Implementation of Multi-Criteria Decision-Making for Selecting Most Effective Genome Sequencing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selected Parameters of the Sequencing Technologies
2.2. Application of Fuzzy PROMETHEE in Selecting Sequencing Techniques
3. Results
Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Global Health Estimates. Life Expectancy and Leading Causes of Death and Disability. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 4 December 2024).
- Gray, A.; Sharara, F. Global and regional sepsis and infectious syndrome mortality in 2019: A systematic analysis. Lancet Glob. Health 2022, 10, S2. [Google Scholar] [CrossRef]
- Global Burden of Disease (GBD). 2021. Available online: https://www.healthdata.org/research-analysis/library/global-burden-disease-2021-findings-gbd-2021-study (accessed on 4 December 2024).
- WHO. Cause-Specific Mortality 2000–2021. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 1 November 2024).
- Goyal, P.A.; Bankar, N.J.; Mishra, V.H.; Borkar, S.K.; Makade, J.G. Revolutionizing Medical Microbiology: How Molecular and Genomic Approaches Are Changing Diagnostic Techniques. Cureus 2023, 15, e47106. [Google Scholar] [CrossRef]
- Vashisht, V.; Vashisht, A.; Mondal, A.K.; Farmaha, J.; Alptekin, A.; Singh, H.; Ahluwalia, P.; Srinivas, A.; Kolhe, R. Genomics for emerging pathogen identification and monitoring: Prospects and obstacles. BioMedInformatics 2023, 3, 1145–1177. [Google Scholar] [CrossRef]
- Nafea, A.M.; Wang, Y.; Wang, D.; Salama, A.M.; Aziz, M.A.; Xu, S.; Tong, Y. Application of next-generation sequencing to identify different pathogens. Front. Microbial. 2023, 14, 1329330. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next Generation sequencing technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- MacKenzie, M.; Argyropoulos, C. An Introduction to Nanopore Sequencing: Past, Present, and Future Considerations. Micromachines 2023, 14, 459. [Google Scholar] [CrossRef]
- Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019, 16, 4–10. [Google Scholar]
- Altindiş, M.; Kilbaş, E.P.K. Managing viral merging ınfectious diseases via current and future molecular diagnostics. Diagnostics 2023, 13, 1421. [Google Scholar] [CrossRef]
- Sayan, M.; Yildirim, F.S.; Sanlidag, T.; Uzun, B.; Ozsahin, D.U.; Ozsahin, I. Capacity Evaluation of Diagnostic Tests for COVID-19 Using Multicriteria Decision-Making Techniques. Comput. Math. Methods Med. 2020, 2020, e1560250. [Google Scholar] [CrossRef]
- Arslan, S.; Garcia, F.J.; Guo, M.; Kellinger, M.W.; Kruglyak, S.; LeVieux, J.A.; Mah, A.H.; Wang, H.; Zhao, J.; Zhou, C.; et al. Sequencing by avidity enables high accuracy with low reagent consumption. Nat. Biotechnol. 2024, 42, 132–138. [Google Scholar] [CrossRef]
- Thompson, J.F.; Steinmann, K.E. Single-molecule sequencing with a HeliScope genetic analysis system. Curr. Protoc. Mol. Biol. 2010, 92, 7.10.1–7.10.14. [Google Scholar] [CrossRef]
- Han, X.; Xu, X.; Yang, C.; Liu, G. Microfluidic design in single-cell sequencing and application to cancer precision medicine. Cell Rep. Methods 2023, 3, 100591. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Ge, S.; Lai, L. CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Front. Med. 2021, 8, 64989. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Abobakr, M.; Uzun, B.; Ozsahin, D.U.; Sanlidag, T.; Arikan, A. Assessment of UTI Diagnostic Techniques Using Fuzzy PROMETHEE Model. Diagnostics 2023, 13, 3421. [Google Scholar] [CrossRef]
- Ozsahin, I. Identifying a Personalized Anesthetic with Fuzzy PROMETHEE. Health Inform. Res. 2020, 26, 201–211. [Google Scholar] [CrossRef]
- Yager, R.R. A procedure for ordering fuzzy subsets of the unit interval. Inf. Sci. 1981, 24, 143–161. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P. Note—A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef]
- Molla, M.U.; Giri, B.B.; Biswas, P. Extended PROMETHEE method with pythagorean fuzzy sets for medical diagnosis problems. Soft Comput. 2021, 25, 4503–4512. [Google Scholar] [CrossRef]
- Caroll, A.; Kolesnikox, A.; Cook, D.E.; Brambrink, L.; Wiseman, K.N.; Billings, S.M.; Kruglyak, S.; Lajoie, B.R.; Zhao, J.; Levy, S.E.; et al. Accurate human genome analysis with Element Avidity sequencing. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mandlik, J.S.; Patil, A.S.; Singh, S. Next-Generation Sequencing (NGS): Platforms and Applications. J. Pharm. Bioallied Sci. 2024, 16, S41–S45. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020, 18, 2401–2415. [Google Scholar] [CrossRef] [PubMed]
- Sigurpalsdottir, B.D.; Stefansson, O.A.; Holley, G.; Beyter, D.; Zink, F.; Hardarson, M.; Sverrisson, S.; Kristinsdottir, N.; Magnusdottir, D.N.; Magnusson, O.; et al. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biol. 2024, 25, 69. [Google Scholar] [CrossRef] [PubMed]
Generation | Sequence Technology | Read Type | Sequencing Method |
---|---|---|---|
First Generation | |||
Maxam–Gilbert | Short read | Chemical degradation | |
Sanger 3730 xl | Short read | Dideoxy chain-termination sequencing | |
Second Generation | |||
Ion GeneStudio S5 System | Short read | Synthesis | |
Illumina HiSeq 3000/4000 | Short read | Synthesis | |
Helicos Biosciences | Short read | Synthesis | |
ABI SOLID | Short read | Ligation | |
Polonator G.007 Sequencing | Short read | Ligation | |
PyroMark Q96 Autoprep | Short read | Pyrosequencing | |
GenapSys Sequencer | Short read | Electrical-based sequencing | |
Microfluidic DNA Sequencing | Short read | Microfluidic-based sequencing | |
Single Molecule Fluorescent Sequencing | Short read | Fluorescence-based single-molecule protein sequencing | |
CRISPR Cas Sequencing | Short read | CRISPR targeted sequencing | |
Third Generation | |||
MinION, Oxford Nanopore | Long read | Nanopore sequencing | |
PacBio | Long read | Single-molecule DNA sequencing | |
Avidite Base Chemistry | Short read | Binding chemistry |
Linguistic Scale | Criteria |
---|---|
VH/(0.75, 1, 1) | Type of sequencing, max read length/run, max output data/run, processing time/run, accuracy, diagnostic sensitivity, cost per instrument, error rate, whole genome with single-stranded sequencing, single-stranded sequencing accuracy |
H/(0.50, 0.75, 1) | Machine design, generation type, cost/run, throughput, large whole-genome sequencing (human, plant, animal), exome and large panel sequencing (enrichment-based), mutation detection |
M/(0.25, 0.50, 0.75) | DNA or RNA sequencing, loading volume, small whole-genome sequencing (microbe, virus) |
L/(0, 0.25, 0.50) | - |
VL/(0, 0, 0.25) | - |
Rank | Alternative | |||
---|---|---|---|---|
1 | Avidite Base Chemistry Sequencing | 0.0346 | 0.0348 | 0.0002 |
2 | Oxford Nanopore Sequencing | 0.0041 | 0.0064 | 0.0022 |
3 | Illumina NextSeq 2000 | 0.0003 | 0.0028 | 0.0025 |
4 | Single Molecule Fluorescent Sequencing | 0.0002 | 0.0029 | 0.0027 |
5 | ABI’s SOLID Sequencing | −0.0014 | 0.0019 | 0.0033 |
6 | Single-Molecule Real-Time Sequencing | −0.0016 | 0.0020 | 0.0036 |
7 | Ion Torrent Semiconductor Sequencing | −0.0016 | 0.0018 | 0.0035 |
8 | Microfluidic Sanger Sequencing | −0.0021 | 0.0015 | 0.0036 |
9 | Massively Parallel Signature Sequencing | −0.0022 | 0.0016 | 0.0039 |
10 | CRISPR Cas | −0.0025 | 0.0013 | 0.0038 |
11 | Polony Sequencing | −0.0028 | 0.0016 | 0.0045 |
12 | GenapSys Sequencing | −0.0047 | 0.0007 | 0.0054 |
13 | Qiagen PyroMark Q48 Autoprep | −0.0061 | 0.0006 | 0.0067 |
14 | Maxam–Gilbert Method | −0.0063 | 0.0010 | 0.0073 |
15 | Applied Biosystems 3730 | −0.0078 | 0.0002 | 0.0081 |
Rank | Alternative | |||
---|---|---|---|---|
1 | Avidity Base Sequencing | 0.0377 | 0.0380 | 0.0002 |
2 | Oxford Nanopore Sequencing | 0.0045 | 0.0069 | 0.0025 |
3 | Single Molecule Fluorescent Sequencing | 0.0003 | 0.0031 | 0.0028 |
4 | Illumina NextSeq 2000 | 0.0003 | 0.0031 | 0.0028 |
5 | ABI’s SOLID Sequencing | −0.0015 | 0.0021 | 0.0036 |
6 | Single-Molecule Real-Time Sequencing | −0.0018 | 0.0021 | 0.0039 |
7 | Ion Torrent Semiconductor Sequencing | −0.0018 | 0.0020 | 0.0038 |
8 | Microfluidic Sanger Sequencing | −0.0023 | 0.0016 | 0.0039 |
9 | Massively Parallel Signature Sequencing | −0.0024 | 0.0018 | 0.0042 |
10 | CRISPR Cas | −0.0028 | 0.0014 | 0.0041 |
11 | Polony Sequencing | −0.0031 | 0.0018 | 0.0049 |
12 | GenapSys Sequencing | −0.0051 | 0.0008 | 0.0059 |
13 | Qiagen PyroMark Q48 Autoprep | −0.0067 | 0.0007 | 0.0073 |
14 | Maxam–Gilbert Method | −0.0068 | 0.0011 | 0.0079 |
15 | Applied Biosystems 3730 | −0.0086 | 0.0002 | 0.0088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arikan, A.; Uzun, B.; Sayan, M. Implementation of Multi-Criteria Decision-Making for Selecting Most Effective Genome Sequencing Technology. Diagnostics 2025, 15, 665. https://doi.org/10.3390/diagnostics15060665
Arikan A, Uzun B, Sayan M. Implementation of Multi-Criteria Decision-Making for Selecting Most Effective Genome Sequencing Technology. Diagnostics. 2025; 15(6):665. https://doi.org/10.3390/diagnostics15060665
Chicago/Turabian StyleArikan, Ayse, Berna Uzun, and Murat Sayan. 2025. "Implementation of Multi-Criteria Decision-Making for Selecting Most Effective Genome Sequencing Technology" Diagnostics 15, no. 6: 665. https://doi.org/10.3390/diagnostics15060665
APA StyleArikan, A., Uzun, B., & Sayan, M. (2025). Implementation of Multi-Criteria Decision-Making for Selecting Most Effective Genome Sequencing Technology. Diagnostics, 15(6), 665. https://doi.org/10.3390/diagnostics15060665