Optimizing Final Pathology Determination in Endometrial Cancer: The Role of PET/CT, MRI, and Biopsy in Serous, Mixed Cell, Clear Cell, and Grade 3 Endometrioid Subtypes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison of Preoperative Diagnostic Findings with Postoperative Histological Findings
3.2. Comparison of Preoperative and Postoperative Findings in Relation to Mortality Outcomes
3.3. Comparison of Clinical, Radiological, and Pathological Findings Across Cancer Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amant, F.; Mirza, M.R.; Koskas, M.; Creutzberg, C.L. Cancer of the corpus uteri. Int. J. Gynaecol. Obstet. 2018, 143 (Suppl. S2), 37–50. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on GYN and OB Imaging; Reinhold, C.; Ueno, Y.; Akin, E.A.; Bhosale, P.R.; Dudiak, K.M.; Jhingran, A.; Kang, S.K.; Kilcoyne, A.; Lakhman, Y.; et al. ACR Appropriateness Criteria® Pretreatment Evaluation and Follow-Up of Endometrial Cancer. J. Am. Coll. Radiol. 2020, 17, S472–S486. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Asano, H.; Hatanaka, K.C.; Matsuoka, R.; Konno, Y.; Matsuno, Y.; Hatanaka, Y.; Watari, H. The prognosis of endometrial cancers stratified with conventional risk factors and modified molecular classification. Cancer Sci. 2022, 113, 3134–3147. [Google Scholar] [CrossRef] [PubMed]
- Tailoring Endometrial Cancer Treatment Based on Molecular Pathology: Current Status and Possible Impacts on Systemic and Local Treatment. Available online: https://www.mdpi.com/1422-0067/25/14/7742 (accessed on 11 January 2025).
- Oaknin, A.; Bosse, T.; Creutzberg, C.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 860–877. [Google Scholar] [CrossRef]
- Al Nemer, A.M.; Al Bayat, M.I.; Al Qahtani, N.H. The accuracy of endometrial sampling for the diagnosis of patterns of endometrial pathology in women presenting with abnormal uterine bleeding. Saudi Med. J. 2019, 40, 815–819. [Google Scholar] [CrossRef]
- Alwafai, Z.; Beck, M.H.; Fazeli, S.; Gürtler, K.; Kunz, C.; Singhartinger, J.; Trojnarska, D.; Zocholl, D.; Krankenberg, D.J.; Blohmer, J.-U.; et al. Accuracy of endometrial sampling in the diagnosis of endometrial cancer: A multicenter retrospective analysis of the JAGO-NOGGO. BMC Cancer 2024, 24, 380. [Google Scholar] [CrossRef]
- Bi, Q.; Bi, G.; Wang, J.; Zhang, J.; Li, H.; Gong, X.; Ren, L.; Wu, K. Diagnostic Accuracy of MRI for Detecting Cervical Invasion in Patients with Endometrial Carcinoma: A Meta-Analysis. J. Cancer 2021, 12, 754–764. [Google Scholar] [CrossRef]
- Turashvili, G.; Hanley, K. Practical Updates and Diagnostic Challenges in Endometrial Carcinoma. Arch. Pathol. Lab. Med. 2024, 148, 78–98. [Google Scholar] [CrossRef]
- Faria, S.C.; Devine, C.E.; Rao, B.; Sagebiel, T.; Bhosale, P. Imaging and Staging of Endometrial Cancer. Semin. Ultrasound CT MRI 2019, 40, 287–294. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, L.; Sultana, B.; Wang, B.; Sun, H. Diagnostic value of integrated 18F-FDG PET/MRI for staging of endometrial carcinoma: Comparison with PET/CT. BMC Cancer 2022, 22, 947. [Google Scholar] [CrossRef]
- Lortet-Tieulent, J.; Ferlay, J.; Bray, F.; Jemal, A. International Patterns and Trends in Endometrial Cancer Incidence, 1978–2013. J. Natl. Cancer Inst. 2018, 110, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Morice, P.; Leary, A.; Creutzberg, C.; Abu-Rustum, N.; Darai, E. Endometrial cancer. Lancet 2016, 387, 1094–1108. [Google Scholar] [CrossRef] [PubMed]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial Cancer. Nat. Rev. Dis. Primers. 2021, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Mamatjan, Y.; Agnihotri, S.; Goldenberg, A.; Tonge, P.; Mansouri, S.; Zadeh, G.; Aldape, K. Molecular Signatures for Tumor Classification: An Analysis of The Cancer Genome Atlas Data. J. Mol. Diagnostics. 2017, 19, 881–891. [Google Scholar] [CrossRef]
- Espinosa, I.; D’Angelo, E.; Prat, J. Endometrial carcinoma: 10 years of TCGA (the cancer genome atlas): A critical reappraisal with comments on FIGO 2023 staging. Gynecol. Oncol. 2024, 186, 94–103. [Google Scholar] [CrossRef]
- Johnson, N.; Bryant, A.; Miles, T.; Hogberg, T.; Cornes, P. Adjuvant chemotherapy for endometrial cancer after hysterectomy. Cochrane Database Syst. Rev. 2011, 2011, CD003175. [Google Scholar] [CrossRef]
- Lin, M.Y.; Dobrotwir, A.; McNally, O.; Abu-Rustum, N.R.; Narayan, K. Role of imaging in the routine management of endometrial cancer. Int. J. Gynaecol. Obstet. 2018, 143, 109–117. [Google Scholar] [CrossRef]
- Epstein, E.; Blomqvist, L. Imaging in endometrial cancer. Best. Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 721–739. [Google Scholar] [CrossRef]
- Traen, K.; Hølund, B.; Mogensen, O. Accuracy of preoperative tumor grade and intraoperative gross examination of myometrial invasion in patients with endometrial cancer. Acta Obstet. Gynecol. Scand. 2007, 86, 739–741. [Google Scholar] [CrossRef]
- Cabrita, S.; Rodrigues, H.; Abreu, R.; Martins, M.; Teixeira, L.; Marques, C.; Mota, F.; de Oliveira, C.F. Magnetic Resonance Imaging in the Preoperative Staging of Endometrial Carcinoma. 2008. Available online: http://hdl.handle.net/10400.4/139 (accessed on 10 March 2025).
- Sanjuán, A.; Escaramís, G.; Ayuso, J.R.; Román, S.M.; Torné, A.; Ordi, J.; Lejárcegui, J.A.; Pahisa, J. Role of magnetic resonance imaging and cause of pitfalls in detecting myometrial invasion and cervical involvement in endometrial cancer. Arch. Gynecol. Obstet. 2008, 278, 535–539. [Google Scholar] [CrossRef]
- Chung, H.H.; Kang, S.-B.; Cho, J.Y.; Kim, J.W.; Park, N.-H.; Song, Y.-S.; Kim, S.H.; Lee, H.-P. Accuracy of MR imaging for the prediction of myometrial invasion of endometrial carcinoma. Gynecol. Oncol. 2007, 104, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Menendez-Santos, M.; Gonzalez-Baerga, C.; Taher, D.; Waters, R.; Virarkar, M.; Bhosale, P. Endometrial Cancer: 2023 Revised FIGO Staging System and the Role of Imaging. Cancers 2024, 16, 1869. [Google Scholar] [CrossRef] [PubMed]
- Sbarra, M.; Lupinelli, M.; Brook, O.R.; Venkatesan, A.M.; Nougaret, S. Imaging of Endometrial Cancer. Radiol. Clin. N. Am. 2023, 61, 609–625. [Google Scholar] [CrossRef] [PubMed]
- Haldorsen, I.S.; Salvesen, H.B. What Is the Best Preoperative Imaging for Endometrial Cancer? Curr. Oncol. Rep. 2016, 18, 1–11. [Google Scholar] [CrossRef]
- Mazzei, M.A.; Khader, L.; Cirigliano, A.; Squitieri, N.C.; Guerrini, S.; Forzoni, B.; Marrelli, D.; Roviello, F.; Mazzei, F.G.; Volterrani, L. Accuracy of MDCT in the preoperative definition of Peritoneal Cancer Index (PCI) in patients with advanced ovarian cancer who underwent peritonectomy and hyperthermic intraperitoneal chemotherapy (HIPEC). Abdom. Imaging 2013, 38, 1422–1430. [Google Scholar] [CrossRef]
- Kitajima, K.; Murakami, K.; Yamasaki, E.; Kaji, Y.; Sugimura, K. Accuracy of integrated FDG-PET/contrast-enhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur. Radiol. 2009, 19, 1529–1536. [Google Scholar] [CrossRef]
- Narayan, K.; Hicks, R.J.; Jobling, T.; Bernshaw, D.; Mckenzie, A.F. A comparison of MRI and PET scanning in surgically staged loco-regionally advanced cervical cancer: Potential impact on treatment. Int. J. Gynecol. Cancer. 2001, 11, 263–271. [Google Scholar] [CrossRef]
- Mariani, A.; Webb, M.J.; Keeney, G.L.; Haddock, M.G.; Calori, G.; Podratz, K.C. Low-risk corpus cancer: Is lymphadenectomy or radiotherapy necessary? Am. J. Obstet. Gynecol. 2000, 182, 1506–1519. [Google Scholar] [CrossRef]
- Cade, T.J.; Quinn, M.A.; McNally, O.M.; Neesham, D.; Pyman, J.; Dobrotwir, A. Predictive Value of Magnetic Resonance Imaging in Assessing Myometrial Invasion in Endometrial Cancer: Is Radiological Staging Sufficient for Planning Conservative Treatment? Int. J. Gynecol. Cancer. 2010, 20, 1166–1169. [Google Scholar] [CrossRef]
- Yilmaz, A.; Yilmaz, F.; Şahin, H.Ö.; Atalay, F.Ö.; Uysal, D.; Ozan, H. Comparing the efficacy of imaging techniques in detecting myometrial invasion, cervical involvement and pelvic lymph-nodal metastasis in endometrial cancer. Ege Tıp Dergisi. 2022, 61, 647–650. [Google Scholar] [CrossRef]
- Otero-García, M.M.; Mesa-Álvarez, A.; Nikolic, O.; Blanco-Lobato, P.; Basta-Nikolic, M.; de Llano-Ortega, R.M.; Paredes-Velázquez, L.; Nikolic, N.; Szewczyk-Bieda, M. Role of MRI in staging and follow-up of endometrial and cervical cancer: Pitfalls and mimickers. Insights Imaging 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.J.; Tahir, S.H.; Kakamad, F.H.; Omar, S.S.; Salih, A.M.; Ahmed, S.F.; Abdalla, S.H.; Naqar, S.; Salih, R.Q.; Kakamad, S.H.; et al. Whole-body MRI for metastatic workup in patients diagnosed with cancer. Mol. Clin. Oncol. 2023, 18, 33. [Google Scholar] [CrossRef] [PubMed]
- Meissnitzer, M.; Forstner, R. MRI of endometrium cancer—How we do it. Cancer Imaging 2016, 16, 11. [Google Scholar] [CrossRef]
- Patel, S.; Liyanage, S.H.; Sahdev, A.; Rockall, A.G.; Reznek, R.H. Imaging of endometrial and cervical cancer. Insights Imaging 2010, 1, 309–328. [Google Scholar] [CrossRef]
- Haldorsen, I.S.; Salvesen, H.B. Staging of endometrial carcinomas with MRI using traditional and novel MRI techniques. Clin. Radiol. 2011, 67, 2–12. [Google Scholar] [CrossRef]
- Özge Vural Topuz, A.A. The Evaluation of Preoperative 18F-FDG PET/CT in Patients with Endometrial Cancer and the Correlation Between PET Parameters and Postoperative Pathology Results. Molecular Imaging and Radionuclide Therapy. 2022. Available online: https://mirt.tsnmjournals.org/articles/the-evaluation-of-preoperative-lesssupgreater18lesssupgreaterf-fdg-petct-in-patients-with-endometrial-cancer-and-the-correlation-between-pet-parameters-and-postoperative-pathology-results/doi/mirt.galenos.2021.33154 (accessed on 11 January 2025).
- Nogami, Y.; Banno, K.; Irie, H.; Iida, M.; Kisu, I.; Masugi, Y.; Tanaka, K.; Tominaga, E.; Okuda, S.; Murakami, K.; et al. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: Clinical and pathological factors influencing it. Jpn J. Clin. Oncol. 2014, 45, 26–34. [Google Scholar] [CrossRef]
- Garau, L.M.; Niccoli-Asabella, A.; Ferrari, C.; Sardaro, A.; Pisani, A.; Rubini, G. The role of 18F-FDG PET/CT in endometrial adenocarcinoma: A review of the literature and recent advances. Clin. Transl. Imaging 2020, 8, 357–364. [Google Scholar] [CrossRef]
- Bakır, M.S. Pet CT Dilemma in Evaluating Paraaortic Lymph Nodes in Locally Advanced Cervical Cancer? Zeynep Kamil Med. J. 2021, 52, 73–77. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Prosch, H.; Beer, L.; Tamandl, D.; Beyer, T.; Hoeller, C.; Berzaczy, D.; Raderer, M.; Preusser, M.; Hochmair, M.; et al. PET/MRI versus PET/CT in oncology: A prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 51–60. [Google Scholar] [CrossRef]
- Molnar, O.; Straciuc, O.M.; Mihuțiu, S.; Lazăr, L. Impact of PET/CT Imaging with FDG in Locally Advanced Cervical Carcinoma—A Literature Review. Curr. Oncol. 2024, 31, 2508–2526. [Google Scholar] [CrossRef]
- Bogani, G.; Ray-Coquard, I.; Concin, N.; Ngoi, N.Y.; Morice, P.; Enomoto, T.; Takehara, K.; Denys, H.; Nout, R.A.; Lorusso, D.; et al. Uterine Serous Carcinoma. Gynecol. Oncol. 2021, 162, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Thomas, V.; Sebastian, A.; George, R.; Thomas, A.; Ram, T.S.; Daniel, S.; Reka, K.; Peedicayil, A. The clinico pathological features and survival in serous endometrial cancers. Gynecol. Oncol. Rep. 2023, 47, 101194. [Google Scholar] [CrossRef]
Overall (n = 70) | Serous Carcinoma (n = 34) | Endometrioid Adenocarcinoma (n = 28) | Clear Cell Carcinoma (n = 2) | Mixed Cell Carcinoma (n = 6) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 64 ± 9.76 | 66.35 ± 9.57 | 60.68 ± 9.48 | 68.5 ± 9.19 | 64.67 ± 10.03 | 0.127 |
Weight (kg) | 80.79 ± 14.29 | 79.24 ± 10.86 | 83.71 ± 18.09 | 85 ± 7.07 | 74.5 ± 12.11 | 0.546 |
Height (cm) | 159.13 ± 5.35 | 159.38 ± 5.13 | 159.21 ± 6.01 | 160 ± 0 | 157 ± 4.47 | 0.719 |
Months Since Diagnosis | 24.2 ± 11.24 | 22.56 ± 9.76 | 27.07 ± 12.37 | 18 ± 12.73 | 22.17 ± 13.06 | 0.380 |
Body Mass Index (BMI) | 0.514 | |||||
Normal | 5 (7.14%) | 1 (2.94%) | 3 (10.71%) | 0 (0.00%) | 1 (16.67%) | |
Overweight | 15 (21.43%) | 11 (32.35%) | 3 (10.71%) | 0 (0.00%) | 1 (16.67%) | |
Obese | 36 (51.43%) | 17 (50.00%) | 15 (53.57%) | 1 (50.00%) | 3 (50.00%) | |
Severely Obese | 8 (11.43%) | 3 (8.82%) | 3 (10.71%) | 1 (50.00%) | 1 (16.67%) | |
Morbidly Obese | 6 (8.57%) | 2 (5.88%) | 4 (14.29%) | 0 (0.00%) | 0 (0.00%) | |
Chronic Disease History | 0.074 | |||||
Diabetes mellitus | 5 (7.14%) | 3 (8.82%) | 2 (7.14%) | 0 (0.00%) | 0 (0.00%) | |
Hipertension | 25 (35.71%) | 11 (32.35%) | 7 (25.00%) | 1 (50.00%) | 6 (100.00%) | |
Diabetes mellitus + Hipertension | 15 (21.43%) | 9 (26.47%) | 5 (17.86%) | 1 (50.00%) | 0 (0.00%) | |
Other | 5 (7.14%) | 4 (11.76%) | 1 (3.57%) | 0 (0.00%) | 0 (0.00%) | |
Surgical History | 12 (17.14%) | 5 (14.71%) | 6 (21.43%) | 0 (0.00%) | 1 (16.67%) | 0.821 |
Smoking | 5 (7.14%) | 3 (8.82%) | 0 (0.00%) | 1 (50.00%) | 1 (16.67%) | 0.034 |
HPV Status | 0.978 | |||||
Negative | 56 (80.00%) | 25 (96.15%) | 26 (96.30%) | 1 (100.00%) | 4 (100.00%) | |
Positive | 2 (2.86%) | 1 (3.85%) | 1 (3.70%) | 0 (0.00%) | 0 (0.00%) | |
Disease Stage | 0.321 | |||||
Stage I | 17 (24.29%) | 6 (17.65%) | 9 (32.14%) | 0 (0.00%) | 2 (33.33%) | |
Stage II | 17 (24.29%) | 5 (14.71%) | 9 (32.14%) | 1 (50.00%) | 2 (33.33%) | |
Stage III | 23 (32.86%) | 13 (38.24%) | 8 (28.57%) | 1 (50.00%) | 1 (16.67%) | |
Stage IV | 13 (18.57%) | 10 (29.41%) | 2 (7.14%) | 0 (0.00%) | 1 (16.67%) | |
Mortality | 0.828 | |||||
Alive | 63 (90.00%) | 30 (88.24%) | 26 (92.86%) | 2 (100.00%) | 5 (83.33%) | |
Deceased | 7 (10.00%) | 4 (11.76%) | 2 (7.14%) | 0 (0.00%) | 1 (16.67%) |
Histopathological Type | SUVmax (Mean ± SD) | p-Value |
---|---|---|
Serous Carcinoma | 16.1 ± 10.4 | 0.336 |
Endometrioid Adenocarcinoma | 14.8 ± 12.6 | |
Clear Cell Carcinoma | 17.9 ± 10.2 | |
Carcinosarcoma | 12.4 ± 2.9 |
Category | SUVmax (Mean ± SD) | p-Value |
---|---|---|
Overall (n = 70) | 16.1 ± 10.4 | 0.376 |
Survival (n = 63) | 16.6 ± 10.7 | |
Exitus (n = 7) | 11.8 ± 6.9 |
Category | SUVmax (Mean ± SD) | p-Value |
---|---|---|
Overall (n = 70) | 16.1 ± 10.4 | 0.017 |
No distant metastasis (n = 63) | 17.15 ± 10.4 | |
Distant metastasis (n = 7) | 7.31 ± 4.4 |
Serous Carcinoma (n = 29) | Endometrioid Adenocarcinoma (n = 25) | Clear Cell Carcinoma (n = 2) | Mixed Cell Carcinoma (n = 6) | Mixed Cell Carcinoma (n = 8) | p-Value | |
---|---|---|---|---|---|---|
Endometrial Biopsy (Preoperative) | <0.001 | |||||
Serous Carcinoma | 27 (93.10%) | 5 (20.00%) | 1 (50.00%) | 0 (0.00%) | 1 (12.50%) | |
Endometrioid Adenocarcinoma | 1 (3.45%) | 19 (76.00%) | 0 (0.00%) | 4 (66.67%) | 4 (50.00%) | |
Clear Cell Carcinoma | 0 (0.00%) | 0 (0.00%) | 1 (50.00%) | 0 (0.00%) | 1 (12.50%) | |
Mixed Cell Carcinoma | 1 (3.45%) | 1 (4.00%) | 0 (0.00%) | 2 (33.33%) | 2 (25.00%) | |
Smear Results | 0.640 | |||||
Benign Findings | 17 (70.83%) | 19 (82.61%) | 1 (100.00%) | 3 (60.00%) | 7 (100.00%) | |
Low-Grade Abnormalities | 3 (12.50%) | 1 (4.35%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | |
High-Grade Abnormalities | 3 (12.50%) | 3 (13.04%) | 0 (0.00%) | 1 (20.00%) | 0 (0.00%) | |
Malignancy | 1 (4.17%) | 0 (0.00%) | 0 (0.00%) | 1 (20.00%) | 0 (0.00%) | |
MRI Findings | ||||||
Mass Lesion | 9 (31.03%) | 10 (40.00%) | 1 (50.00%) | 2 (33.33%) | 5 (62.50%) | 0.587 |
Increased Endometrial Thickness | 5 (17.24%) | 8 (32.00%) | 0 (0.00%) | 1 (16.67%) | 0 (0.00%) | 0.295 |
Local Involvement | 22 (75.86%) | 20 (80.00%) | 2 (100.00%) | 5 (83.33%) | 8 (100.00%) | 0.571 |
Distant Metastasis | 4 (13.79%) | 1 (4.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0.472 |
PET/CT Findings | ||||||
Increased Involvement | 26 (89.66%) | 24 (96.00%) | 2 (100.00%) | 6 (100.00%) | 8 (100.00%) | 0.688 |
Increased Uptake | 4 (13.79%) | 8 (32.00%) | 2 (100.00%) | 3 (50.00%) | 3 (37.50%) | 0.042 |
Lesion | 2 (6.90%) | 7 (28.00%) | 0 (0.00%) | 2 (33.33%) | 3 (37.50%) | 0.146 |
Omental Cake | 3 (10.34%) | 2 (8.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0.789 |
Local Spread | 26 (89.66%) | 24 (96.00%) | 2 (100.00%) | 6 (100.00%) | 8 (100.00%) | 0.688 |
Distant Metastasis | 5 (17.24%) | 2 (8.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0.466 |
SUVmax | 14.8 ± 12.58 | 17.96 ± 10.18 | 18.65 ± 12.23 | 12.35 ± 2.92 | 16.95 ± 6.2 | 0.336 |
Alive (n = 63) | Deceased (n = 7) | p-Value | |
---|---|---|---|
Smear Results | 0.719 | ||
Benign Findings | 43 (78.18%) | 4 (80.00%) | |
Low-Grade Abnormalities | 4 (7.27%) | 0 (0.00%) | |
High-Grade Abnormalities | 6 (10.91%) | 1 (20.00%) | |
Malignancy | 2 (3.64%) | 0 (0.00%) | |
Endometrial Biopsy (Preoperative) | 0.673 | ||
Serous Carcinoma | 30 (47.62%) | 4 (57.14%) | |
Endometrioid Adenocarcinoma | 26 (41.27%) | 2 (28.57%) | |
Clear Cell Carcinoma | 2 (3.17%) | 0 (0.00%) | |
Mixed Cell Carcinoma | 5 (7.94%) | 1 (14.29%) | |
Histopathological Results (Postoperative) | >0.999 | ||
Serous Carcinoma | 26 (41.27%) | 3 (42.86%) | |
Endometroid Adenocarcinoma | 22 (34.92%) | 3 (42.86%) | |
Clear Cell Carcinoma | 2 (3.17%) | 0 (0.00%) | |
Mixt Cell Carcinoma | 6 (9.52%) | 0 (0.00%) | |
Carcinosarcoma | 7 (11.11%) | 1 (14.29%) | |
MRI Findings | |||
Mass Lesion | 23 (36.51%) | 4 (57.14%) | 0.417 |
Increased Endometrial Thickness | 13 (20.63%) | 1 (14.29%) | >0.999 |
Local Involvement | 50 (79.37%) | 7 (100.00%) | 0.334 |
Distant Metastasis | 4 (6.35%) | 1 (14.29%) | 0.419 |
PET/CT Findings | |||
Increased Involvement | 59 (93.65%) | 7 (100.00%) | >0.999 |
Increased Uptake | 19 (30.16%) | 1 (14.29%) | 0.664 |
Lesion | 11 (17.46%) | 3 (42.86%) | 0.137 |
Omental Cake | 5 (7.94%) | 0 (0.00%) | >0.999 |
Local Spread | 59 (93.65%) | 7 (100.00%) | >0.999 |
Distant Metastasis | 6 (9.52%) | 1 (14.29%) | 0.538 |
SUVmax | 16.61 ± 10.67 | 11.83 ± 6.93 | 0.376 |
Stage I (n = 17) | Stage II (n = 17) | Stage III (n = 23) | Stage IV (n = 13) | p-Value | |
---|---|---|---|---|---|
Smear Results | 0.434 | ||||
Benign Findings | 10 (76.92%) | 13 (92.86%) | 17 (77.27%) | 7 (63.64%) | |
Low-Grade Abnormalities | 1 (7.69%) | 0 (0.00%) | 2 (9.09%) | 1 (9.09%) | |
High-Grade Abnormalities | 2 (15.38%) | 1 (7.14%) | 1 (4.55%) | 3 (27.27%) | |
Malignancy | 0 (0.00%) | 0 (0.00%) | 2 (9.09%) | 0 (0.00%) | |
Endometrial Biopsy (Preoperative) | 0.321 | ||||
Serous Carcinoma | 6 (35.29%) | 5 (29.41%) | 13 (56.52%) | 10 (76.92%) | |
Endometrioid Adenocarcinoma | 9 (52.94%) | 9 (52.94%) | 8 (34.78%) | 2 (15.38%) | |
Clear Cell Carcinoma | 0 (0.00%) | 1 (5.88%) | 1 (4.35%) | 0 (0.00%) | |
Mixed Cell Carcinoma | 2 (11.76%) | 2 (11.76%) | 1 (4.35%) | 1 (7.69%) | |
Histopathological Results (Postoperative) | 0.164 | ||||
Serous Carcinoma | 4 (23.53%) | 4 (23.53%) | 11 (47.83%) | 10 (76.92%) | |
Endometroid Adenocarcinoma | 9 (52.94%) | 7 (41.18%) | 7 (30.43%) | 2 (15.38%) | |
Clear Cell Carcinoma | 1 (5.88%) | 1 (5.88%) | 0 (0.00%) | 0 (0.00%) | |
Mixt Cell Carcinoma | 1 (5.88%) | 3 (17.65%) | 1 (4.35%) | 1 (7.69%) | |
Carcinosarcoma | 2 (11.76%) | 2 (11.76%) | 4 (17.39%) | 0 (0.00%) | |
MRI Findings | |||||
Mass Lesion | 7 (41.18%) | 5 (29.41%) | 11 (47.83%) | 4 (30.77%) | 0.611 |
Increased Endometrial Thickness | 4 (23.53%) | 4 (23.53%) | 4 (17.39%) | 2 (15.38%) | 0.911 |
Local Involvement | 15 (88.24%) | 13 (76.47%) | 19 (82.61%) | 10 (76.92%) | 0.803 |
Distant Metastasis | 0 (0.00%) | 0 (0.00%) | 2 (8.70%) | 3 (23.08%) | 0.053 |
PET/CT Findings | |||||
Increased Involvement | 15 (88.24%) | 16 (94.12%) | 23 (100.00%) | 12 (92.31%) | 0.45 |
Increased Uptake | 2 (11.76%) | 6 (35.29%) | 9 (39.13%) | 3 (23.08%) | 0.243 |
Lesion | 3 (17.65%) | 4 (23.53%) | 5 (21.74%) | 2 (15.38%) | 0.939 |
Omental Cake | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 5 (38.46%) | <0.001 |
Local Spread | 15 (88.24%) | 16 (94.12%) | 23 (100.00%) | 12 (92.31%) | 0.45 |
Distant Metastasis | 0 (0.00%) | 0 (0.00%) | 1 (4.35%) | 6 (46.15%) | <0.001 |
SUVmax | 13.79 ± 7.02 | 18.21 ± 10.61 | 17.69 ± 11.96 | 13.15 ± 10.43 | 0.349 |
Histopathological Types | No Smoking (n = 65) | Smoking (n = 5) | p-Value |
---|---|---|---|
Serous Carcinoma | 27 (93.1%) | 2 (6.9%) | 0.019 |
Endometrioid Adenocarcinoma | 25 (100.0%) | 0 (0.0%) | |
Clear Cell Carcinoma | 1 (50.0%) | 1 (50.0%) | |
Mixed Cell Carcinoma | 6 (75.0%) | 2 (25.0%) | |
Carcinosarcoma | 6 (75.0%) | 2 (25.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şahin, G.; HazırBulan, A.; Sözen, I.; Kocadal, N.Ç.; Alkış, İ.; Yardımcı, A.H.; Akkaş, B.E.; Arslan, H.S. Optimizing Final Pathology Determination in Endometrial Cancer: The Role of PET/CT, MRI, and Biopsy in Serous, Mixed Cell, Clear Cell, and Grade 3 Endometrioid Subtypes. Diagnostics 2025, 15, 731. https://doi.org/10.3390/diagnostics15060731
Şahin G, HazırBulan A, Sözen I, Kocadal NÇ, Alkış İ, Yardımcı AH, Akkaş BE, Arslan HS. Optimizing Final Pathology Determination in Endometrial Cancer: The Role of PET/CT, MRI, and Biopsy in Serous, Mixed Cell, Clear Cell, and Grade 3 Endometrioid Subtypes. Diagnostics. 2025; 15(6):731. https://doi.org/10.3390/diagnostics15060731
Chicago/Turabian StyleŞahin, Gözde, Ayşe HazırBulan, Işık Sözen, Nilüfer Çetinkaya Kocadal, İsmet Alkış, Aytül Hande Yardımcı, Burcu Esen Akkaş, and Hilal Serap Arslan. 2025. "Optimizing Final Pathology Determination in Endometrial Cancer: The Role of PET/CT, MRI, and Biopsy in Serous, Mixed Cell, Clear Cell, and Grade 3 Endometrioid Subtypes" Diagnostics 15, no. 6: 731. https://doi.org/10.3390/diagnostics15060731
APA StyleŞahin, G., HazırBulan, A., Sözen, I., Kocadal, N. Ç., Alkış, İ., Yardımcı, A. H., Akkaş, B. E., & Arslan, H. S. (2025). Optimizing Final Pathology Determination in Endometrial Cancer: The Role of PET/CT, MRI, and Biopsy in Serous, Mixed Cell, Clear Cell, and Grade 3 Endometrioid Subtypes. Diagnostics, 15(6), 731. https://doi.org/10.3390/diagnostics15060731