Blood Pressure Difference Between Cuff Inflation and Deflation by Auscultatory Method: Impact of Hypertension Grade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinic BP Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J.; et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 2005, 45, 142–161. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Zheng, D.; Di Marco, L.Y.; Murray, A. Blood pressure difference between the measurements taken during cuff inflation and deflation. Comput. Cardiol. 2012, 39, 729–732. [Google Scholar]
- Zheng, D.; Pan, F.; Murray, A. Effect of mechanical behaviour of the brachial artery on blood pressure measurement during both cuff inflation and cuff deflation. Blood Press. Monit. 2013, 18, 265–271. [Google Scholar] [CrossRef]
- Celler, B.; Yong, A.; Rubenis, I.; Butlin, M.; Argha, R.; Rehan, R.; Avolio, A. Can recording korotkoff sounds during brachial cuff inflation provide more accurate non-invasive estimates of intra-arterial blood pressure? J. Hypertens. 2023, 41 (Suppl. S3), e9. [Google Scholar] [CrossRef]
- Celler, B.G.; Yong, A.; Rubenis, I.; Butlin, M.; Argha, A.; Rehan, R.; Avolio, A. Comparison of cuff inflation and cuff deflation brachial sphygmomanometry with intra-arterial blood pressure as reference. J. Hypertens. 2024, 42, 968–976. [Google Scholar] [CrossRef]
- Celler, B.G.; Argha, A. Measuring blood pressure from Korotkoff sounds as the brachial cuff inflates on average provides higher values than when the cuff deflates. Physiol. Meas. 2024, 45, 055027. [Google Scholar] [CrossRef]
- Julius, S.; Li, Y.; Brant, D.; Krause, L.; Buda, A.J. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension 1989, 13, 422–429. [Google Scholar] [CrossRef]
- Mejia, A.D.; Egan, B.M.; Schork, N.J.; Zweifler, A.J. Artefacts in measurement of blood pressure and lack of target organ involvement in the assessment of patients with treatment-resistant hypertension. Ann. Intern. Med. 1990, 112, 270–277. [Google Scholar] [CrossRef]
- Pickering, T.G. Effects of stress and behavioral interventions in hypertension. Pain and blood pressure. J. Clin. Hypertens. 2003, 5, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Charmoy, A.; Würzner, G.; Ruffieux, C.; Hasler, C.; Cachat, F.; Waeber, B.; Burnier, M. Reactive rise in blood pressure upon cuff inflation: Cuff inflation at the arm causes a greater rise in pressure than at the wrist in hypertensive patients. Blood Press. Monit. 2007, 12, 275–280. [Google Scholar] [CrossRef]
- Graven-Nielsen, T.; Vaegter, H.B.; Finocchietti, S.; Handberg, G.; Arendt-Nielsen, L. Assessment of musculoskeletal pain sensitivity and temporal summation by cuff pressure algometry: A reliability study. Pain 2015, 156, 2193–2202. [Google Scholar] [CrossRef]
- Lemming, D.; Börsbo, B.; Sjörs, A.; Lind, E.B.; Arendt-Nielsen, L.; Graven-Nielsen, T.; Gerdle, B. Cuff Pressure Pain Detection Is Associated with Both Sex and Physical Activity Level in Nonathletic Healthy Subjects. Pain Med. 2017, 18, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Racine, M.; Tousignant-Laflamme, Y.; Kloda, L.A.; Dion, D.; Dupuis, G.; Choinière, M. A systematic literature review of 10 years of research on sex/gender and experimental pain perception-part 1: Are there really differences between women and men? Pain 2012, 153, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Lautenbacher, S.; Peters, J.H.; Heesen, M.; Scheel, J.; Kunz, M. Age changes in pain perception: A systematic-review and meta-analysis of age effects on pain and tolerance thresholds. Neurosci. Biobehav. Rev. 2017, 75, 104–113. [Google Scholar] [CrossRef]
- Mullins, S.; Hosseini, F.; Gibson, W.; Thake, M. Physiological changes from ageing regarding pain perception and its impact on pain management for older adults. Clin. Med. 2022, 22, 307–310. [Google Scholar] [CrossRef]
- Pierdomenico, S.D.; Pierdomenico, A.M.; Coccina, F.; Porreca, E. Prognosis of Masked and White Coat Uncontrolled Hypertension Detected by Ambulatory Blood Pressure Monitoring in Elderly Treated Hypertensive Patients. Am. J. Hypertens. 2017, 30, 1106–1111. [Google Scholar] [CrossRef]
- Askey, J.M. The auscultatory gap in sphygmomanometry. Ann. Intern. Med. 1974, 80, 94–97. [Google Scholar] [CrossRef]
- Blank, S.G.; West, J.E.; Müller, F.B.; Pecker, M.S.; Laragh, J.H.; Pickering, T.G. Characterization of auscultatory gaps with wideband external pulse recording. Hypertension 1991, 17, 225–233. [Google Scholar] [CrossRef]
- Danish, M.; Thakare, A.E.; Salkar, P.S.; Wakode, S.L. Clinical Utility of Blood Pressure Measurement Using the Newer Palpatory Method for Both Systolic and Diastolic Blood Pressure. Adv. Biomed. Res. 2020, 9, 51. [Google Scholar] [CrossRef]
- Picone, D.S.; Schultz, M.G.; Otahal, P.; Aakhus, S.; Al-Jumaily, A.M.; Black, J.A.; Bos, W.J.; Chambers, J.B.; Chen, C.H.; Cheng, H.M.; et al. Accuracy of Cuff-Measured Blood Pressure: Systematic Reviews and Meta-Analyses. J. Am. Coll. Cardiol. 2017, 70, 572–586. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.E.; Tan, I.; Stergiou, G.S.; Lombardi, C.; Saladini, F.; Butlin, M.; Padwal, R.; Asayama, K.; Avolio, A.; Brady, T.M.; et al. Automated ‘oscillometric’ blood pressure measuring devices: How they work and what they measure. J. Hum. Hypertens. 2023, 37, 93–100. [Google Scholar] [CrossRef]
- Armstrong, M.K.; Schultz, M.G.; Picone, D.S.; Black, J.A.; Dwyer, N.; Roberts-Thomson, P.; Sharman, J.E. Brachial and Radial Systolic Blood Pressure Are Not the Same. Hypertension 2019, 73, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Casadei, R.; Groppelli, A.; Di Rienzo, M.; Mancia, G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing. Hypertension 1989, 13, 647–655. [Google Scholar] [CrossRef]
- Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure? J. Clin. Med. 2018, 7, 316. [Google Scholar] [CrossRef]
Parameter | Mild HT | Moderate HT | Severe HT |
---|---|---|---|
n | 219 | 75 | 34 |
Age, years | 50 ± 11 | 52 ± 11 | 53 ± 9 |
Men, n (%) | 107 (49) | 39 (52) | 17 (50) |
Body mass index, kg/m2 | 26.5 ± 4 | 26.7 ± 4 | 27 ± 4 |
Smokers, n (%) | 46 (21) | 15 (20) | 10 (29) |
Glucose, mg/dL | 91 ± 12 | 92 ± 12 | 92 ± 13 |
LDL cholesterol, mg/dL | 130 ± 30 | 131 ± 34 | 135 ± 36 |
eGFR, mL/min | 93 ± 14 | 93 ± 15 | 91 ± 14 |
Parameter | Mild HT | Moderate HT | Severe HT |
---|---|---|---|
Clinic SBP, mmHg (deflation) | 148 ± 6 | 165 ± 6 * | 185 ± 7 *† |
Clinic DBP, mmHg (deflation) | 94 ± 3 | 103 ± 3 * | 113.5 ± 4 *† |
Clinic SBP, mmHg (inflation) | 146 ± 5 | 160 ± 5 * | 175.5 ± 7 *† |
Clinic DBP, mmHg (inflation) | 93 ± 3 | 100 ± 3 * | 108.5 ± 4 *† |
Clinic HR, beats/min (after) | 77 ± 11 | 77 ± 12 | 83 ± 10 ‡ |
Clinic HR, beats/min (before) | 75 ± 11 | 72 ± 12 | 75 ± 10 |
Parameter | Mild HT | Moderate HT | Severe HT |
---|---|---|---|
Systolic BP, mmHg | 1.80 ± 1.03 | 5.32 ± 1.09 * | 9.74 ± 1.46 *† |
Diastolic BP, mmHg | 1.21 ± 0.56 | 3.04 ± 0.81 * | 4.88 ± 0.73 *† |
Heart rate, beats/min | 1.58 ± 0.59 | 4.49 ± 0.93 * | 7.79 ± 1.37 *† |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coccina, F.; Pizzicannella, J.; Trubiani, O.; Pierdomenico, S.D. Blood Pressure Difference Between Cuff Inflation and Deflation by Auscultatory Method: Impact of Hypertension Grade. Diagnostics 2025, 15, 687. https://doi.org/10.3390/diagnostics15060687
Coccina F, Pizzicannella J, Trubiani O, Pierdomenico SD. Blood Pressure Difference Between Cuff Inflation and Deflation by Auscultatory Method: Impact of Hypertension Grade. Diagnostics. 2025; 15(6):687. https://doi.org/10.3390/diagnostics15060687
Chicago/Turabian StyleCoccina, Francesca, Jacopo Pizzicannella, Oriana Trubiani, and Sante D. Pierdomenico. 2025. "Blood Pressure Difference Between Cuff Inflation and Deflation by Auscultatory Method: Impact of Hypertension Grade" Diagnostics 15, no. 6: 687. https://doi.org/10.3390/diagnostics15060687
APA StyleCoccina, F., Pizzicannella, J., Trubiani, O., & Pierdomenico, S. D. (2025). Blood Pressure Difference Between Cuff Inflation and Deflation by Auscultatory Method: Impact of Hypertension Grade. Diagnostics, 15(6), 687. https://doi.org/10.3390/diagnostics15060687