Oxidative Stress Biomarkers Predict Myocardial Dysfunction in a Chemotherapy-Induced Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Study Protocols
2.2. Echocardiography
2.3. LV Longitudinal Strain by 2D Speckle-Tracking
2.4. Biochemical Evaluation
2.5. Histopathological Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRP | C-reactive protein |
CTRCD | Cancer therapeutics-related cardiac dysfunction |
CVD | Cardiovascular disease |
EF | Ejection fraction |
GSH | Glutathione |
LS | Longitudinal strain |
LV | Left ventricle/left ventricular |
NT-proBNP | N-terminal pro-brain natriuretic peptide |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TUNEL | Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling |
2D | Two-dimensional |
References
- Yeo, Y.H.; San, B.J.; Tan, J.Y.; Tan, M.C.; Donisan, T.; Lee, J.Z.; Franey, L.M.; Hayek, S.S. Cardiovascular mortality trends and disparities in U.S. breast cancer patients, 1999–2020: A population-based retrospective study. Cardiooncology 2024, 10, 89. [Google Scholar] [CrossRef]
- Camilli, M.; Cipolla, C.M.; Dent, S.; Minotti, G.; Cardinale, D.M. Anthracycline Cardiotoxicity in Adult Cancer Patients: JACC: CardioOncology State-of-the-Art Review. JACC Cardio Oncol. 2024, 6, 655–677. [Google Scholar] [CrossRef] [PubMed]
- Eaton, H.; Timm, K.N. Mechanisms of trastuzumab induced cardiotoxicity—Is exercise a potential treatment? Cardiooncology 2023, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Qadir, H.; Nolan, M.T.; Thavendiranathan, P. Routine Prophylactic Cardioprotective Therapy Should Be Given to All Recipients at Risk of Cardiotoxicity From Cancer Chemotherapy. Can. J. Cardiol. 2016, 32, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Sartorio, A.; Cristin, L.; Pont, C.D.; Farzaneh-Far, A.; Romano, S. Global longitudinal strain as an early marker of cardiac damage after cardiotoxic medications, a state of the art review. Prog. Cardiovasc. Dis. 2025; in press. [Google Scholar] [CrossRef]
- Azzam, M.; Wasef, M.; Khalaf, H.; Al-Habbaa, A. 3D-based strain analysis and cardiotoxicity detection in cancer patients received chemotherapy. BMC Cancer 2023, 23, 760. [Google Scholar] [CrossRef]
- Negishi, T.; Thavendiranathan, P.; Penicka, M.; Lemieux, J.; Murbraech, K.; Miyazaki, S.; Shirazi, M.; Santoro, C.; Cho, G.Y.; Popescu, B.A.; et al. Cardioprotection Using Strain-Guided Management of Potentially Cardiotoxic Cancer Therapy: 3-Year Results of the SUCCOUR Trial. JACC Cardiovasc. Imaging 2023, 16, 269–278. [Google Scholar] [CrossRef]
- Dirican, A.; Levent, F.; Alacacioglu, A.; Kucukzeybek, Y.; Varol, U.; Kocabas, U.; Senoz, O.; Emre, S.V.; Demir, L.; Coban, E.; et al. Acute cardiotoxic effects of adjuvant trastuzumab treatment and its relation to oxidative stress. Angiology 2014, 65, 951–952. [Google Scholar] [CrossRef]
- Watanabe, Y.; Watanabe, K.; Kobayashi, T.; Saito, Y.; Fujioka, D.; Nakamura, T.; Obata, J.E.; Kawabata, K.; Mishina, H.; Kugiyama, K. Chronic depletion of glutathione exacerbates ventricular remodelling and dysfunction in the pressure-overloaded heart. Cardiovasc. Res. 2013, 97, 282–292. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, X.; Hu, X.; Zhu, G.; Zhang, P.; van Deel, E.D.; French, J.P.; Fassett, J.T.; Oury, T.D.; Bache, R.J.; et al. Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction. Hypertension 2008, 51, 19–25. [Google Scholar] [CrossRef]
- Cho, D.H.; Lim, I.R.; Kim, J.H.; Kim, M.N.; Kim, Y.H.; Park, K.H.; Park, S.M.; Shim, W.J. Protective Effects of Statin and Angiotensin Receptor Blocker in a Rat Model of Doxorubicin- and Trastuzumab-Induced Cardiomyopathy. J. Am. Soc. Echocardiogr. 2020, 33, 1253–1263. [Google Scholar] [CrossRef]
- Gorcsan, J., 3rd; Tanaka, H. Echocardiographic assessment of myocardial strain. J. Am. Coll. Cardiol. 2011, 58, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Lopez-Fernandez, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Koshizuka, R.; Ishizu, T.; Kameda, Y.; Kawamura, R.; Seo, Y.; Aonuma, K. Longitudinal strain impairment as a marker of the progression of heart failure with preserved ejection fraction in a rat model. J. Am. Soc. Echocardiogr. 2013, 26, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noe, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Shi, S.; Chen, Y.; Luo, Z.; Nie, G.; Dai, Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 2023, 21, 61. [Google Scholar] [CrossRef]
- Ru, Q.; Li, Y.; Chen, L.; Wu, Y.; Min, J.; Wang, F. Iron homeostasis and ferroptosis in human diseases: Mechanisms and therapeutic prospects. Signal Transduct. Target Ther. 2024, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.; Sandhu, J.K.; Harper, M.E.; Cuperlovic-Culf, M. Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules 2020, 10, 1429. [Google Scholar] [CrossRef]
- Villani, F.; Galimberti, M.; Monti, E.; Piccinini, F.; Lanza, E.; Rozza, A.; Favalli, L.; Poggi, P.; Zunino, F. Effect of glutathione and N-acetylcysteine on in vitro and in vivo cardiac toxicity of doxorubicin. Free Radic. Res. Commun. 1990, 11, 145–151. [Google Scholar] [CrossRef]
- Fu, X.; Eggert, M.; Yoo, S.; Patel, N.; Zhong, J.; Steinke, I.; Govindarajulu, M.; Turumtay, E.A.; Mouli, S.; Panizzi, P.; et al. The Cardioprotective Mechanism of Phenylaminoethyl Selenides (PAESe) Against Doxorubicin-Induced Cardiotoxicity Involves Frataxin. Front. Pharmacol. 2020, 11, 574656. [Google Scholar] [CrossRef]
- Lee, E.J.; Jang, W.B.; Choi, J.; Lim, H.J.; Park, S.; Rethineswaran, V.K.; Ha, J.S.; Yun, J.; Hong, Y.J.; Choi, Y.J.; et al. The Protective Role of Glutathione against Doxorubicin-Induced Cardiotoxicity in Human Cardiac Progenitor Cells. Int. J. Mol. Sci. 2023, 24, 12070. [Google Scholar] [CrossRef]
- Damy, T.; Kirsch, M.; Khouzami, L.; Caramelle, P.; Le Corvoisier, P.; Roudot-Thoraval, F.; Dubois-Rande, J.L.; Hittinger, L.; Pavoine, C.; Pecker, F. Glutathione deficiency in cardiac patients is related to the functional status and structural cardiac abnormalities. PLoS ONE 2009, 4, e4871. [Google Scholar] [CrossRef] [PubMed]
Preserved LS (n = 21) | Reduced LS (n = 13) | p | |
---|---|---|---|
Baseline | |||
Weight, g | 248.5 ± 11.8 | 251.1 ± 6.3 | 0.398 |
Heart rate, bpm | 208 (181–247) | 183 (165–206) | 0.111 |
LVDd, mm | 62.5 ± 7.4 | 65.9 ± 4.3 | 0.148 |
LVSd, mm | 23.5 ± 3.7 | 25.8 ± 3.1 | 0.077 |
FS, % | 62.1 ± 6.0 | 60.9 ± 4.1 | 0.523 |
LS, −% | 23.8 ± 1.9 | 23.7 ± 1.5 | 0.883 |
Day 28 | |||
Weight, g | 267.1 ± 22.0 | 246.2 ± 18.1 | 0.007 |
Heart rate, bpm | 198 (183–222) | 189 (180–197) | 0.141 |
LVDd, mm | 67.4 ± 4.2 | 71.0 ± 4.7 | 0.028 |
LVSd, mm | 29.2 ± 4.1 | 36.6 ± 5.0 | <0.001 |
FS, % * | 56.8 ± 4.4 | 48.5 ± 5.6 | <0.001 |
LS, −% | 24.7 ± 1.1 | 20.7 ± 1.2 | <0.001 |
%Change in LS † | 4.2 ± 11.0 | −11.5 ± 7.7 | <0.001 |
Preserved LS (n = 21) | Reduced LS (n = 13) | p | |
---|---|---|---|
Biomarkers | |||
Troponin I, pg/mL | 14.1 (13.4–16.1) | 15.6 (15.1–17.8) | 0.041 |
NT-proBNP, pg/mL | 59.0 ± 6.4 | 78.2 ± 12.7 | 0.002 |
CRP, pg/mL | 182.5 ± 70.6 | 277.3 ± 44.0 | 0.001 |
Histopathological data | |||
Fibrosis, % | 6.5 ± 5.4 | 15.0 ± 6.0 | <0.001 |
TUNEL, % | 26.5 ± 14.4 | 52.3 ± 15.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.R.; Cho, D.-H.; Kim, J.-H.; Park, S.-M.; Kim, M.-N. Oxidative Stress Biomarkers Predict Myocardial Dysfunction in a Chemotherapy-Induced Rat Model. Diagnostics 2025, 15, 705. https://doi.org/10.3390/diagnostics15060705
Kim SR, Cho D-H, Kim J-H, Park S-M, Kim M-N. Oxidative Stress Biomarkers Predict Myocardial Dysfunction in a Chemotherapy-Induced Rat Model. Diagnostics. 2025; 15(6):705. https://doi.org/10.3390/diagnostics15060705
Chicago/Turabian StyleKim, So Ree, Dong-Hyuk Cho, Jong-Ho Kim, Seong-Mi Park, and Mi-Na Kim. 2025. "Oxidative Stress Biomarkers Predict Myocardial Dysfunction in a Chemotherapy-Induced Rat Model" Diagnostics 15, no. 6: 705. https://doi.org/10.3390/diagnostics15060705
APA StyleKim, S. R., Cho, D.-H., Kim, J.-H., Park, S.-M., & Kim, M.-N. (2025). Oxidative Stress Biomarkers Predict Myocardial Dysfunction in a Chemotherapy-Induced Rat Model. Diagnostics, 15(6), 705. https://doi.org/10.3390/diagnostics15060705