Machine Learning Based Multi-Parameter Modeling for Prediction of Post-Inflammatory Lung Changes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Data
2.2. Analysis Outcomes and Endpoints
2.3. Statistical Analysis
3. Results
3.1. Machine Learning Prediction of Post Inflammatory Lung Function Impairment
3.2. Key Predictors of DLCO
3.3. CT Markers of Lung Function Impairment
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Han, R.; Ai, T.; Yu, P.; Kang, H.; Tao, Q.; Xia, L. Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Approach. Radiol. Cardiothorac. Imaging 2020, 2, e200075. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Lee, H.C.; Diao, K.-y.; Huang, M.; Lin, B.; Liu, C.; Xie, Z.; Ma, Y.; Robson, P.M.; Chung, M.; et al. Artificial Intelligence-Enabled Rapid Diagnosis of Patients with COVID-19. Nat. Med. 2020, 26, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Shan, F.; Gao, Y.; Wang, J.; Shi, W.; Shi, N.; Han, M.; Xue, Z.; Shen, D.; Shi, Y. Abnormal Lung Quantification in Chest CT Images of COVID-19 Patients with Deep Learning and Its Application to Severity Prediction. Med. Phys. 2021, 48, 1633–1645. [Google Scholar] [CrossRef]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated Detection of COVID-19 Cases Using Deep Neural Networks with X-Ray Images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Damen, J.A.A.; Debray, T.P.A.; De Vos, M.; et al. Prediction Models for Diagnosis and Prognosis of Covid-19: Systematic Review and Critical Appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef]
- Lessmann, N.; Sánchez, C.I.; Beenen, L.; Boulogne, L.H.; Brink, M.; Calli, E.; Charbonnier, J.P.; Dofferhoff, T.; van Everdingen, W.M.; Gerke, P.K.; et al. Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology 2021, 298, E18–E28. [Google Scholar] [CrossRef]
- Sonnweber, T.; Tymoszuk, P.; Sahanic, S.; Boehm, A.; Pizzini, A.; Luger, A.; Schwabl, C.; Nairz, M.; Grubwieser, P.; Kurz, K.; et al. Investigating Phenotypes of Pulmonary COVID-19 Recovery: A Longitudinal Observational Prospective Multicenter Trial. eLife 2022, 11, e72500. [Google Scholar] [CrossRef] [PubMed]
- Luger, A.K.; Sonnweber, T.; Gruber, L.; Schwabl, C.; Cima, K.; Tymoszuk, P.; Gerstner, A.K.; Pizzini, A.; Sahanic, S.; Boehm, A.; et al. Chest CT of Lung Injury 1 Year after COVID-19 Pneumonia: The CovILD Study. Radiology 2022, 304, 462–470. [Google Scholar] [CrossRef]
- Sahanic, S.; Tymoszuk, P.; Luger, A.K.; Hüfner, K.; Boehm, A.; Pizzini, A.; Schwabl, C.; Koppelstätter, S.; Kurz, K.; Asshoff, M.; et al. COVID-19 and Its Continuing Burden after 12 Months: A Longitudinal Observational Prospective Multicentre Trial. ERJ Open Res. 2023, 9, 00317-2022. [Google Scholar] [CrossRef]
- Cordelli, E.; Soda, P.; Citter, S.; Schiavon, E.; Salvatore, C.; Fazzini, D.; Clementi, G.; Cellina, M.; Cozzi, A.; Bortolotto, C.; et al. Machine Learning Predicts Pulmonary Long Covid Sequelae Using Clinical Data. BMC Med. Inf. Decis. Mak. 2024, 24, 359, Correction in BMC Med. Inf. Decis. Mak. 2025, 25, 68. [Google Scholar] [CrossRef]
- Carvalho, C.R.R.; Lamas, C.A.; Chate, R.C.; Salge, J.M.; Sawamura, M.V.Y.; de Albuquerque, A.L.P.; Toufen Junior, C.; Lima, D.M.; Garcia, M.L.; Scudeller, P.G.; et al. Long-Term Respiratory Follow-up of ICU Hospitalized COVID-19 Patients: Prospective Cohort Study. PLoS ONE 2023, 18, e0280567. [Google Scholar] [CrossRef]
- Boulogne, L.H.; Charbonnier, J.P.; Jacobs, C.; van der Heijden, E.H.F.M.; van Ginneken, B. Estimating Lung Function from Computed Tomography at the Patient and Lobe Level Using Machine Learning. Med. Phys. 2024, 51, 2834–2845. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Yun, J.; Lee, S.M.; Hwang, H.J.; Seo, J.B.; Jung, Y.J.; Hwang, J.; Lee, S.H.; Lee, S.W.; Kim, N. Deep Learning-Based Approach to Predict Pulmonary Function at Chest CT. Radiology 2023, 307, e221488. [Google Scholar] [CrossRef]
- Sonnweber, T.; Sahanic, S.; Pizzini, A.; Luger, A.; Schwabl, C.; Sonnweber, B.; Kurz, K.; Koppelstätter, S.; Haschka, D.; Petzer, V.; et al. Cardiopulmonary Recovery after COVID-19: An Observational Prospective Multicentre Trial. Eur. Respir. J. 2021, 57, 2003481. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, V.; Massaro, S.; Garn, W.; Fakhimi, M.; Stergioulas, L.; Price, D.B. Fast Decliner Phenotype of Chronic Obstructive Pulmonary Disease (COPD): Applying Machine Learning for Predicting Lung Function Loss. BMJ Open Respir. Res. 2021, 8, e000980. [Google Scholar] [CrossRef]
- Murdaca, G.; Caprioli, S.; Tonacci, A.; Billeci, L.; Greco, M.; Negrini, S.; Cittadini, G.; Zentilin, P.; Spagnolo, E.V.; Gangemi, S. A Machine Learning Application to Predict Early Lung Involvement in Scleroderma: A Feasibility Evaluation. Diagnostics 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, H.; Lai, Y.K.; Guo, H.; Hoppenfeld, M.; Guenther, Z.D.; Johnston, L.; Brondstetter, T.; Chhatwani, L.; Nicolls, M.R.; Hsu, J.L. Machine Learning Algorithms to Differentiate Among Pulmonary Complications After Hematopoietic Cell Transplant. Chest 2020, 158, 1090–1103. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process Syst. 2017, 2017, 4766–4775. [Google Scholar]
- Ma, F.-Q.; He, C.; Yang, H.-R.; Hu, Z.-W.; Mao, H.-R.; Fan, C.-Y.; Qi, Y.; Zhang, J.-X.; Xu, B. Interpretable Machine-Learning Model for Predicting the Convalescent COVID-19 Patients with Pulmonary Diffusing Capacity Impairment. BMC Med. Inf. Decis. Mak. 2023, 23, 169. [Google Scholar] [CrossRef]
- Savushkina, O.I.; Muraveva, E.S.; Zhitareva, I.V.; Nekludova, G.V.; Mustafina, M.K.; Avdeev, S.N. Prediction of Impaired Lung Diffusion Capacity in COVID-19 Pneumonia Survivors. J. Thorac. Dis. 2024, 16, 7282–7289. [Google Scholar] [CrossRef]
- Laino, M.E.; Ammirabile, A.; Lofino, L.; Lundon, D.J.; Chiti, A.; Francone, M.; Savevski, V. Prognostic Findings for ICU Admission in Patients with COVID-19 Pneumonia: Baseline and Follow-up Chest CT and the Added Value of Artificial Intelligence. Emerg. Radiol. 2022, 29, 243–262. [Google Scholar] [CrossRef] [PubMed]
- Alshayeji, M.H.; ChandraBhasi Sindhu, S.; Abed, S. CAD Systems for COVID-19 Diagnosis and Disease Stage Classification by Segmentation of Infected Regions from CT Images. BMC Bioinform. 2022, 23, 264. [Google Scholar] [CrossRef]
- Charpentier, E.; Soulat, G.; Fayol, A.; Hernigou, A.; Livrozet, M.; Grand, T.; Reverdito, G.; al Haddad, J.; Dang Tran, K.D.; Charpentier, A.; et al. Visual Lung Damage CT Score at Hospital Admission of COVID-19 Patients and 30-Day Mortality. Eur. Radiol. 2021, 31, 8354–8363. [Google Scholar] [CrossRef]
- Oi, Y.; Ogawa, F.; Yamashiro, T.; Matsushita, S.; Oguri, A.; Utada, S.; Misawa, N.; Honzawa, H.; Abe, T.; Takeuchi, I. Prediction of Prognosis in Patients with Severe COVID-19 Pneumonia Using CT Score by Emergency Physicians: A Single-Center Retrospective Study. Sci. Rep. 2023, 13, 4045. [Google Scholar] [CrossRef]
- Matos, J.; Paparo, F.; Mussetto, I.; Bacigalupo, L.; Veneziano, A.; Perugin Bernardi, S.; Biscaldi, E.; Melani, E.; Antonucci, G.; Cremonesi, P.; et al. Evaluation of Novel Coronavirus Disease (COVID-19) Using Quantitative Lung CT and Clinical Data: Prediction of Short-Term Outcome. Eur. Radiol. Exp. 2020, 4, 39. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Q.; Xu, Y.; Zhang, T.; Chen, L.; Zuo, X.; Liu, J.; Huang, L.; Zhan, P.; Lv, T.; et al. Clinical Characteristics, Laboratory Abnormalities and CT Findings of COVID-19 Patients and Risk Factors of Severe Disease: A Systematic Review and Meta-Analysis. Ann. Palliat. Med. 2021, 10, 1928–1949. [Google Scholar] [CrossRef]
- Israfil, S.M.H.; Sarker, M.M.R.; Rashid, P.T.; Talukder, A.A.; Kawsar, K.A.; Khan, F.; Akhter, S.; Poh, C.L.; Mohamed, I.N.; Ming, L.C. Clinical Characteristics and Diagnostic Challenges of COVID-19: An Update From the Global Perspective. Front. Public Health 2021, 8, 567395. [Google Scholar] [CrossRef] [PubMed]
- Compagnone, N.; Palumbo, D.; Cremona, G.; Vitali, G.; De Lorenzo, R.; Calvi, M.R.; Del Prete, A.; Baiardo Redaelli, M.; Calamarà, S.; Belletti, A.; et al. Residual Lung Damage Following ARDS in COVID-19 ICU Survivors. Acta Anaesthesiol. Scand. 2022, 66, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Liu, T.; Xue, X.; Luo, G.; Wang, X.; Shen, Y.; Fang, Q.; Sheng, J.; Chen, F.; Liang, T. CT Quantification and Machine-Learning Models for Assessment of Disease Severity and Prognosis of COVID-19 Patients. Acad. Radiol. 2020, 27, 1665–1678. [Google Scholar] [CrossRef]
- Homayounieh, F.; Babaei, R.; Karimi Mobin, H.; Arru, C.D.; Sharifian, M.; Mohseni, I.; Zhang, E.; Digumarthy, S.R.; Kalra, M.K. Computed Tomography Radiomics Can Predict Disease Severity and Outcome in Coronavirus Disease 2019 Pneumonia. J. Comput. Assist. Tomogr. 2020, 44, 640–646. [Google Scholar] [CrossRef]
- Park, D.; Jang, R.; Chung, M.J.; An, H.J.; Bak, S.; Choi, E.; Hwang, D. Development and Validation of a Hybrid Deep Learning-Machine Learning Approach for Severity Assessment of COVID-19 and Other Pneumonias. Sci. Rep. 2023, 13, 13420. [Google Scholar] [CrossRef]
- Vaid, A.; Somani, S.; Russak, A.J.; de Freitas, J.K.; Chaudhry, F.F.; Paranjpe, I.; Johnson, K.W.; Lee, S.J.; Miotto, R.; Richter, F.; et al. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation. J. Med. Internet Res. 2020, 22, e24018. [Google Scholar] [CrossRef] [PubMed]
Response a | Algorithm b | Overall Accuracy c | κ d | Brier Score | AUC e | Sensitivity | Specificity |
---|---|---|---|---|---|---|---|
DLCO < 80% | Random Forest | 0.85 | 0.480 | 0.11 | 0.90 | 0.53 | 0.94 |
Neural network | 0.85 | 0.500 | 0.14 | 0.88 | 0.60 | 0.91 | |
SVM radial | 0.82 | 0.450 | 0.13 | 0.87 | 0.58 | 0.89 | |
GBM | 0.84 | 0.470 | 0.12 | 0.90 | 0.53 | 0.93 | |
FVC < 80% | Random Forest | 0.79 | 0.110 | 0.16 | 0.69 | 0.14 | 0.95 |
Neural network | 0.72 | 0.094 | 0.25 | 0.58 | 0.27 | 0.83 | |
SVM radial | 0.78 | 0.120 | 0.16 | 0.68 | 0.19 | 0.92 | |
GBM | 0.78 | 0.150 | 0.17 | 0.67 | 0.21 | 0.92 | |
FEV1 < 80% | Random Forest | 0.80 | 0.120 | 0.15 | 0.64 | 0.15 | 0.95 |
Neural network | 0.75 | 0.110 | 0.21 | 0.57 | 0.26 | 0.86 | |
SVM radial | 0.80 | 0.130 | 0.16 | 0.59 | 0.18 | 0.94 | |
GBM | 0.81 | 0.170 | 0.16 | 0.61 | 0.21 | 0.94 |
Response a | Algorithm b | Pseudo-R2 c | MAE d | ρ e |
---|---|---|---|---|
DLCO | Random Forest | 0.300 | 12 | 0.570 |
Neural network | 0.043 | 14 | 0.450 | |
SVM radial | 0.260 | 12 | 0.550 | |
GBM | 0.340 | 12 | 0.590 | |
FVC | Random Forest | −0.030 | 10 | 0.220 |
Neural network | −0.079 | 11 | 0.074 | |
SVM radial | −0.031 | 10 | 0.210 | |
GBM | −0.040 | 10 | 0.200 | |
FEV1 | Random Forest | −0.045 | 12 | 0.160 |
Neural network | −0.086 | 12 | 0.210 | |
SVM radial | −0.039 | 11 | 0.190 | |
GBM | −0.047 | 12 | 0.170 |
CT Variable a | Cutoff b | Statistic c | Value, 95% CI |
---|---|---|---|
CTSS | AUC | 0.78 [0.727–0.84] | |
4.000 | κ | 0.34 [0.23–0.45] | |
4.000 | Sensitivity | 0.78 [0.64–0.89] | |
4.000 | Specificity | 0.68 [0.6–0.75] | |
high opacity, AI | AUC | 0.79 [0.734–0.84] | |
0.002 | κ | 0.37 [0.26–0.47] | |
0.002 | Sensitivity | 0.8 [0.7–0.89] | |
0.002 | Specificity | 0.68 [0.62–0.75] | |
opacity, AI | AUC | 0.81 [0.763–0.86] | |
0.120 | κ | 0.38 [0.27–0.48] | |
0.120 | Sensitivity | 0.81 [0.72–0.89] | |
0.120 | Specificity | 0.69 [0.62–0.75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widmann, G.; Luger, A.K.; Sonnweber, T.; Schwabl, C.; Cima, K.; Gerstner, A.K.; Pizzini, A.; Sahanic, S.; Boehm, A.; Coen, M.; et al. Machine Learning Based Multi-Parameter Modeling for Prediction of Post-Inflammatory Lung Changes. Diagnostics 2025, 15, 783. https://doi.org/10.3390/diagnostics15060783
Widmann G, Luger AK, Sonnweber T, Schwabl C, Cima K, Gerstner AK, Pizzini A, Sahanic S, Boehm A, Coen M, et al. Machine Learning Based Multi-Parameter Modeling for Prediction of Post-Inflammatory Lung Changes. Diagnostics. 2025; 15(6):783. https://doi.org/10.3390/diagnostics15060783
Chicago/Turabian StyleWidmann, Gerlig, Anna Katharina Luger, Thomas Sonnweber, Christoph Schwabl, Katharina Cima, Anna Katharina Gerstner, Alex Pizzini, Sabina Sahanic, Anna Boehm, Maxmilian Coen, and et al. 2025. "Machine Learning Based Multi-Parameter Modeling for Prediction of Post-Inflammatory Lung Changes" Diagnostics 15, no. 6: 783. https://doi.org/10.3390/diagnostics15060783
APA StyleWidmann, G., Luger, A. K., Sonnweber, T., Schwabl, C., Cima, K., Gerstner, A. K., Pizzini, A., Sahanic, S., Boehm, A., Coen, M., Wöll, E., Weiss, G., Kirchmair, R., Gruber, L., Feuchtner, G. M., Tancevski, I., Löffler-Ragg, J., & Tymoszuk, P. (2025). Machine Learning Based Multi-Parameter Modeling for Prediction of Post-Inflammatory Lung Changes. Diagnostics, 15(6), 783. https://doi.org/10.3390/diagnostics15060783