Hypertriglyceridemia-Induced and Alcohol-Induced Acute Pancreatitis—A Severity Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
- Inclusion criteria are as follows:
- -
- Patients with acute pancreatitis and hypertriglyceridemia with levels > 1000 mg/dL for Hypertriglyceridemia- induced acute pancreatitis;
- -
- Patients with acute pancreatitis, with alcohol being mentioned as the primary cause in the medical records for alcohol-induced acute pancreatitis
- Exclusion criteria are as follows:
- -
- Patients with acute pancreatitis of etiologies other than HTGP and AAP;
- -
- Patients with both concomitant etiologies or mixed causes;
- -
- Patients with chronic pancreatitis;
- -
- Patients with hypertriglyceridemia or alcohol abuse that had concomitant gallstones;
- -
- Patients age < 18;
- -
- Pregnant patients;
- -
- Patients who stayed less than 1 day in the hospital (ex., discharged on request shortly after being admitted).
2.2. Statistical Analysis
3. Results
Patient Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iannuzzi, J.P.; King, J.A.; Leong, J.H.; Quan, J.; Windsor, J.W.; Tanyingoh, D.; Coward, S.; Forbes, N.; Heitman, S.J.; Shaheen, A.-A.; et al. Global Incidence of Acute Pancreatitis Is Increasing Over Time: A Systematic Review and Meta-Analysis. Gastroenterology 2022, 162, 122–134. [Google Scholar] [CrossRef]
- Qureshi, T.M.; Khan, A.; Javaid, H.; Tabash, A.; Hussein, M.S.; Othman, M.O. Secondary Causes of Hypertriglyceridemia are Prevalent Among Patients Presenting With Hypertriglyceridemia Induced Acute Pancreatitis. Am. J. Med. Sci. 2021, 361, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J. Am. Coll. Cardiol. 2019, 73, e285–e350. [Google Scholar] [CrossRef]
- Garg, R.; Rustagi, T. Management of Hypertriglyceridemia Induced Acute Pancreatitis. BioMed Res. Int. 2018, 2018, 4721357. [Google Scholar] [CrossRef] [PubMed]
- Scherer, J.; Singh, V.P.; Pitchumoni, C.S.; Yadav, D. Issues in Hypertriglyceridemic Pancreatitis: An Update. J. Clin. Gastroenterol. 2014, 48, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Wu, Z.; Meng, J.; Tian, W.; Zheng, S.; Mu, D.; Wang, R.; Pang, H.; Wu, D. Hypertriglyceridemia as a risk factor for complications of acute pancreatitis and the development of a severity prediction model. HPB 2023, 25, 1065–1073. [Google Scholar] [CrossRef]
- Kiss, L.; Fűr, G.; Pisipati, S.; Rajalingamgari, P.; Ewald, N.; Singh, V.; Rakonczay, Z. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol. 2023, 237, e13916. [Google Scholar] [CrossRef]
- Viñals, C.; Zambón, D.; Yago, G.; Domenech, M.; Ortega, E. Hipertrigliceridemias secundarias. Clínica Investig. Arterioscler. 2021, 33, 29–36. [Google Scholar] [CrossRef]
- Tanisawa, K.; Ito, T.; Kawakami, R.; Usui, C.; Kawamura, T.; Suzuki, K.; Sakamoto, S.; Ishii, K.; Muraoka, I.; Oka, K.; et al. Association between alcohol dietary pattern and prevalence of dyslipidaemia: WASEDA’S Health Study. Br. J. Nutr. 2022, 127, 1712–1722. [Google Scholar] [CrossRef]
- Ye, X.; Miao, C.; Zhang, W.; Ji, L.; Wang, J.; for the ATTEND investigators. Alcohol intake and dyslipidemia in male patients with hypertension and diabetes enrolled in a China multicenter registry. J. Clin. Hypertens. 2023, 25, 183–190. [Google Scholar] [CrossRef]
- Wakabayashi, I. Relationship Between Alcohol Intake and Lipid Accumulation Product in Middle-aged Men. Alcohol Alcohol. 2013, 48, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Ganga Prasad, U.; Harish, K. A Study of Lipid Profile in Chronic Alcoholics. J. Evid. Based Med. Healthc. 2018, 5, 1970–1973. [Google Scholar] [CrossRef]
- Crouse, J.R.; Grundy, S.M. Effects of alcohol on plasma lipoproteins and cholesterol and triglyceride metabolism in man. J. Lipid Res. 1984, 25, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Zemankova, K.; Kovar, J. Acute alcohol consumption affects lipoprotein lipase activity in vivo. Atherosclerosis 2014, 235, e181. [Google Scholar] [CrossRef]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Apte, M.V.; Pirola, R.C.; Wilson, J.S. Mechanisms of alcoholic pancreatitis. J. Gastroenterol. Hepatol. 2010, 25, 1816–1826. [Google Scholar] [CrossRef]
- Żorniak, M.; Sirtl, S.; Mayerle, J.; Beyer, G. What Do We Currently Know about the Pathophysiology of Alcoholic Pancreatitis: A Brief Review. Visc. Med. 2020, 36, 182–190. [Google Scholar] [CrossRef]
- Zimmermann, A. Pancreatic stellate cells contribute to regeneration early after acute necrotising pancreatitis in humans. Gut 2002, 51, 574–578. [Google Scholar] [CrossRef]
- Hajibandeh, S.; Jurdon, R.; Heaton, E.; Hajibandeh, S.; O’Reilly, D. The risk of recurrent pancreatitis after first episode of acute pancreatitis in relation to etiology and severity of disease: A systematic review, meta-analysis and meta-regression analysis. J. Gastroenterol. Hepatol. 2023, 38, 1718–1733. [Google Scholar] [CrossRef]
- Garber, A.; Frakes, C.; Arora, Z.; Chahal, P. Mechanisms and Management of Acute Pancreatitis. Gastroenterol. Res. Pract. 2018, 2018, 6218798. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, T.N.; Kim, S.B. Comparison of clinical course and outcome of acute pancreatitis according to the two main etiologies: Alcohol and gallstone. BMC Gastroenterol. 2015, 15, 87. [Google Scholar] [CrossRef]
- De Pretis, N.; Amodio, A.; Frulloni, L. Hypertriglyceridemic pancreatitis: Epidemiology, pathophysiology and clinical management. United Eur. Gastroenterol. J. 2018, 6, 649–655. [Google Scholar] [CrossRef]
- Qiu, M.; Zhou, X.; Zippi, M.; Goyal, H.; Basharat, Z.; Jagielski, M.; Hong, W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann. Med. 2023, 55, 2265939. [Google Scholar] [CrossRef]
- Klöppel, G.; Zamboni, G. Acute and Chronic Alcoholic Pancreatitis, Including Paraduodenal Pancreatitis. Arch. Pathol. Lab. Med. 2023, 147, 294–303. [Google Scholar] [CrossRef]
- Rasineni, K.; Srinivasan, M.P.; Balamurugan, A.N.; Kaphalia, B.S.; Wang, S.; Ding, W.-X.; Pandol, S.J.; Lugea, A.; Simon, L.; Molina, P.E.; et al. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020, 10, 669. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S. Classification of acute pancreatitis—2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Venkatesh, K.; Glenn, H.; Delaney, A.; Andersen, C.R.; Sasson, S.C. Fire in the belly: A scoping review of the immunopathological mechanisms of acute pancreatitis. Front. Immunol. 2023, 13, 1077414. [Google Scholar] [CrossRef]
- Leppäniemi, A.; Tolonen, M.; Tarasconi, A.; Segovia-Lohse, H.; Gamberini, E.; Kirkpatrick, A.W.; Ball, C.G.; Parry, N.; Sartelli, M.; Wolbrink, D.; et al. 2019 WSES guidelines for the management of severe acute pancreatitis. World J. Emerg. Surg. 2019, 14, 27. [Google Scholar] [CrossRef]
- Tortum, F.; Tekin, E.T.; Aydın, F.; Özdal, E.; Tatlısu, K. The relationship of biochemical parameters and radiological parameters in the evaluation of the clinical severity of acute pancreatitis in the emergency department—A retrospective analysis. Eur. J. Clin. Exp. Med. 2023, 21, 277–282. [Google Scholar] [CrossRef]
- Zhao, K.; Adam, S.Z.; Keswani, R.N.; Horowitz, J.M.; Miller, F.H. Acute Pancreatitis: Revised Atlanta Classification and the Role of Cross-Sectional Imaging. Am. J. Roentgenol. 2015, 205, W32–W41. [Google Scholar] [CrossRef]
- Chagas, L.A.; Albuquerque, K.S.; Soares, L.E.; Machado, D.C.; De Moraes Antunes, P.; Stern, J.J.; Dos Santos Romão, D.; Morais E Rodrigues Da Cunha Fonseca, B.; Horvat, N. Beyond the revised atlanta classification: A comprehensive review of the imaging assessment of acute pancreatitis and its complications. Abdom. Radiol. 2024, 50, 423–437. [Google Scholar] [CrossRef]
- Kim, S.J.; Kang, H.; Kim, E.J.; Kim, Y.S.; Cho, J.H. Clinical features and outcomes of hypertriglyceridemia-induced acute pancreatitis: Propensity score matching analysis from a prospective acute pancreatitis registry. Pancreatology 2020, 20, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Pothoulakis, I.; Paragomi, P.; Archibugi, L.; Tuft, M.; Talukdar, R.; Kochhar, R.; Goenka, M.K.; Gulla, A.; Singh, V.K.; Gonzalez, J.A.; et al. Clinical features of hypertriglyceridemia-induced acute pancreatitis in an international, multicenter, prospective cohort (APPRENTICE consortium). Pancreatology 2020, 20, 325–330. [Google Scholar] [CrossRef]
- Dancu, G.; Bende, F.; Danila, M.; Sirli, R.; Popescu, A.; Tarta, C. Hypertriglyceridaemia-Induced Acute Pancreatitis: A Different Disease Phenotype. Diagnostics 2022, 12, 868. [Google Scholar] [CrossRef]
- White, A. Gender Differences in the Epidemiology of Alcohol Use and Related Harms in the United States. Alcohol Res. Curr. Rev. 2020, 40, 01. [Google Scholar] [CrossRef]
- Shin, K.Y.; Lee, W.S.; Chung, D.W.; Heo, J.; Jung, M.K.; Tak, W.Y.; Kweon, Y.O.; Cho, C.M. Influence of Obesity on the Severity and Clinical Outcome of Acute Pancreatitis. Gut Liver 2011, 5, 335–339. [Google Scholar] [CrossRef]
- Yang, X.; He, J.; Ma, S.; Wang, T.; Zhu, Q.; Cao, F.; Li, Y.; Yang, C.; Chen, C.; Lu, G.; et al. The role of comorbid hypertriglyceridemia and abdominal obesity in the severity of acute pancreatitis: A retrospective study. Lipids Health Dis. 2021, 20, 171. [Google Scholar] [CrossRef]
- Zahariev, O.J.; Bunduc, S.; Kovács, A.; Demeter, D.; Havelda, L.; Budai, B.C.; Veres, D.S.; Hosszúfalusi, N.; Erőss, B.M.; Teutsch, B.; et al. Risk factors for diabetes mellitus after acute pancreatitis: A systematic review and meta-analysis. Front. Med. 2024, 10, 1257222. [Google Scholar] [CrossRef]
- Kalra, S.; Raizada, N. Dyslipidemia in diabetes. Indian Heart J. 2024, 76, S80–S82. [Google Scholar] [CrossRef]
- Yang, A.L.; McNabb-Baltar, J. Hypertriglyceridemia and acute pancreatitis. Pancreatology 2020, 20, 795–800. [Google Scholar] [CrossRef]
- Pascual, I.; Sanahuja, A.; García, N.; Vázquez, P.; Moreno, O.; Tosca, J.; Peña, A.; Garayoa, A.; Lluch, P.; Mora, F. Association of elevated serum triglyceride levels with a more severe course of acute pancreatitis: Cohort analysis of 1457 patients. Pancreatology 2019, 19, 623–629. [Google Scholar] [CrossRef]
- Goyal, H.; Smith, B.; Bayer, C.; Rutherford, C.; Shelnut, D. Differences in severity and outcomes between hypertriglyceridemia and alcohol-induced pancreatitis. N. Am. J. Med. Sci. 2016, 8, 82. [Google Scholar] [CrossRef]
- Shafiq, S.; Patil, M.; Gowda, V.; Devarbhavi, H. Hypertriglyceridemia-Induced Acute Pancreatitis—Course, Outcome, and Comparison with Non-Hypertriglyceridemia Associated Pancreatitis. Indian J. Endocrinol. Metab. 2022, 26, 459–464. [Google Scholar] [CrossRef] [PubMed]
- He, W.H.; Zhu, Y.; Zhu, Y.; Liu, P.; Zeng, H.; Xia, L.; Huang, X.; Lei, Y.P.; Lü, N.H. Comparison of severity and clinical outcomes between hypertriglyceridemic pancreatitis and acute pancreatitis due to other causes. Zhonghua Yi Xue Za Zhi 2016, 96, 2569–2572. [Google Scholar] [CrossRef] [PubMed]
- Pothoulakis, I.; Paragomi, P.; Tuft, M.; Lahooti, A.; Archibugi, L.; Capurso, G.; Papachristou, G.I. Association of Serum Triglyceride Levels with Severity in Acute Pancreatitis: Results from an International, Multicenter Cohort Study. Digestion 2021, 102, 809–813. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Teng, D.; Ding, Y.; Lu, G.; Gong, W.; Zhu, Q.; Han, F.; Xiao, W. Elevated serum ferritin levels are associated with severity and prognosis of severe acute pancreatitis: A preliminary cohort study. BMC Gastroenterol. 2022, 22, 408. [Google Scholar] [CrossRef]
- Kirkegård, J.; Gaber, C.; Lund, J.L.; Hinton, S.P.; Ladekarl, M.; Heide-Jørgensen, U.; Cronin-Fenton, D.; Mortensen, F.V. Acute pancreatitis as an early marker of pancreatic cancer and cancer stage, treatment, and prognosis. Cancer Epidemiol. 2020, 64, 101647. [Google Scholar] [CrossRef]
- Park, B.K.; Seo, J.H.; Son, K.J.; Choi, J.K. Risk of pancreatic cancer after acute pancreatitis: A population-based matched cohort study. Pancreatology 2023, 23, 449–455. [Google Scholar] [CrossRef]
- Balaban, D.V.; Marin, F.S.; Manucu, G.; Zoican, A.; Ciochina, M.; Mina, V.; Patoni, C.; Vladut, C.; Bucurica, S.; Costache, R.S.; et al. Clinical characteristics and outcomes in carbohydrate antigen 19-9 negative pancreatic cancer. World J. Clin. Oncol. 2022, 13, 630–640. [Google Scholar] [CrossRef]
- Teng, D.; Wu, K.; Sun, Y.; Zhang, M.; Wang, D.; Wu, J.; Yin, T.; Gong, W.; Ding, Y.; Xiao, W.; et al. Significant increased CA199 levels in acute pancreatitis patients predicts the presence of pancreatic cancer. Oncotarget 2018, 9, 12745–12753. [Google Scholar] [CrossRef]
- Halaseh, S.A.; Kostalas, M.; Kopec, C.; Toubasi, A.A.; Salem, R. Neutrophil-to-Lymphocyte Ratio as an Early Predictor of Complication and Mortality Outcomes in Individuals with Acute Pancreatitis at a UK District General Hospital: A Retrospective Analysis. Cureus 2022, 14, e29782. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fuentes, H.E.; Attar, B.M.; Jaiswal, P.; Demetria, M. Evaluation of the prognostic value of neutrophil to lymphocyte ratio in patients with hypertriglyceridemia-induced acute pancreatitis. Pancreatology 2017, 17, 893–897. [Google Scholar] [CrossRef]
- Pavalean, M.C.; Ionita-Radu, F.; Jinga, M.; Costache, R.S.; Balaban, D.V.; Patrasescu, M.; Chirvase, M.; Maniu, I.; Gaman, L.; Bucurica, S. Ferritin and Ferritin-to-Hemoglobin Ratio as Promising Prognostic Biomarkers of Severity in Acute Pancreatitis—A Cohort Study. Biomedicines 2024, 12, 106. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, X.; Ge, H.; Li, M.; Feng, B.; Wang, D.; Guo, F. Neutrophil-Lymphocyte Ratio in Patients with Hypertriglyceridemic Pancreatitis Predicts Persistent Organ Failure. Gastroenterol. Res. Pract. 2022, 2022, 8333794. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Lorido, J.C. Clinical relevance for lowering C-reactive protein with statins. Ann. Med. 2016, 48, 516–524. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, H.; Yang, X.; Wang, L.; Gu, D. Effects of fibrates on C-reactive protein concentrations: A meta-analysis of randomized controlled trials. Clin. Chem. Lab. Med. CCLM 2012, 50, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Attar, B.M.; Abu Omar, Y.; Agrawal, R.; Demetria, M.V. Pseudohyponatremia in Hypertriglyceridemia-Induced Acute Pancreatitis: A Tool for Diagnosis Rather Than Merely a Laboratory Error? Pancreas 2019, 48, 126–130. [Google Scholar] [CrossRef]
- Hage, L.E.; Reineks, E.; Nasr, C. Pseudohyponatremia in the Setting of Hypercholesterolemia. AACE Clin. Case Rep. 2019, 5, e172–e174. [Google Scholar] [CrossRef]
- Varghese, S.; Rozario, A.P.; Ashwath, G.; Ambrose, S. Prognostic value of neutrophil to lymphocyte ratio in acute gall stone and alcoholic pancreatitis. Int. Surg. J. 2022, 9, 824. [Google Scholar] [CrossRef]
Balthazar Score | Necrosis Score | The Revised Atlanta Classification | Atlanta Diagnosis Criteria (Minimum Two Criteria for Diagnosis) |
---|---|---|---|
| None (0 pts.) | MAP Absence of organ failure Absence of local or systemic complications | Abdominal pain suggestive of pancreatitis |
| ≤30% (2 pts.) | ||
| >30–50% (4 pts.) | MSAP Transient (<48 h) organ failure and/or local or systemic complications with transient organ failure | Serum amylase or lipase level at least ×3 upper normal value |
| >50% (6 pts.) | ||
| SAP Persistent organ failure (>48 h) Single or multiple organ failure | Characteristic features of image studies |
Characteristics | HTGP (N = 29) | AAP (N = 49) | p-Value |
---|---|---|---|
Age, median, years (IQR) | 44.00 (38–54) | 49.00 (42–57) | 0.105 |
Sex | |||
Female | 13.79% (4/29) | 4.08% (2/49) | |
Male | 86.21% (25/29) | 95.92% (47/49) | |
Obesity | 55.17% (16/29) | 16.33% (8/49) | 0.000 |
Diabetes mellitus | 58.62% (17/29) | 22.45% (11/49) | 0.001 |
Arterial hypertension | 41.38% (12/29) | 40.82% (20/49) | 0.961 |
Heart failure | 0% (0/29) | 8.16% (4/49) | 0.114 |
Median hospitalization (days, IQR) | 8 (6–16) | 6 (4–10) | 0.024 |
ICU admission | 13.79% (4/29) | 6.12% (3/49) | 0.414 |
Mortality | 6.90% (2/29) | 6.12% (3/49) | 0.893 |
Need for surgery | 6.90% (2/29) | 0% (0/49) | |
Cigarette smoking habit | 41.38% (12/29) | 44.90% (22/49) | 0.762 |
High-fat diet | 37.93% (11/29) | 18.37 (9/49) | 0.056 |
HTGP | AAP | p Value | |
---|---|---|---|
Atlanta criteria | |||
Mild acute pancreatitis | 5 (17.24%) | 26 (53.06%) | 0.008 |
Moderately acute pancreatitis | 17 (58.62%) | 16 (32.65%) | |
Severe acute pancreatitis | 7 (24.14%) | 7 (14.29%) | |
Balthazar index | |||
B | 2 (6.90%) | 16 (32.65%) | |
C | 10 (34.48%) | 16 (32.65%) | |
D | 11 (37.93%) | 15 (30.61%) | |
E | 6 (20.69%) | 2 (4.08%) |
Laboratory Data (Median Range, Min; Max) | HTGP | AAP | p Value |
---|---|---|---|
Lipase level, median (IQR) | 359 (187–694) | 379.5 (176.5–1295) | 0.652 |
TGs, median (mg/dL) | 2432 (1280.5–4923) | 133 (89–177) | 0.000 |
Cholesterol (mg/dL) | 460 (246.5–758) | 178.5 (120–216.5) | 0.000 |
Hemoglobin (g/dL) | 15.6 (14.7–17.5) | 14.6 (13.2–16.0) | 0.016 |
Hematocrit (%) | 42 (38.5–45.6) | 41.6 (38.2–44.5) | 0.538 |
CRP | 120.1 (72–199) | 101.74 (14.33–280.15) | 0.211 |
Fibrinogen (mg/dL) | 739.0 (573–1052) | 563.5 (379–844) | 0.030 |
Na (mmol/L) | 130 (125–133) | 137 (134–139) | 0.000 |
Urea (mg/dL) | 26.0 (20–36) | 36.0 (25–45) | 0.051 |
Creatinine (mg/dL) | 0.86 (0.65–1.25) | 0.82 (0.70–0.99) | 0.501 |
ALT (UI/L) | 36 (24–59) | 37 (23–95) | 0.466 |
AST (UI/L) | 44 (31–84) | 52 (25–94) | 0.951 |
GGT (UI/L) | 103 (47.95–404) | 164 (70–401) | 0.418 |
Total bilirubin (mg/dL) | 0.88 (0.64–1.34) | 0.77 (0.49–1.71) | 0.707 |
Serum total calcium | 8.59 (7.88–8.83) | 8.91 (8.45–9.31) | 0.033 |
CA19-9 | 27.89 (15.72–41.03) | 26.82 (5.73–262.03) | 0.867 |
NLR | 6.71 (4.31–9.68) | 5.51 (3.69–10.29) | 0.308 |
PLR | 136.92 (92.49–207.78) | 142.66 (102.99–207.83) | 0.698 |
MLR | 0.55 (0.35–0.78) | 0.52 (0.37–0.77) | 0.897 |
SII | 1302.6 (966.68–2368.67) | 1345 (713.75–2561.18) | 0.955 |
SIRI | 5.76 (3.24–10.55) | 5.36 (2.72–8.71) | 0.344 |
HTGP (Cases) | AAP (Cases) | p-Value | |
---|---|---|---|
New-onset DM | 31.03% (9/29) | 2.04% (1/49) | 0.001 |
Non-DM | 44.83% (13/29) | 77.55 (38/49) | |
Previously diagnosed DM | 24.14 (7/29) | 20.41 (10/49) | |
Oral antidiabetic agents | 10.34% (3/29) | 12.245 (6/49) | 0.800 |
Rapidly acting insulin | 75.86% (22/29) | 2.04% (1/49) | 0.000 |
Long-acting insulin | 44.83% (13/29) | 0.00% (0/49) | 0.000 |
Medical Therapy | HTGP (Cases) | AAP (Cases) | p-Value |
---|---|---|---|
Fenofibrate, 145 mg po | 27.59% (8/29) | 2.04% (1/49) | 0.001 |
Fenofibrate, 160 mg po | 62.07% (18/29) | 2.04% (1/49) | 0.000 |
HMG-CoA reductase inhibitors (statins) | 68.96% (20/29) | 0.00% (0/49) | |
Omega-3 fatty acids | 65.52% (19/29) | 0.00% (0/49) | |
Previous lipid-lowering treatment | 31.03% (9/29) | 4.08% (2/49) | 0.001 |
Low-molecular-weight heparin | 37.93% (11/29) | 24.49% (12/49) | 0.208 |
Unfractionated heparin | 41.38% (12/29) | 2.04% (1/29) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigore, M.; Balaban, D.V.; Jinga, M.; Ioniță-Radu, F.; Costache, R.S.; Dumitru, A.L.; Maniu, I.; Badea, M.; Gaman, L.; Bucurică, S. Hypertriglyceridemia-Induced and Alcohol-Induced Acute Pancreatitis—A Severity Comparative Study. Diagnostics 2025, 15, 882. https://doi.org/10.3390/diagnostics15070882
Grigore M, Balaban DV, Jinga M, Ioniță-Radu F, Costache RS, Dumitru AL, Maniu I, Badea M, Gaman L, Bucurică S. Hypertriglyceridemia-Induced and Alcohol-Induced Acute Pancreatitis—A Severity Comparative Study. Diagnostics. 2025; 15(7):882. https://doi.org/10.3390/diagnostics15070882
Chicago/Turabian StyleGrigore, Monica, Daniel Vasile Balaban, Mariana Jinga, Florentina Ioniță-Radu, Raluca Simona Costache, Andrada Loredana Dumitru, Ionela Maniu, Mihaela Badea, Laura Gaman, and Săndica Bucurică. 2025. "Hypertriglyceridemia-Induced and Alcohol-Induced Acute Pancreatitis—A Severity Comparative Study" Diagnostics 15, no. 7: 882. https://doi.org/10.3390/diagnostics15070882
APA StyleGrigore, M., Balaban, D. V., Jinga, M., Ioniță-Radu, F., Costache, R. S., Dumitru, A. L., Maniu, I., Badea, M., Gaman, L., & Bucurică, S. (2025). Hypertriglyceridemia-Induced and Alcohol-Induced Acute Pancreatitis—A Severity Comparative Study. Diagnostics, 15(7), 882. https://doi.org/10.3390/diagnostics15070882