Bone-Specific Alkaline Phosphatase as a Complementary Diagnostic Marker for the Assessment of Children and Adolescents with Secondary Osteoporosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Disease Category
2.2.1. Hemato-Oncologic Disease
2.2.2. Rheumatic Disease
2.2.3. Gastrointestinal Disease
2.2.4. Endocrine Disease
2.3. Data Collection
2.3.1. Anthropometric Measurements
2.3.2. BMD Assessment
2.3.3. Serum BTMs
2.4. Statistical Analysis
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Relationship Between Low Bone Mass and BTMs
3.3. Relationship Between BsALP and CTx with Other Bone Markers
3.4. Association Between LSBMD and BTMs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.E.; Kim, S.; Kim, S.H.; Cho, W.K.; Cho, K.S.; Jung, M.H.; Ahn, M.B. Causality between sex hormones and bone mineral density in childhood: Age- and tanner-stage-matched sex hormone level may be an early indicator of pediatric bone fragility. Biomedicines 2024, 12, 1173. [Google Scholar] [CrossRef] [PubMed]
- Gkastaris, K.; Goulis, D.G.; Potoupnis, M.; Anastasilakis, A.D.; Kapetanos, G. Obesity, osteoporosis and bone metabolism. J. Musculoskelet. Neuronal Interact. 2020, 20, 372–381. [Google Scholar]
- Sakka, S.D.; Cheung, M.S. Management of primary and secondary osteoporosis in children. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20969262. [Google Scholar] [CrossRef]
- Cao, B.; Liu, M.; Luo, Q.; Wang, Q.; Liu, M.; Liang, X.; Wu, D.; Li, W.; Su, C.; Chen, J.; et al. The effect of BMI, age, gender, and pubertal stage on bone turnover markers in chinese children and adolescents. Front. Endocrinol. 2022, 13, 880418. [Google Scholar] [CrossRef] [PubMed]
- Formosa, M.M.; Christou, M.A.; Makitie, O. Bone fragility and osteoporosis in children and young adults. J. Endocrinol. Investig. 2024, 47, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.B.; Suh, B.K. Bone morbidity in pediatric acute lymphoblastic leukemia. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 1–9. [Google Scholar] [CrossRef]
- Jang, M.J.; Shin, C.; Kim, S.; Lee, J.W.; Chung, N.G.; Cho, B.; Jung, M.H.; Suh, B.K.; Ahn, M.B. Factors affecting bone mineral density in children and adolescents with secondary osteoporosis. Ann. Pediatr. Endocrinol. Metab. 2023, 28, 34–41. [Google Scholar] [CrossRef]
- Moonkum, N.; Withayanuluck, T.; Somarungsan, A.; Sichai, N.; Wongsiri, A.; Chawkhaodin, W.; Ruengdach, P.; Boonsuk, P.; Pukdeeyorng, M.; Tochaikul, G. Osteopenia and osteoporosis screening detection: Calcaneal quantitative ultrasound with and without calibration factor comparison to gold standard dual X-ray absorptiometry. J. Clin. Densitom. 2024, 27, 101470. [Google Scholar] [CrossRef]
- Chang, F.X.; Fan, D.H.; Huang, G.; He, J.H. Lumbar spine bone mineral density measurement: Comparison of dual-energy X-ray absorptiometry and fat content evaluation by Dixon chemical shift MRI. Int. J. Gen. Med. 2022, 15, 6415–6424. [Google Scholar] [CrossRef]
- Diemar, S.S.; Lylloff, L.; Ronne, M.S.; Mollehave, L.T.; Heidemann, M.; Thuesen, B.H.; Johannesen, J.; Schou, A.J.; Husby, S.; Wedderkopp, N.; et al. Reference intervals in Danish children and adolescents for bone turnover markers carboxy-terminal cross-linked telopeptide of type I collagen (beta-CTX), pro-collagen type I N-terminal propeptide (PINP), osteocalcin (OC) and bone-specific alkaline phosphatase (bone ALP). Bone 2021, 146, 115879. [Google Scholar] [CrossRef]
- Lee, Y.A.; Kwon, A.; Kim, J.H.; Nam, H.K.; Yoo, J.H.; Lim, J.S.; Cho, S.Y.; Cho, W.K.; Shim, K.S. Clinical practice guidelines for optimizing bone health in Korean children and adolescents. Ann. Pediatr. Endocrinol. Metab. 2022, 27, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Isa, H.M.; Ezzaldin, A.A.; Alabbasi, M.M.; ALaazmi, N.H.; Masood, A.S.; Alabbasi, H.M. Bone mineral density in patients with pediatric inflammatory bowel disease using dual energy X-ray absorptiometry. J. Bone Metab. 2023, 30, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.M.; Konji, V.N.; Ma, J. The management of osteoporosis in children. Osteoporos. Int. 2016, 27, 2147–2179. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Delmas, P.D.; Eastell, R.; Garnero, P.; Seibel, M.J.; Stepan, J.; Committee of Scientific Advisors of the International Osteoporosis Foundation. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos. Int. 2000, 11 (Suppl. S6), S2–S17. [Google Scholar] [CrossRef]
- Baik, S.M.; Kwon, H.J.; Kim, Y.; Lee, J.; Park, Y.H.; Park, D.J. Machine learning model for osteoporosis diagnosis based on bone turnover markers. Health Inform. J. 2024, 30, 14604582241270778. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.A.; Eastell, R.; Jorgensen, N.R.; Cavalier, E.; Vasikaran, S.; Chubb, S.A.P.; Kanis, J.A.; Cooper, C.; Makris, K.; IFCC-IOF Working Group for Standardisation of Bone Marker Assays. Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin. Chim. Acta 2017, 467, 34–41. [Google Scholar] [CrossRef]
- Mora, S.; Cafarelli, L.; Erba, P.; Puzzovio, M.; Zamproni, I.; Giacomet, V.; Vigano, A. Differential effect of age, gender and puberty on bone formation rate assessed by measurement of bone-specific alkaline phosphatase in healthy Italian children and adolescents. J. Bone Miner. Metab. 2009, 27, 721–726. [Google Scholar] [CrossRef]
- Gennai, I.; Di Iorgi, N.; Reggiardo, G.; Gatti, C.; Bertelli, E.; Allegri, A.E.; Barco, S.; Maghnie, M.; Tripodi, G.; Cangemi, G. Age- and sex-matched reference curves for serum collagen type I C-telopeptides and bone alkaline phosphatase in children and adolescents: An alternative multivariate statistical analysis approach. Clin. Biochem. 2016, 49, 802–807. [Google Scholar] [CrossRef]
- Jackmann, N.; Gustafsson, J.; Utriainen, P.; Magnusson, P.; Harila, A.; Atanasova, D.; Rinaldo, C.; Frisk, P.; Makitie, O. Demographic and disease-related factors impact bone turnover and vitamin D in children with hemato-oncological diseases. JBMR Plus 2024, 8, ziae017. [Google Scholar] [CrossRef]
- Aksoy, A.; Sonmez, F.M.; Deger, O.; Hosver, I.; Karaguzel, G. The effects of antiepileptic drugs on the relationships between leptin levels and bone turnover in prepubertal children with epilepsy. J. Pediatr. Endocrinol. Metab. 2011, 24, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Huang, X.; Yu, X.; Li, Y.; Yu, F.; Zhou, W. Variation of bone turnover markers in childhood and adolescence. Int. J. Clin. Pract. 2023, 2023, 5537182. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.; Cooper, C.; Eastell, R.; Griesmacher, A.; Morris, H.A.; Trenti, T.; Kanis, J.A. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin. Chem. Lab. Med. 2011, 49, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Suzuki, T.; Kato, H. Serum bone alkaline phosphatase is a useful marker to evaluate lumbar bone mineral density in Japanese postmenopausal osteoporotic women during denosumab treatment. Ther. Clin. Risk Manag. 2017, 13, 1343–1348. [Google Scholar] [CrossRef]
- Brown, J.P.; Don-Wauchope, A.; Douville, P.; Albert, C.; Vasikaran, S.D. Current use of bone turnover markers in the management of osteoporosis. Clin. Biochem. 2022, 109–110, 1–10. [Google Scholar] [CrossRef]
- Naylor, K.E.; Jacques, R.M.; Paggiosi, M.; Gossiel, F.; Peel, N.F.; McCloskey, E.V.; Walsh, J.S.; Eastell, R. Response of bone turnover markers to three oral bisphosphonate therapies in postmenopausal osteoporosis: The TRIO study. Osteoporos. Int. 2016, 27, 21–31. [Google Scholar] [CrossRef]
Total (n = 280) | |
---|---|
Males, n (%) | 95 (33.9) |
Age, years | 15.4 2.07 |
Anthropometry, Z-score | |
Height | −0.34 1.22 |
Weight | −0.38 1.43 |
Body mass index | −0.27 1.54 |
Underlying conditions, n (%) | |
Hemato-oncologic | 172 (61.4) |
Rheumatic | 36 (12.9) |
Gastrointestinal | 35 (12.5) |
Endocrinologic | 15 (5.4) |
Miscellaneous | 22 (7.9) |
Age at diagnosis, years | 10.34 4.34 |
Bone mineral density | |
Lumbar spine, z-score | −0.52 1.23 |
Low bone mass, n (%) | |
−1.0 < n 0 | 116 (41.4) |
−2.0 < n −1.0 | 59 (21.1) |
−3.0 < n −2.0 | 26 (9.3) |
−3.0 | 7 (2.5) |
Right femur, Z-score | −1.03 1.31 |
Left femur, Z-score | −1.07 1.29 |
Vertebral fractures | 79 (28.2) |
Bone turnover markers | |
Bone-specific alkaline phosphatase, μg/L, median (IQR) | 44.3 (20.4, 80.4) |
CTx, ng/mL, median (IQR) | 1.62 (1.09, 2.25) |
P1NP, ng/mL, median (IQR) | 221 (107, 720) |
Calcium, mg/dL | 9.46 0.40 |
Phosphorus, mg/dL | 4.46 0.65 |
25 (OH) vitamin D total, ng/mL | 22.74 11.64 |
Parathyroid hormone-intact, pg/mL Bone-specific alkaline phosphatase to CTx ratio P1NP to CTx ratio | 40.47 19.76 34.28 (20.99, 49.94) 176.62 (118.78, 358.02) |
BsALP | CTx | |||
---|---|---|---|---|
ρ | p | ρ | p | |
Calcium | 0.497 | <0.001 | 0.226 | 0.005 |
Phosphorus | 0.444 | <0.001 | 0.492 | <0.001 |
25OHD3 | 0.284 | <0.001 | 0.199 | 0.014 |
PTH | −0.074 | 0.12 | 0.099 | 0.227 |
LSBMD Z-Score | ||||||
---|---|---|---|---|---|---|
Univariate | Multivariate | |||||
β | p | β | p | β | p | |
Age | 0.031 | 0.381 | −0.151 | 0.032 | −0.057 | 0.357 |
BMI Z-score | 0.285 | <0.001 | 0.363 | <0.004 | 0.361 | <0.004 |
Calcium | −0.346 | 0.275 | 0.021 | 0.946 | −0.123 | 0.699 |
Phosphorus | −0.29 | 0.133 | −0.365 | 0.073 | −0.558 | 0.013 |
25OHD3 | −0.014 | 0.186 | 0.007 | 0.52 | −0.005 | 0.658 |
BsALP | −0.004 | 0.056 | −0.011 | 0.007 | ||
CTx | −0.236 | 0.128 | 0.121 | 0.494 |
LSBMD Z-Score ≤−2 | VF | |||||||
---|---|---|---|---|---|---|---|---|
Univariate | † Multivariate | Univariate | † Multivariate | |||||
OR | p | OR | p | OR | p | OR | p | |
Age | 1.07 | 0.421 | 1.727 | 0.081 | 1.037 | 0.572 | 1.597 | 0.019 |
BMI Z-score | 0.763 | 0.024 | 0.515 | 0.016 | 0.852 | 0.069 | 0.872 | 0.409 |
Calcium | 2.68 | 0.229 | 2.097 | 0.534 | 1.247 | 0.702 | 0.785 | 0.753 |
Phosphorus | 1.248 | 0.629 | 0.707 | 0.703 | 1.347 | 0.433 | 1.34 | 0.615 |
25OHD3 | 1.006 | 0.781 | 0.943 | 0.14 | 0.978 | 0.257 | 0.943 | 0.035 |
BsALP | 1.008 | 0.073 | 1.043 | 0.048 | 1.002 | 0.543 | 1.035 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, E.; Sim, S.Y.; Park, S.J.; Kim, S.E.; Kim, S.; Kim, S.-H.; Cho, W.K.; Cho, K.S.; Jung, M.H.; Suh, B.-K.; et al. Bone-Specific Alkaline Phosphatase as a Complementary Diagnostic Marker for the Assessment of Children and Adolescents with Secondary Osteoporosis. Diagnostics 2025, 15, 630. https://doi.org/10.3390/diagnostics15050630
Bae E, Sim SY, Park SJ, Kim SE, Kim S, Kim S-H, Cho WK, Cho KS, Jung MH, Suh B-K, et al. Bone-Specific Alkaline Phosphatase as a Complementary Diagnostic Marker for the Assessment of Children and Adolescents with Secondary Osteoporosis. Diagnostics. 2025; 15(5):630. https://doi.org/10.3390/diagnostics15050630
Chicago/Turabian StyleBae, Eunha, Soo Yeun Sim, Su Jin Park, Sung Eun Kim, Seulki Kim, Shin-Hee Kim, Won Kyoung Cho, Kyoung Soon Cho, Min Ho Jung, Byung-Kyu Suh, and et al. 2025. "Bone-Specific Alkaline Phosphatase as a Complementary Diagnostic Marker for the Assessment of Children and Adolescents with Secondary Osteoporosis" Diagnostics 15, no. 5: 630. https://doi.org/10.3390/diagnostics15050630
APA StyleBae, E., Sim, S. Y., Park, S. J., Kim, S. E., Kim, S., Kim, S.-H., Cho, W. K., Cho, K. S., Jung, M. H., Suh, B.-K., & Ahn, M. B. (2025). Bone-Specific Alkaline Phosphatase as a Complementary Diagnostic Marker for the Assessment of Children and Adolescents with Secondary Osteoporosis. Diagnostics, 15(5), 630. https://doi.org/10.3390/diagnostics15050630