61] |
Arachiconic acid, docosahexaenoic acid, docosapentaenoic acid, and retinyl ester | Metabolite | magMZIF-8 | Mass spectrometry | Bladder | [62] |
Metabolic profiles | Metabolite | MXene@TiO2/Fe3O | Mass spectrometry | Bladder | [63] |
Glycans | Sugar | Ultracentrifugation | Mass spectrometry | Bladder | [64] |
MMP12, MMP7, HO-1, IL8, CD5, CCL20, CXCL13, MCP-1, CD8A, and TGF-beta-1 | Protein | Ultracentrifugation | Flow cytometry | Bladder | [65] |
CD59, CDC42, ITM2B, CD81, PEBP1, VAT1, MYO1D, RAC1, DPP4, RAN, CAPG, PPIA, FOLR1, ANXA3, APOD, ANXA4, and AQP2 | Protein | Public exosome proteomics data | Mass spectrometry | Bladder, prostate, renal, lung, cervical, colorectal, esophageal and gastric | [66] |
miR-141 | miRNA | exoEasy maxi kit (QIAGEN, Hilden, Germany) | DNA nanonet | Prostate | [67] |
miR-451 and miR-21 | miRNA | Urine microRNA purification kit (Norgen Biotek, Thorold, ON, Canada) | ssDNA sensor | Prostate | [68] |
RAB5B, WWP1, HIST2H2BF, ZFY, MARK2, PASK, RBM10, and NRSN2 | mRNA | Ultracentrifugation | RNA-seq | Prostate | [69] |
TMEM256 | Protein | ExoQuick-TC™ (System Biosciences, Palo Alto, CA, USA) | ELISA | Prostate | [70] |
PSMA | Protein | Exosome isolation kit (Wayen, Shanghai, China) | ELISA | Prostate | [71] |
PSM-E | Protein | Ultracentrifugation | Mass spectrometry | Prostate | [72] |
Urinary exosomal prostate-specific antigen (UE-PSA) | Glycoprotein | Exosome isolation kit (Wayen, Shanghai, China) | ELISA | Prostate | [73] |
54 miRNAs | miRNA | ZnO nanowires | Microarray | Lung | [74] |
CX3CL1,WNK1, GBA, CD58, WASL, LGALS8, MSN, SPNS2, STK10, PKD1, LCK, and GP2 | Protein | Ultracentrifugation | Mass spectrometry | Lung | [75] |
miR-3940-5p/miR-8069 | miRNA | ExoQuick-TC (System Biosciences, Palo Alto, CA, USA) | Microarray | Pancrea | [76] |
SLC9A3R1, SPAG9, and ferritin light chain (FTL) | Protein | Phosphatidylserine molecularly imprinted polymers | Mass spectrometry | Pancrea | [77] |
Leucine-rich alpha-2-glycoprotein 1(LRG1) | Glycoprotein | Ultracentrifugation | Mass spectrometry | Ovarian | [78] |
CD117 | Protein | 100 kDa Amicon Ultra-15 centrifugal filter units (Millipore, Boston, MA, USA) | Flow cytometry | Ovarian | [79] |
miR-222, miR-200c, and miR-375 | miRNA | miRNeasy serum/plasma kit (QIAGEN, Hilden, Germany) | RT-qPCR | Breast | [80] |
Raman spectrum | Exosome | Surface-enhanced Raman spectroscopy | Raman spectrum | MCF-7, HeLa, and H8 cell lines | [81] |
miR-542-5p and miR-320a | miRNA | Exo-Urine™ EV isolation kit (System Biosciences, Palo Alto, CA, USA) | RNA-seq | Renal | [82] |
SNORD99 and SNORA50C | snRNA | miRCURY exosome cell/urine/CSF kit (QIAGEN, Hilden, Germany) | RNA-seq | Renal | [83] |
lncRNA MALAT1 | lncRNA | Total exosome isolation kit (Invitogen, Carlsbad, CA, USA) | RT-qPCR | Wilms’ tumor (a rare kidney cancer) | [84] |
PD-L1 and Alix | Protein | ExoDisc (LabSpinner, San Diego, CA, USA) | ELISA | Urothelial | [85] |
CEACAM7, CEACAM1, CHMP4A, CHMP4B, CHMP2A, CHMP2B, and CHMP1B | Protein | Ultracentrifugation | Mass spectrometry | Colorectal | [86] |
TIMP | Protein | ExoQuick-TC (System Biosciences, Palo Alto, CA, USA) | Mass spectrometry | Thyroid | [87] |
OLFM4, HDGF, and GDF15 | Protein | Array-based amphiphilic supramolecular probe (ADSP)-modified membranes | ELISA | Hepatocellular | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hara, T.; Meng, S.; Alshammari, A.H.; Hatakeyama, H.; Arao, Y.; Saito, Y.; Inoue, K.; di Luccio, E.; Vecchione, A.; Hirotsu, T.; et al. Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics. Diagnostics 2025, 15, 628. https://doi.org/10.3390/diagnostics15050628
Hara T, Meng S, Alshammari AH, Hatakeyama H, Arao Y, Saito Y, Inoue K, di Luccio E, Vecchione A, Hirotsu T, et al. Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics. Diagnostics. 2025; 15(5):628. https://doi.org/10.3390/diagnostics15050628
Chicago/Turabian StyleHara, Tomoaki, Sikun Meng, Aya Hasan Alshammari, Hideyuki Hatakeyama, Yasuko Arao, Yoshiko Saito, Kana Inoue, Eric di Luccio, Andrea Vecchione, Takaaki Hirotsu, and et al. 2025. "Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics" Diagnostics 15, no. 5: 628. https://doi.org/10.3390/diagnostics15050628
APA StyleHara, T., Meng, S., Alshammari, A. H., Hatakeyama, H., Arao, Y., Saito, Y., Inoue, K., di Luccio, E., Vecchione, A., Hirotsu, T., & Ishii, H. (2025). Recent Exploration of Solid Cancer Biomarkers Hidden Within Urine or Blood Exosomes That Provide Fundamental Information for Future Cancer Diagnostics. Diagnostics, 15(5), 628. https://doi.org/10.3390/diagnostics15050628