Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management
Abstract
:1. Background
2. Epidemiology
3. Symptoms
4. Etiology
5. Pathophysiology
5.1. Gastric Emptying
5.2. Gastric Accommodation
5.3. Gastric Coordination
5.4. Gastric Rhythm
5.5. Autonomic Function
5.6. Extragastric Motility and Feedback Mechanisms
5.7. Visceral Hypersensitivity
6. Cellular and Molecular Pathology
6.1. Neuropathy
6.1.1. Intrinsic Neural Deficits
6.1.2. Vagal Neuropathy
6.2. Interstitial Cells of Cajal (ICCs)
6.3. Smooth Muscle Dysfunction
6.4. Inflammatory and Immune Mechanisms
6.5. Hormonal and Metabolic Factors
6.6. Mitochondrial Dysfunction
6.7. Genetics
6.8. Microbiome and Dysbiosis
6.9. Shared Pathways with Functional Dyspepsia (FD)
7. Diagnosis
7.1. Nuclear Gastric Scintigraphy
7.2. Stable Isotope Gastric Emptying Breath Testing (GEBT)
7.3. Wireless Capsule Devices
7.4. Electrogastrography
7.5. Antroduodenal Manometry
7.6. Pyloric Endoluminal Functional Imaging Probe (EndoFLIP®)
7.7. Liquid Satiety Testing
7.8. Gastric MRI
7.9. Overlap with FD
7.10. Differential Diagnoses and Comorbid Considerations
8. Management
8.1. Glycemic Control
8.2. Nutrition
8.3. Pharmacotherapy
8.3.1. Promotility Agents
8.3.2. Neuromodulator Agents
8.3.3. Antinausea Agents
8.4. Noninvasive Therapies
8.4.1. Transcutaneous Auricular Vagus Nerve Stimulation (taVNS)
8.4.2. Thoracic Spinal Magnetic Neuromodulation Therapy (ThorS-MagNT)
8.5. Invasive Therapies
8.5.1. Pyloric Botulinum Toxin (Botox) Injection
8.5.2. Gastric per Oral Pyloromyotomy (G-POP)
8.5.3. Gastric Electrical Stimulation (GES)
8.5.4. Surgical Intervention
8.6. Complementary Therepies
8.6.1. Gut–Brain Axis Modulation
8.6.2. Herbal Formulations
8.6.3. Cannabinoids
8.7. Treatments to Avoid
8.8. Novel and Investigational Therapies
8.8.1. Emerging Promotility Agents
8.8.2. Immunomodulator Agents
8.8.3. Celiac Plexus Block (CPB)
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GND | Gastric neuromuscular disorder |
FD | Functional dyspepsia |
GCSI | Gastroparesis Cardinal Symptom Index |
GCSI DD | Gastroparesis Cardinal Symptom Index Daily Diary |
C | Carbon |
CO2 | Carbon dioxide |
WMC | Wireless motility capsule |
FDA | Food and Drug Administration |
GES | Gastric electrical stimulation |
G-POP | Gastric per oral pyloromyotomy |
FLIP | Functional luminal imaging probe |
QOL | Quality of life |
References
- Camilleri, M.; Dubois, D.; Coulie, B.; Jones, M.; Kahrilas, P.J.; Rentz, A.M.; Sonnenberg, A.; Stanghellini, V.; Stewart, W.F.; Tack, J.; et al. Prevalence and Socioeconomic Impact of Upper Gastrointestinal Disorders in the United States: Results of the US Upper Gastrointestinal Study. Clin. Gastroenterol. Hepatol. 2005, 3, 543–552. [Google Scholar] [CrossRef]
- Janssen, P.; Harris, S.M.; Jones, M.; Masaoka, T.; Farré, R.; Törnblom, H.; Van Oudenhove, L.; Simrén, M.; Tack, J. The Relation Between Symptom Improvement and Gastric Emptying in the Treatment of Diabetic and Idiopathic Gastroparesis. Off. J. Am. Coll. Gastroenterol. ACG 2013, 108, 1382. [Google Scholar] [CrossRef]
- Pasricha, P.J.; Grover, M.; Yates, K.P.; Abell, T.L.; Bernard, C.E.; Koch, K.L.; McCallum, R.W.; Sarosiek, I.; Kuo, B.; Bulat, R.; et al. Functional Dyspepsia and Gastroparesis in Tertiary Care Are Interchangeable Syndromes with Common Clinical and Pathologic Features. Gastroenterology 2021, 160, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kuo, B. Gastroparesis and Functional Dyspepsia: A Blurring Distinction of Pathophysiology and Treatment. J. Neurogastroenterol. Motil. 2019, 25, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.-K.; Choung, R.S.; Locke, G.R.; Schleck, C.D.; Zinsmeister, A.R.; Szarka, L.A.; Mullan, B.; Talley, N.J. The Incidence, Prevalence, and Outcomes of Patients with Gastroparesis in Olmsted County, Minnesota, from 1996 to 2006. Gastroenterology 2009, 136, 1225–1233. [Google Scholar] [CrossRef]
- Syed, A.R.; Wolfe, M.M.; Calles-Escandon, J. Epidemiology and Diagnosis of Gastroparesis in the United States: A Population-Based Study. J. Clin. Gastroenterol. 2020, 54, 50. [Google Scholar] [CrossRef]
- Waseem, S.; Moshiree, B.; Draganov, P.V. Gastroparesis: Current Diagnostic Challenges and Management Considerations. World J. Gastroenterol. 2009, 15, 25–37. [Google Scholar] [CrossRef]
- Dilmaghani, S.; Zheng, T.; Camilleri, M. Epidemiology and Healthcare Utilization in Patients with Gastroparesis: A Systematic Review. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2023, 21, 2239–2251.e2. [Google Scholar] [CrossRef]
- Camilleri, M.; Bharucha, A.E.; Farrugia, G. Epidemiology, Mechanisms and Management of Diabetic Gastroparesis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2011, 9, 5–12. [Google Scholar] [CrossRef]
- Ye, Y.; Yin, Y.; Huh, S.Y.; Almansa, C.; Bennett, D.; Camilleri, M. Epidemiology, Etiology, and Treatment of Gastroparesis: Real-World Evidence from a Large US National Claims Database. Gastroenterology 2022, 162, 109–121.e5. [Google Scholar] [CrossRef]
- Pasricha, P.J.; Yates, K.P.; Nguyen, L.; Clarke, J.; Abell, T.L.; Farrugia, G.; Hasler, W.L.; Koch, K.L.; Snape, W.J.; McCallum, R.W.; et al. Outcomes and Factors Associated with Reduced Symptoms in Patients with Gastroparesis. Gastroenterology 2015, 149, 1762–1774.e4. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, P.J.; Colvin, R.; Yates, K.; Hasler, W.L.; Abell, T.L.; Ünalp–Arida, A.; Nguyen, L.; Farrugia, G.; Koch, K.L.; Parkman, H.P.; et al. Characteristics of Patients with Chronic Unexplained Nausea and Vomiting and Normal Gastric Emptying. Clin. Gastroenterol. Hepatol. 2011, 9, 567–576.e4. [Google Scholar] [CrossRef]
- Hasler, W.L.; Parkman, H.P.; Wilson, L.A.; Pasricha, P.J.; Koch, K.L.; Abell, T.L.; Snape, W.J.; Farrugia, G.; Lee, L.; Tonascia, J.; et al. Psychological Dysfunction Is Associated with Symptom Severity but Not Disease Etiology or Degree of Gastric Retention in Patients with Gastroparesis. Off. J. Am. Coll. Gastroenterol. ACG 2010, 105, 2357. [Google Scholar] [CrossRef]
- Wadhwa, V.; Mehta, D.; Jobanputra, Y.; Lopez, R.; Thota, P.N.; Sanaka, M.R. Healthcare Utilization and Costs Associated with Gastroparesis. World J. Gastroenterol. 2017, 23, 4428–4436. [Google Scholar] [CrossRef] [PubMed]
- Soykan, I.; Sivri, B.; Sarosiek, I.; Kiernan, B.; Mccallum, R.W. Demography, Clinical Characteristics, Psychological and Abuse Profiles, Treatment, and Long-Term Follow-up of Patients with Gastroparesis. Dig. Dis. Sci. 1998, 43, 2398–2404. [Google Scholar] [CrossRef] [PubMed]
- Progress in Gastroparesis—A Narrative Review of the Work of the Gastroparesis Clinical Research Consortium—Clinical Gastroenterology and Hepatology. Available online: https://www.cghjournal.org/article/S1542-3565(22)00533-X/fulltext (accessed on 1 January 2025).
- Naftali, T.; Yishai, R.; Zangen, T.; Levine, A. Post-Infectious Gastroparesis: Clinical and Electerogastrographic Aspects. J. Gastroenterol. Hepatol. 2007, 22, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Ishiguchi, T.; Nakajima, M.; Sone, H.; Tada, H.; Kumagai, A.K.; Takahashi, T. Gastric Distension-induced Pyloric Relaxation: Central Nervous System Regulation and Effects of Acute Hyperglycaemia in the Rat. J. Physiol. 2001, 533, 801–813. [Google Scholar]
- Parkman, H.P.; Wilson, L.A.; Farrugia, G.; Koch, K.L.; Hasler, W.L.; Nguyen, L.A.; Abell, T.L.; Snape, W.; Clarke, J.; Kuo, B.; et al. Delayed Gastric Emptying Associates with Diabetic Complications in Diabetic Patients with Symptoms of Gastroparesis. Off. J. Am. Coll. Gastroenterol. ACG 2019, 114, 1778. [Google Scholar] [CrossRef]
- Tack, J.; Demedts, I.; Meulemans, A.; Schuurkes, J.; Janssens, J. Role of Nitric Oxide in the Gastric Accommodation Reflex and in Meal Induced Satiety in Humans. Gut 2002, 51, 219–224. [Google Scholar] [CrossRef]
- Orthey, P.; Yu, D.; Van Natta, M.L.; Ramsey, F.V.; Diaz, J.R.; Bennett, P.A.; Iagaru, A.H.; Fragomeni, R.S.; McCallum, R.W.; Sarosiek, I.; et al. Intragastric Meal Distribution During Gastric Emptying Scintigraphy for Assessment of Fundic Accommodation: Correlation with Symptoms of Gastroparesis. J. Nucl. Med. 2018, 59, 691–697. Available online: https://jnm.snmjournals.org/content/59/4/691 (accessed on 1 January 2025).
- Parkman, H.P.; Wilson, L.A.; Silver, P.; Maurer, A.H.; Sarosiek, I.; Bulat, R.S.; Kuo, B.; Grover, M.; Farrugia, G.; Chumpitazi, B.P.; et al. Relationships among Intragastric Meal Distribution during Gastric Emptying Scintigraphy, Water Consumption during Water Load Satiety Testing, and Symptoms of Gastroparesis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2023, 325, G407–G417. [Google Scholar] [CrossRef] [PubMed]
- Oshima, T. Functional Dyspepsia: Current Understanding and Future Perspective. Digestion 2024, 105, 26–33. Available online: https://karger.com/dig/article/105/1/26/860807/Functional-Dyspepsia-Current-Understanding-and (accessed on 1 January 2025). [CrossRef]
- Deloose, E.; Janssen, P.; Depoortere, I.; Tack, J. The Migrating Motor Complex: Control Mechanisms and Its Role in Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 271–285. Available online: https://www.nature.com/articles/nrgastro.2012.57 (accessed on 1 January 2025). [CrossRef]
- Hereijgers, M.J.M.; Keszthelyi, D.; Kruimel, J.W.; Masclee, A.A.M.; Conchillo, J.M. Antroduodenal Motility Recording Identifies Characteristic Patterns in Gastroparesis Related to Underlying Etiology. Neurogastroenterol. Motil. 2022, 34, e14394. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, G.; Wang, T.H.; Du, P.; Angeli, T.; Lammers, W.J.; Cheng, L.K. Recent Progress in Gastric Arrhythmia: Pathophysiology, Clinical Significance and Future Horizons. Clin. Exp. Pharmacol. Physiol. 2014, 41, 854–862. Available online: https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.12288 (accessed on 1 January 2025). [CrossRef] [PubMed]
- Koch, K.L.; Hasler, W.L.; Van Natta, M.; Calles-Escandon, J.; Grover, M.; Pasricha, P.J.; Snape, W.J.; Parkman, H.P.; Abell, T.L.; McCallum, R.W.; et al. Satiety Testing in Diabetic Gastroparesis: Effects of Insulin Pump Therapy with Continuous Glucose Monitoring on Upper Gastrointestinal Symptoms and Gastric Myoelectrical Activity. Neurogastroenterol. Motil. 2019, 32, e13720. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.13720 (accessed on 1 January 2025). [CrossRef]
- Travagli, R.A.; Anselmi, L. Vagal Neurocircuitry and Its Influence on Gastric Motility. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 389–401. [Google Scholar] [CrossRef]
- Nguyen, L.; Wilson, L.A.; Miriel, L.; Pasricha, P.J.; Kuo, B.; Hasler, W.L.; McCallum, R.W.; Sarosiek, I.; Koch, K.L.; Snape, W.J.; et al. Autonomic Function in Gastroparesis and Chronic Unexplained Nausea and Vomiting: Relationship with Etiology, Gastric Emptying, and Symptom Severity. Neurogastroenterol. Motil. 2020, 32, e13810. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.13810 (accessed on 1 January 2025). [CrossRef]
- Hasler, W.L.; May, K.P.; Wilson, L.A.; Van Natta, M.; Parkman, H.P.; Pasricha, P.J.; Koch, K.L.; Abell, T.L.; McCallum, R.W.; Nguyen, L.A.; et al. Relating Gastric Scintigraphy and Symptoms to Motility Capsule Transit and Pressure Findings in Suspected Gastroparesis. Neurogastroenterol. Motil. 2018, 30, e13196. [Google Scholar] [CrossRef]
- Jung, H.; Talley, N.J. Role of the Duodenum in the Pathogenesis of Functional Dyspepsia: A Paradigm Shift. J. Neurogastroenterol. Motil. 2018, 24, 345–354. [Google Scholar] [CrossRef]
- Maljaars, P.W.J.; Peters, H.P.F.; Mela, D.J.; Masclee, A.A.M. Ileal Brake: A Sensible Food Target for Appetite Control. A Review. Physiol. Behav. 2008, 95, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Jarvie, B.C.; Knight, Z.A. Breaking down a Gut-to-Brain Circuit That Prevents Malabsorption. Cell 2022, 185, 2393–2395. [Google Scholar] [CrossRef] [PubMed]
- Debourdeau, A.; Gonzalez, J.M.; Mathias, F.; Prost, C.; Barthet, M.; Vitton, V. Gastric Volumetry for the Assessment of Fundic Compliance and Visceral Hypersensitivity in Patients with Gastroparesis: A Retrospective Comparative Study. Scand. J. Gastroenterol. 2024, 59, 254–259. Available online: https://www.tandfonline.com/doi/10.1080/00365521.2023.2279928?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 1 January 2025). [CrossRef]
- Takahashi, T. Pathophysiological Significance of Neuronal Nitric Oxide Synthase in the Gastrointestinal Tract. J. Gastroenterol. 2003, 38, 421–430. [Google Scholar] [CrossRef]
- Grover, M.; Farrugia, G.; Lurken, M.S.; Bernard, C.E.; Faussone–Pellegrini, M.S.; Smyrk, T.C.; Parkman, H.P.; Abell, T.L.; Snape, W.J.; Hasler, W.L.; et al. Cellular Changes in Diabetic and Idiopathic Gastroparesis. Gastroenterology 2011, 140, 1575–1585.e8. [Google Scholar] [CrossRef] [PubMed]
- Faussone-Pellegrini, M.S.; Grover, M.; Pasricha, P.J.; Bernard, C.E.; Lurken, M.S.; Smyrk, T.C.; Parkman, H.P.; Abell, T.L.; Snape, W.J.; Hasler, W.L.; et al. Ultrastructural Differences between Diabetic and Idiopathic Gastroparesis. J. Cell. Mol. Med. 2011, 16, 1573–1581. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1582-4934.2011.01451.x (accessed on 1 January 2025). [CrossRef]
- Zhou, S.-Y.; Lu, Y.-X.; Owyang, C. Gastric Relaxation Induced by Hyperglycemia Is Mediated by Vagal Afferent Pathways in the Rat. Am. J. Physiol.-Gastrointest. Liver Physiol. 2008, 294, G1158–G1164. [Google Scholar] [CrossRef]
- Gottfried-Blackmore, A.; Adler, E.P.; Fernandez-Becker, N.; Clarke, J.; Habtezion, A.; Nguyen, L. Open-Label Pilot Study: Non-Invasive Vagal Nerve Stimulation Improves Symptoms and Gastric Emptying in Patients with Idiopathic Gastroparesis. Neurogastroenterol. Motil. 2020, 32, e13769. [Google Scholar] [CrossRef]
- Sawin-Johnson, K.N.; Packer, C.D.; Sawin-Johnson, K.N.; Packer, C.D. Norovirus-Induced Gastroparesis. Cureus 2019, 11, e6283. [Google Scholar] [CrossRef]
- Moraveji, S.; Bashashati, M.; Elhanafi, S.; Sunny, J.; Sarosiek, I.; Davis, B.; Torabi, A.; McCallum, R.W. Depleted Interstitial Cells of Cajal and Fibrosis in the Pylorus: Novel Features of Gastroparesis. Neurogastroenterol. Motil. 2016, 28, 1048–1054. [Google Scholar] [CrossRef]
- Grover, M.; Bernard, C.E.; Pasricha, P.J.; Parkman, H.P.; Gibbons, S.J.; Tonascia, J.; Koch, K.L.; McCallum, R.W.; Sarosiek, I.; Hasler, W.L.; et al. Diabetic and Idiopathic Gastroparesis Is Associated with Loss of CD206-Positive Macrophages in the Gastric Antrum. Neurogastroenterol. Motil. 2017, 29, e13018. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, A.; Bernard, C.E.; Strege, P.R.; Beyder, A.; Galietta, L.J.V.; Pasricha, P.J.; Rae, J.L.; Parkman, H.P.; Linden, D.R.; Szurszewski, J.H.; et al. Altered Expression of Ano1 Variants in Human Diabetic Gastroparesis. J. Biol. Chem. 2011, 286, 13393–13403. [Google Scholar] [CrossRef] [PubMed]
- Herring, B.P.; Hoggatt, A.M.; Gupta, A.; Griffith, S.; Nakeeb, A.; Choi, J.N.; Idrees, M.T.; Nowak, T.; Morris, D.L.; Wo, J.M. Idiopathic Gastroparesis Is Associated with Specific Transcriptional Changes in the Gastric Muscularis Externa. Neurogastroenterol. Motil. 2018, 30, e13230. [Google Scholar] [CrossRef]
- Grover, M.; Farrugia, G.; Stanghellini, V. Gastroparesis: A Turning Point in Understanding and Treatment. Gut 2019, 68, 2238–2250. [Google Scholar] [CrossRef]
- Choi, K.M.; Kashyap, P.C.; Dutta, N.; Stoltz, G.J.; Ordog, T.; Donohue, T.S.; Bauer, A.J.; Linden, D.R.; Szurszewski, J.H.; Gibbons, S.J.; et al. CD206-Positive M2 Macrophages That Express Heme Oxygenase-1 Protect Against Diabetic Gastroparesis in Mice. Gastroenterology 2010, 138, 2399–2409.e1. [Google Scholar] [CrossRef]
- Grover, M.; Gibbons, S.J.; Nair, A.A.; Bernard, C.E.; Zubair, A.S.; Eisenman, S.T.; Wilson, L.A.; Miriel, L.; Pasricha, P.J.; Parkman, H.P.; et al. Transcriptomic Signatures Reveal Immune Dysregulation in Human Diabetic and Idiopathic Gastroparesis. BMC Med. Genomics 2018, 11, 62. [Google Scholar] [CrossRef]
- Sanchez, J.M.S.; McNally, J.S.; Cortez, M.M.; Hemp, J.; Pace, L.A.; Clardy, S.L. Neuroimmunogastroenterology: At the Interface of Neuroimmunology and Gastroenterology. Front. Neurol. 2020, 11, 787. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Saito, Y.A.; Lennon, V.A.; McKeon, A.; Fealey, R.D.; Szarka, L.A.; Murray, J.A.; Foxx-Orenstein, A.E.; Fox, J.C.; Pittock, S.J. Immunotherapy Trial as Diagnostic Test in Evaluating Patients with Presumed Autoimmune Gastrointestinal Dysmotility. Neurogastroenterol. Motil. 2014, 26, 1285–1297. [Google Scholar] [CrossRef]
- Dhamija, R.; Tan, K.M.; Pittock, S.J.; Foxx–Orenstein, A.; Benarroch, E.; Lennon, V.A. Serologic Profiles Aiding the Diagnosis of Autoimmune Gastrointestinal Dysmotility. Clin. Gastroenterol. Hepatol. 2008, 6, 988–992. [Google Scholar] [CrossRef]
- Akamizu, T.; Iwakura, H.; Ariyasu, H.; Kangawa, K. Ghrelin and Functional Dyspepsia. Int. J. Pept. 2010, 2010, 548457. [Google Scholar] [CrossRef]
- Cheung, C.K.; Wu, J.C.-Y. Role of Ghrelin in the Pathophysiology of Gastrointestinal Disease. Gut Liver 2013, 7, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Stavely, R.; Ott, L.C.; Rashidi, N.; Sakkal, S.; Nurgali, K. The Oxidative Stress and Nervous Distress Connection in Gastrointestinal Disorders. Biomolecules 2023, 13, 1586. [Google Scholar] [CrossRef]
- Tavares, L.C.; Zheng, T.; Kwicklis, M.; Mitchell, E.; Pandit, A.; Pullapantula, S.; Bernard, C.; Teder-Laving, M.; Marques, F.Z.; Esko, T.; et al. A Pilot Genome-Wide Association Study Meta-Analysis of Gastroparesis. United Eur. Gastroenterol. J. 2023, 11, 784–796. [Google Scholar] [CrossRef]
- Gibbons, S.J.; Grover, M.; Choi, K.M.; Wadhwa, A.; Zubair, A.; Wilson, L.A.; Wu, Y.; Abell, T.L.; Hasler, W.L.; Koch, K.L.; et al. Repeat Polymorphisms in the Homo Sapiens Heme Oxygenase-1 Gene in Diabetic and Idiopathic Gastroparesis. PLoS ONE 2017, 12, e0187772. [Google Scholar] [CrossRef]
- Duodenal Eosinophils and Mast Cells in Functional Dyspepsia: A Systematic Review and Meta-Analysis of Case-Control Studies—Clinical Gastroenterology and Hepatology. Available online: https://www.cghjournal.org/article/S1542-3565(22)00068-4/fulltext (accessed on 2 January 2025).
- Brown, G.; Hoedt, E.C.; Keely, S.; Shah, A.; Walker, M.M.; Holtmann, G.; Talley, N.J. Role of the Duodenal Microbiota in Functional Dyspepsia. Neurogastroenterol. Motil. 2022, 34, e14372. [Google Scholar] [CrossRef]
- Tack, J.; Schol, J.; Van den Houte, K.; Huang, I.-H.; Carbone, F. Paradigm Shift: Functional Dyspepsia—A “Leaky Gut” Disorder? Off. J. Am. Coll. Gastroenterol. ACG 2021, 116, 274. [Google Scholar] [CrossRef]
- Parkman, H.P.; Hasler, W.L.; Fisher, R.S. American Gastroenterological Association Technical Review on the Diagnosis and Treatment of Gastroparesis. Gastroenterology 2004, 127, 1592–1622. [Google Scholar] [CrossRef]
- Schvarcz, E.; Palmer, M.; Aman, J.; Horowitz, M.; Stridsberg, M.; Berne, C. Physiological Hyperglycemia Slows Gastric Emptying in Normal Subjects and Patients with Insulin-Dependent Diabetes Mellitus. Gastroenterology 1997, 113, 60–66. [Google Scholar] [CrossRef]
- Zheng, T.; Camilleri, M. Management of Gastroparesis. Gastroenterol. Hepatol. 2021, 17, 515–525. [Google Scholar]
- Ghoos, Y.F.; Maes, B.D.; Geypens, B.J.; Mys, G.; Hiele, M.I.; Rutgeerts, P.J.; Vantrappen, G. Measurement of Gastric Emptying Rate of Solids by Means of a Carbon-Labeled Octanoic Acid Breath Test. Gastroenterology 1993, 104, 1640–1647. [Google Scholar] [CrossRef]
- Kuo, B.; McCallum, R.W.; Koch, K.L.; Sitrin, M.D.; Wo, J.M.; Chey, W.D.; Hasler, W.L.; Lackner, J.M.; Katz, L.A.; Semler, J.R.; et al. Comparison of Gastric Emptying of a Nondigestible Capsule to a Radio-Labelled Meal in Healthy and Gastroparetic Subjects. Aliment. Pharmacol. Ther. 2008, 27, 186–196. [Google Scholar] [PubMed]
- Kornum, D.S.; Brock, C.; Okdahl, T.; Bertoli, D.; Kufaishi, H.; Wegeberg, A.-M.; Høyer, K.L.; Mark, E.B.; Brock, B.; Hansen, C.S.; et al. Diabetic Gastroenteropathy: Associations between Gastrointestinal Symptoms, Motility, and Extraintestinal Autonomic Measures. Neurogastroenterol. Motil. 2024, e14956. [Google Scholar] [CrossRef]
- Thwaites, P.A.; Yao, C.K.; Maggo, J.; John, J.; Chrimes, A.F.; Burgell, R.E.; Muir, J.G.; Parker, F.C.; So, D.; Kalantar-Zadeh, K.; et al. Comparison of Gastrointestinal Landmarks Using the Gas-Sensing Capsule and Wireless Motility Capsule. Aliment. Pharmacol. Ther. 2022, 56, 1337–1348. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Thwaites, P.A.; Gibson, P.R.; Burgell, R.; Ho, V. Comparison of Gas-Sensing Capsule with Wireless Motility Capsule in Motility Disorder Patients. J. Neurogastroenterol. Motil. 2024, 30, 303–312. [Google Scholar] [CrossRef]
- Kuo, B.; Lee, A.A.; Abell, T.; Attaluri, A.; Cline, M.; Hasler, W.; Ho, V.; Lembo, A.J.; Masoud, A.; McCallum, R.; et al. The Assessment of Gastrointestinal Transit by the Atmo Capsule: A Comparison with the SmartPill Capsule. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2025. [Google Scholar] [CrossRef]
- Parkman, H.P.; Hasler, W.L.; Barnett, J.L.; Eaker, E.Y. Electrogastrography: A Document Prepared by the Gastric Section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol. Motil. 2003, 15, 89–102. [Google Scholar] [CrossRef]
- Gharibans, A.A.; Hayes, T.C.L.; Carson, D.A.; Calder, S.; Varghese, C.; Du, P.; Yarmut, Y.; Waite, S.; Keane, C.; Woodhead, J.S.T.; et al. A Novel Scalable Electrode Array and System for Non-Invasively Assessing Gastric Function Using Flexible Electronics. Neurogastroenterol. Motil. 2023, 35, e14418. [Google Scholar] [CrossRef] [PubMed]
- Sebaratnam, G.; Karulkar, N.; Calder, S.; Woodhead, J.S.; Keane, C.; Carson, D.A.; Varghese, C.; Du, P.; Waite, S.J.; Tack, J.; et al. Standardized System and App for Continuous Patient Symptom Logging in Gastroduodenal Disorders: Design, Implementation, and Validation. Neurogastroenterol. Motil. 2022, 34, e14331. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.14331 (accessed on 2 January 2025). [CrossRef]
- Foong, D.; Calder, S.; Varghese, C.; Schamberg, G.; Xu, W.; Daker, C.; Ho, V.; Andrews, C.N.; Gharibans, A.A.; O’Grady, G. Gastric Alimetry® Test Interpretation in Gastroduodenal Disorders: Review and Recommendations. J. Clin. Med. 2023, 12, 6436. [Google Scholar] [CrossRef]
- Law, M.; Schamberg, G.; Gharibans, A.; Sebaratnam, G.; Foong, D.; Varghese, C.; Fitt, I.; Daker, C.; Ho, V.; Du, P.; et al. Short- and Long-Term Reproducibility of Body Surface Gastric Mapping Using the Gastric Alimetry® System. Neurogastroenterol. Motil. 2024, 36, e14812. [Google Scholar] [CrossRef]
- Xu, W.; Williams, L.; Sebaratnam, G.; Varghese, C.; Cedarwall, C.; Daker, C.; Keane, C. Gastric Alimetry® Testing and Healthcare Economic Analysis in Nausea and Vomiting Syndromes. Dig. Dis. Sci. 2024, 69, 2304–2314. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Cangemi, D.J.; Accurso, J.M.; Axelrod, S.; Axelrod, L.; Navalgund, A. A Novel Pilot Study to Evaluate the Efficacy and Safety of a Wireless Patch System in Patients with Chronic Nausea and Vomiting. Neurogastroenterol. Motil. 2024, 36, e14862. [Google Scholar] [CrossRef]
- Patcharatrakul, T.; Gonlachanvit, S. Technique of Functional and Motility Test: How to Perform Antroduodenal Manometry. J. Neurogastroenterol. Motil. 2013, 19, 395–404. [Google Scholar] [CrossRef]
- Mearin, F.; Camilleri, M.; Malagelada, J.-R. Pyloric Dysfunction in Diabetics with Recurrent Nausea and Vomiting. Gastroenterology 1986, 90, 1919–1925. [Google Scholar] [CrossRef]
- Snape, W.J. Antroduodenal Manometry for the Evaluation of Patients with Suspected Gastroparesis. In Gastroparesis: Pathophysiology, Presentation and Treatment; Parkman, H.P., McCallum, R.W., Eds.; Humana Press: Totowa, NJ, USA, 2012; pp. 163–175. ISBN 978-1-60761-552-1. [Google Scholar]
- Verhagen, M.A.M.T.; Samsom, M.; Jebbink, R.J.A.; Smout, A.J.P.M. Clinical Relevance of Antroduodenal Manometry. Eur. J. Gastroenterol. Hepatol. 1999, 11, 523. [Google Scholar] [PubMed]
- Hirano, I.; Pandolfino, J.E.; Boeckxstaens, G.E. Functional Lumen Imaging Probe for the Management of Esophageal Disorders: Expert Review From the Clinical Practice Updates Committee of the AGA Institute. Clin. Gastroenterol. Hepatol. 2017, 15, 325–334. [Google Scholar] [CrossRef]
- Jagtap, N.; Kalapala, R.; Reddy, D.N. Assessment of Pyloric Sphincter Physiology Using Functional Luminal Imaging Probe in Healthy Volunteers. J. Neurogastroenterol. Motil. 2020, 26, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Gonz?lez, E.S.; Bellver, V.O.; Jaime, F.C.D.; Cortés, J.A.O.; Gil, V.G. Opioid-Induced Lower Esophageal Sphincter Dysfunction. J. Neurogastroenterol. Motil. 2015, 21, 618–620. [Google Scholar] [CrossRef]
- Saadi, M.; Yu, D.; Malik, Z.; Parkman, H.P.; Schey, R. Características Del Esfínter Pilórico Utilizando EndoFLIP® En Gastroparesia. Rev. Gastroenterol. México 2018, 83, 375–384. [Google Scholar] [CrossRef]
- Jacques, J.; Pagnon, L.; Hure, F.; Legros, R.; Crepin, S.; Fauchais, A.-L.; Palat, S.; Ducrotté, P.; Marin, B.; Fontaine, S.; et al. Peroral Endoscopic Pyloromyotomy Is Efficacious and Safe for Refractory Gastroparesis: Prospective Trial with Assessment of Pyloric Function. Endoscopy 2018, 51, 40–49. [Google Scholar] [CrossRef]
- Park, M.I. How to Interpret Nutrition Drink Test. J. Neurogastroenterol. Motil. 2011, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, Z.; Vögele, C.; Blechert, J.; Lutz, A.P.C.; Schulz, A.; Herbert, B.M. The Water Load Test As a Measure of Gastric Interoception: Development of a Two-Stage Protocol and Application to a Healthy Female Population. PLoS ONE 2016, 11, e0163574. [Google Scholar] [CrossRef]
- Rome IV Criteria. Available online: https://theromefoundation.org/rome-iv/rome-iv-criteria/ (accessed on 2 January 2025).
- Murray, H.B.; Jehangir, A.; Silvernale, C.J.; Kuo, B.; Parkman, H.P. Avoidant/Restrictive Food Intake Disorder Symptoms Are Frequent in Patients Presenting for Symptoms of Gastroparesis. Neurogastroenterol. Motil. 2020, 32, e13931. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.13931 (accessed on 2 January 2025). [CrossRef]
- Talley, N.J.; Verlinden, M.; Jones, M. Can Symptoms Discriminate Among Those with Delayed or Normal Gastric Emptying in Dysmotility-Like Dyspepsia? Off. J. Am. Coll. Gastroenterol. ACG 2001, 96, 1422. [Google Scholar] [CrossRef]
- Calles-Escandón, J.; Koch, K.L.; Hasler, W.L.; Natta, M.L.V.; Pasricha, P.J.; Tonascia, J.; Parkman, H.P.; Hamilton, F.; Herman, W.H.; Basina, M.; et al. Glucose Sensor-Augmented Continuous Subcutaneous Insulin Infusion in Patients with Diabetic Gastroparesis: An Open-Label Pilot Prospective Study. PLoS ONE 2018, 13, e0194759. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.; Kuo, B.; Nguyen, L.; Vaughn, V.M.; Petrey, J.; Greer, K.; Yadlapati, R.; Abell, T.L. ACG Clinical Guideline: Gastroparesis. Off. J. Am. Coll. Gastroenterol. ACG 2022, 117, 1197. [Google Scholar] [CrossRef]
- Parkman, H.P.; Yates, K.P.; Hasler, W.L.; Nguyan, L.; Pasricha, P.J.; Snape, W.J.; Farrugia, G.; Calles, J.; Koch, K.L.; Abell, T.L.; et al. Dietary Intake and Nutritional Deficiencies in Patients with Diabetic or Idiopathic Gastroparesis. Gastroenterology 2011, 141, 486–498.e7. [Google Scholar] [CrossRef]
- Lehmann, S.; Ferrie, S.; Carey, S. Nutrition Management in Patients with Chronic Gastrointestinal Motility Disorders: A Systematic Literature Review. Nutr. Clin. Pract. 2020, 35, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Sturm, A.; Holtmann, G.; Goebell, H.; Gerken, G. Prokinetics in Patients with Gastroparesis: A Systematic Analysis. Digestion 1999, 60, 422–427. [Google Scholar] [CrossRef]
- Myint, A.S.; Rieders, B.; Tashkandi, M.; Borum, M.L.; Koh, J.M.; Stephen, S.; Doman, D.B. Current and Emerging Therapeutic Options for Gastroparesis. Gastroenterol. Hepatol. 2018, 14, 639–645. [Google Scholar]
- Staller, K.; Thurler, A.H.; Reynolds, J.S.; Dimisko, L.R.; McGovern, R.; Skarbinski, K.F.; Kuo, B. Gabapentin Improves Symptoms of Functional Dyspepsia in a Retrospective, Open-Label Cohort Study. J. Clin. Gastroenterol. 2019, 53, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Parkman, H.P.; Van Natta, M.L.; Abell, T.L.; McCallum, R.W.; Sarosiek, I.; Nguyen, L.; Snape, W.J.; Koch, K.L.; Hasler, W.L.; Farrugia, G.; et al. Effect of Nortriptyline on Symptoms of Idiopathic Gastroparesis: The NORIG Randomized Clinical Trial. JAMA 2013, 310, 2640–2649. [Google Scholar] [CrossRef] [PubMed]
- Abell, T.L.; Bernstein, V.K.; Cutts, T.; Farrugia, G.; Forster, J.; Hasler, W.L.; Mccallum, R.W.; Olden, K.W.; Parkman, H.P.; Parrish, C.R.; et al. Treatment of Gastroparesis: A Multidisciplinary Clinical Review. Neurogastroenterol. Motil. 2006, 18, 263–283. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Wilde, M.I. Mirtazapine. CNS Drugs 1996, 5, 389–402. [Google Scholar] [CrossRef]
- Parkman, H.P.; Yates, K.P.; Sarosiek, I.; Bulat, R.S.; Abell, T.L.; Koch, K.L.; Kuo, B.; Grover, M.; Farrugia, G.; Silver, P.; et al. Buspirone for early satiety and symptoms of gastroparesis: A multi-centre, randomised, placebo-controlled, double-masked trial (BESST). Aliment. Pharmacol. Ther. 2023, 57, 1272–1289. Available online: https://onlinelibrary.wiley.com/doi/10.1111/apt.17479 (accessed on 2 January 2025).
- Drossman, D.A.; Tack, J.; Ford, A.C.; Szigethy, E.; Törnblom, H.; Oudenhove, L.V. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut−Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology 2018, 154, 1140–1171.e1. [Google Scholar] [CrossRef]
- Grover, M.; Dorn, S.D.; Weinland, S.R.; Dalton, C.B.; Gaynes, B.N.; Drossman, D.A. Atypical Antipsychotic Quetiapine in the Management of Severe Refractory Functional Gastrointestinal Disorders. Dig. Dis. Sci. 2009, 54, 1284–1291. [Google Scholar] [CrossRef]
- Rabinowitz, S.S.; Ahuja, N.; Gottfried, J. Aripiprazole Reversed Gastroparesis in a Child with 1q21.1–Q21.2 Microdeletion. Case Rep. 2018, 2018, bcr-2017. [Google Scholar] [CrossRef]
- Janssen, P.; Vos, R.; Van Oudenhove, L.; Tack, J. Influence of the 5-HT3 Receptor Antagonist Ondansetron on Gastric Sensorimotor Function and Nutrient Tolerance in Healthy Volunteers. Neurogastroenterol. Motil. 2011, 23, 444-e175. [Google Scholar] [CrossRef]
- Hargreaves, R.; Ferreira, J.C.A.; Hughes, D.; Brands, J.; Hale, J.; Mattson, B.; Mills, S. Development of Aprepitant, the First Neurokinin-1 Receptor Antagonist for the Prevention of Chemotherapy-Induced Nausea and Vomiting. Ann. N. Y. Acad. Sci. 2011, 1222, 40–48. [Google Scholar] [CrossRef]
- Jacob, D.; Busciglio, I.; Burton, D.; Halawi, H.; Oduyebo, I.; Rhoten, D.; Ryks, M.; Harmsen, W.S.; Camilleri, M. Effects of NK1 Receptors on Gastric Motor Functions and Satiation in Healthy Humans: Results from a Controlled Trial with the NK1 Antagonist Aprepitant. Am. J. Physiol.-Gastrointest. Liver Physiol. 2017, 313, G505–G510. [Google Scholar] [CrossRef]
- Treatment of Gastroparesis: A Multidisciplinary Clinical Review—Abell—2006—Neurogastroenterology & Motility—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2982.2006.00760.x (accessed on 2 January 2025).
- Wang, Y.; Li, S.-Y.; Wang, D.; Wu, M.-Z.; He, J.-K.; Zhang, J.-L.; Zhao, B.; Hou, L.-W.; Wang, J.-Y.; Wang, L.; et al. Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci. Bull. 2021, 37, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-H.; Cao, J.; Oleson, S.; Ward, M.P.; Phillips, R.J.; Powley, T.L.; Liu, Z. Vagus Nerve Stimulation Promotes Gastric Emptying by Increasing Pyloric Opening Measured with Magnetic Resonance Imaging. Neurogastroenterol. Motil. 2018, 30, e13380. [Google Scholar] [CrossRef] [PubMed]
- Frøkjaer, J.B.; Bergmann, S.; Brock, C.; Madzak, A.; Farmer, A.D.; Ellrich, J.; Drewes, A.M. Modulation of Vagal Tone Enhances Gastroduodenal Motility and Reduces Somatic Pain Sensitivity. Neurogastroenterol. Motil. 2016, 28, 592–598. [Google Scholar] [CrossRef]
- Paulon, E.; Nastou, D.; Jaboli, F.; Marin, J.; Liebler, E.; Epstein, O. Proof of Concept: Short-Term Non-Invasive Cervical Vagus Nerve Stimulation in Patients with Drug-Refractory Gastroparesis. Frontline Gastroenterol. 2017, 8, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.C.; Xiang, X.; Sharma, A.; Patcharatrakul, T.; Yan, Y.; Parr, R.; Ayyala, D.; Hamdy, S. Translumbosacral Neuromodulation Therapy for Fecal Incontinence: A Randomized Frequency Response Trial. Off. J. Am. Coll. Gastroenterol. ACG 2021, 116, 162. [Google Scholar] [CrossRef]
- Karunaratne, T.; Yan, Y.; Eubanks, A.; Inman, B.; Rao, S.; Sharma, A. Thoracic Spinal Nerve Neuromodulation Therapy for Diabetic Gastroparesis: A Proof-of-Concept Study. Clin. Gastroenterol. Hepatol. 2023, 21, 2958–2959.e3. [Google Scholar] [CrossRef]
- Pasricha, T.S.; Pasricha, P.J. Botulinum Toxin Injection for Treatment of Gastroparesis. Gastrointest. Endosc. Clin. N. Am. 2019, 29, 97–106. [Google Scholar] [CrossRef]
- Bromer, M.Q.; Friedenberg, F.; Miller, L.S.; Fisher, R.S.; Swartz, K.; Parkman, H.P. Endoscopic Pyloric Injection of Botulinum Toxin A for the Treatment of Refractory Gastroparesis. Gastrointest. Endosc. 2005, 61, 833–839. [Google Scholar] [CrossRef]
- Varghese, C.; Lim, A.; Daker, C.; Sebaratnam, G.; Gharibans, A.A.; Andrews, C.N.; Hasler, W.L.; O’Grady, G. Predictors of Outcomes After Gastric Peroral Endoscopic Myotomy for Refractory Gastroparesis: A Systematic Review. Off. J. Am. Coll. Gastroenterol. ACG 2022. [Google Scholar] [CrossRef]
- Martinek, J.; Hustak, R.; Mares, J.; Vackova, Z.; Spicak, J.; Kieslichova, E.; Buncova, M.; Pohl, D.; Amin, S.; Tack, J. Endoscopic Pyloromyotomy for the Treatment of Severe and Refractory Gastroparesis: A Pilot, Randomised, Sham-Controlled Trial. Gut 2022, 71, 2170–2178. [Google Scholar] [CrossRef] [PubMed]
- Vosoughi, K.; Ichkhanian, Y.; Benias, P.; Miller, L.; Aadam, A.A.; Triggs, J.R.; Law, R.; Hasler, W.; Bowers, N.; Chaves, D.; et al. Gastric Per-Oral Endoscopic Myotomy (G-POEM) for Refractory Gastroparesis: Results from an International Prospective Trial. Gut 2022, 71, 25–33. [Google Scholar] [CrossRef]
- Aziz, M.; Gangwani, M.K.; Haghbin, H.; Dahiya, D.S.; Sohail, A.H.; Kamal, F.; Lee-Smith, W.; Adler, D.G. Gastric Peroral Endoscopic Myotomy versus Surgical Pyloromyotomy/Pyloroplasty for Refractory Gastroparesis: Systematic Review and Meta-Analysis. Endosc. Int. Open 2023, 11, E322–E329. [Google Scholar] [CrossRef]
- Peppas, S.; Ahmad, A.I.; Altork, N.; Cho, W.K. Efficacy and Safety of Gastric Per-Oral Endoscopic Myotomy (GPOEM) in Lung Transplant Patients with Refractory Gastroparesis: A Systematic Review and Meta-Analysis. Surg. Endosc. 2023, 37, 6695–6703. [Google Scholar] [CrossRef]
- Levinthal, D.J.; Bielefeldt, K. Systematic Review and Meta-Analysis: Gastric Electrical Stimulation for Gastroparesis. Auton. Neurosci. Basic Clin. 2017, 202, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Zoll, B.; Jehangir, A.; Malik, Z.; Edwards, M.A.; Petrov, R.V.; Parkman, H.P. Gastric Electric Stimulation for Refractory Gastroparesis. J. Clin. Outcomes Manag. JCOM 2019, 26, 27–38. [Google Scholar] [PubMed]
- Effectiveness of Gastric Electrical Stimulation in Gastroparesis: Results from a Large Prospectively Collected Database of National Gastroparesis Registries—Abell—2019—Neurogastroenterology & Motility—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.13714 (accessed on 3 January 2025).
- Aeschbacher, P.; Garcia, A.; Dourado, J.; Rogers, P.; Zoe, G.; Pena, A.; Szomstein, S.; Menzo, E.L.; Rosenthal, R. Outcome of Gastric Electrical Stimulator with and without Pyloromyotomy for Refractory Gastroparesis. Surg. Endosc. 2024, 38, 6026–6032. [Google Scholar] [CrossRef] [PubMed]
- Masclee, G.M.C.; Keszthelyi, D.; Conchillo, J.M.; Kruimel, J.W.; Bouvy, N.D.; Masclee, A.A.M. Systematic Review on Sleeve Gastrectomy or Roux-En-Y Gastric Bypass Surgery for Refractory Gastroparesis. Surg. Obes. Relat. Dis. 2023, 19, 253–264. [Google Scholar] [CrossRef]
- Bonnert, M.; Olén, O.; Lalouni, M.; Hedman-Lagerlöf, E.; Särnholm, J.; Serlachius, E.; Ljótsson, B. Internet-Delivered Exposure-Based Cognitive-Behavioral Therapy for Adolescents with Functional Abdominal Pain or Functional Dyspepsia: A Feasibility Study. Behav. Ther. 2019, 50, 177–188. [Google Scholar] [CrossRef]
- Burton-Murray, H.; Becker, K.R.; Breithaupt, L.; Gardner, E.; Dreier, M.J.; Stern, C.M.; Misra, M.; Lawson, E.A.; Ljótsson, B.; Eddy, K.T.; et al. Cognitive-Behavioral Therapy for Avoidant/Restrictive Food Intake Disorder: A Proof-of-Concept for Mechanisms of Change and Target Engagement. Int. J. Eat. Disord. 2024, 57, 1260–1267. [Google Scholar] [CrossRef]
- Song, G.; Sclocco, R.; Sharma, A.; Guerrero-López, I.; Kuo, B. Electroceuticals and Magnetoceuticals in Gastroenterology. Biomolecules 2024, 14, 760. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. Clinical Observation on Acupuncture Treatment in 35 Cases of Diabetic Gastroparesis. J. Tradit. Chin. Med. Chung Tsa Chih Ying Wen Pan 2004, 24, 163–165. [Google Scholar]
- Vasant, D.H.; Whorwell, P.J. Gut-Focused Hypnotherapy for Functional Gastrointestinal Disorders: Evidence-Base, Practical Aspects, and the Manchester Protocol. Neurogastroenterol. Motil. 2019, 31, e13573. [Google Scholar] [CrossRef]
- Lindfors, P.; Unge, P.; Arvidsson, P.; Nyhlin, H.; Björnsson, E.; Abrahamsson, H.; Simrén, M. Effects of Gut-Directed Hypnotherapy on IBS in Different Clinical Settings—Results From Two Randomized, Controlled Trials. Off. J. Am. Coll. Gastroenterol. ACG 2012, 107, 276. [Google Scholar] [CrossRef]
- The Effect of STW5 (Iberogast) on Reflux Symptoms in Patients with Concurrent Dyspeptic Symptoms: A Double-Blind Randomized Placebo-Controlled Crossover Trial. Available online: https://www.jnmjournal.org/journal/view.html?doi=10.5056/jnm23014 (accessed on 3 January 2025).
- Sampath, C.; Wilus, D.; Tabatabai, M.; Freeman, M.L.; Gangula, P.R. Mechanistic Role of Antioxidants in Rescuing Delayed Gastric Emptying in High Fat Diet Induced Diabetic Female Mice. Biomed. Pharmacother. 2021, 137, 111370. [Google Scholar] [CrossRef]
- Panda MPharm, S.K.; Nirvanashetty PhD, S.; Parachur BTech, V.A.; Krishnamoorthy MPharm, C.; Dey MSc, S. A Randomized, Double-Blind, Placebo Controlled, Parallel-Group, Comparative Clinical Study to Evaluate the Efficacy and Safety of OLNP-06 versus Placebo in Subjects with Functional Dyspepsia. J. Diet. Suppl. 2022, 19, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, D.S.; Kichloo, A.; Shaka, H.; Singh, J.; Edigin, E.; Solanki, D.; Eseaton, P.O.; Wani, F. Gastroparesis with Cannabis Use: A Retrospective Study from the Nationwide Inpatient Sample. Postgrad. Med. 2021, 133, 791–797. [Google Scholar] [CrossRef]
- Grotenhermen, F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003, 42, 327–360. [Google Scholar] [CrossRef] [PubMed]
- A Randomized, Controlled Trial of Efficacy and Safety of Cannabidiol in Idiopathic and Diabetic Gastroparesis—Clinical Gastroenterology and Hepatology. Available online: https://www.cghjournal.org/article/S1542-3565(23)00543-8/fulltext (accessed on 3 January 2025).
- Patrick, M.E.; Miech, R.A.; Johnston, L.D.; O’Malley, P.M. Monitoring the Future Panel Study Annual Report: National Data on Substance Use among Adults Ages 19 to 65, 1976–2023; University of Michigan Institute for Social Research: Ann Arbor, MI, USA, 2024. [Google Scholar]
- Hasler, W.L.; Wilson, L.A.; Nguyen, L.A.; Snape, W.J.; Abell, T.L.; Koch, K.L.; McCallum, R.W.; Pasricha, P.J.; Sarosiek, I.; Farrugia, G.; et al. Opioid Use and Potency Are Associated with Clinical Features, Quality of Life, and Use of Resources in Patients with Gastroparesis. Clin. Gastroenterol. Hepatol. 2019, 17, 1285–1294.e1. [Google Scholar] [CrossRef]
- Choi, K.M.; Gibbons, S.J.; Nguyen, T.V.; Stoltz, G.J.; Lurken, M.S.; Ordog, T.; Szurszewski, J.H.; Farrugia, G. Heme Oxygenase-1 Protects Interstitial Cells of Cajal From Oxidative Stress and Reverses Diabetic Gastroparesis. Gastroenterology 2008, 135, 2055–2064.e2. [Google Scholar] [CrossRef]
- Ingrosso, M.R.; Camilleri, M.; Tack, J.; Ianiro, G.; Black, C.J.; Ford, A.C. Efficacy and Safety of Drugs for Gastroparesis: Systematic Review and Network Meta-Analysis. Gastroenterology 2023, 164, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Diabetic Gastroenteropathy: Associations between Gastrointestinal Symptoms, Motility, and Extraintestinal Autonomic Measures—Kornum—Neurogastroenterology & Motility—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/nmo.14956 (accessed on 2 January 2025).
- Larson, J.M.; Tavakkoli, A.; Drane, W.E.; Toskes, P.P.; Moshiree, B. Advantages of Azithromycin Over Erythromycin in Improving the Gastric Emptying Half-Time in Adult Patients with Gastroparesis. J. Neurogastroenterol. Motil. 2010, 16, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.-Q.; Wu, S.V.; Wang, L.; Taché, Y. The Ghrelin Agonist, HM01 Activates Central Vagal and Enteric Cholinergic Neurons and Reverses Gastric Inflammatory and Ileus Responses in Rats. Neurogastroenterol. Motil. 2023, 35, e14561. [Google Scholar] [CrossRef]
- Hong, S.W.; Chun, J.; Kim, J.; Lee, J.; Lee, H.J.; Chung, H.; Cho, S.-J.; Im, J.P.; Kim, S.G.; Kim, J.S. Efficacy and Safety of Ghrelin Agonists in Patients with Diabetic Gastroparesis: A Systematic Review and Meta-Analysis. Gut Liver 2020, 14, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-B.; Kim, W.-S. Celiac Plexus Block in a Patient with Upper Abdominal Pain Caused by Diabetic Gastroparesis. Korean J. Anesthesiol. 2014, 67, S62–S63. [Google Scholar] [CrossRef]
- Wu, D.J.Y.; Dib, C.; Hoelzer, B.; McMahon, M.; Mueller, P. Coeliac Plexus Block in the Management of Chronic Abdominal Pain Due to Severe Diabetic Gastroparesis. Case Rep. 2009, 2009, bcr0620091986. [Google Scholar] [CrossRef]
- Choi, J.-W.; Joo, E.-Y.; Lee, S.-H.; Lee, C.-J.; Kim, T.-H.; Sim, W.-S. Radiofrequency Thermocoagulation of the Thoracic Splanchnic Nerve in Functional Abdominal Pain Syndrome—A Case Report. Korean J. Anesthesiol. 2011, 61, 79–82. [Google Scholar] [CrossRef]
- Mathur, P.; Abell, T.; News, H. Management of Gastroparesis in 2022. GI Hepatology News, 25 April 2022. [Google Scholar]
Diagnostic Information | Clinical Utility | Additional Information | |
---|---|---|---|
Nuclear gastric scintigraphy | Gastric emptying May provide data on gastric accommodation | Most widely available 4-h testing and food intolerances limit use | Gold standard in assessment of gastric emptying |
Gastric emptying breath Test | Gastric emptying | Moderately widely available 4-h testing | May be affected by physical activity, malabsorption, and advanced lung, liver, or cardiac disease |
Wireless motility capsule | Gastric emptying Whole gut motility data | Noninvasive ambulatory testing Atmo Capsule pending FDA clearance | Avoid with gastrointestinal stenosis or stricture Caution with post-surgical anatomy |
Electrogastrography | Gastric emptying Characteristic symptom phenotype data | Noninvasive ambulatory testing Gastric Alimetry and GutTracker are FDA cleared | Out of pocket cost Provide data regarding small bowel and colon activity |
Antroduodenal manometry | Assessment of strength and coordination of muscle contractions Characteristic patterns among gastroparesis etiologies: idiopathic, diabetic, and post-surgical | Typically performed in research settings only Limited use given invasive nature and etiologies often determined by empiric means | Not diagnostic of gastroparesis Pylorospasm can be seen in diabetic gastroparesis and recurrent nausea and vomiting Can diagnose small intestinal pseudo-obstruction |
Pyloric EndoFLIP | Low pyloric compliance and Cross-Sectional Area seen in gastroparesis | Limited use given inconclusive findings Low pyloric distensibility may predict response to G-POP | Not diagnostic of gastroparesis |
Liquid satiety testing | Functional assessment of gastric accommodation and sensation | Typically performed in research settings only Limited use given impaired accommodation and sensation often determined by empiric means | Not diagnostic of gastroparesis |
Gastric MRI | Functional gastric imaging including neurogastric signaling | Available in research settings only | Not diagnostic of gastroparesis |
Clinical Role | Treatment Positioning and Patient Selection | Additional Considerations | |
---|---|---|---|
Glycemic control | Manages underlying hyperglycemia contributing to nerve dysfunction | Foundational Indicated for all patients with elevated A1c | Tight glycemic control, continuous glucose monitoring, and insulin pumps are safe and effective to employ when indicated |
Nutrition | Small particle size, low-fat diet improves oral tolerance | Foundational Indicated for all patients including dietician referral | G-J tube or TPN only in the most refractory of cases with significant weight loss, electrolyte disturbances |
Neuromodulator agents | Improve gastroparesis-like symptoms Modulate nerve dysfunction, disordered gut-brain interaction | First line Can trial in all patients targeting predominant symptom | Appropriate side effect profiles, adequate length of therapeutic trials, dose uptitration as tolerated, and medication stacking if needed |
Promotility agents | Improve gastric emptying and gastroparesis-like symptoms | First line Can trial in all patients | Monitor QTc and tardive dyskinesia New agents may become available |
Antinausea agents | Improve nausea and vomiting | First line Can trial in patients with predominant nausea vomiting | Monitor QTc New agents may become available |
Gut-brain axis modulation | Improves gastroparesis-like symptoms Alters neural pathway signaling in disordered gut-brain interaction | Complementary Can trial in all patients | Trial based on patient acceptability and accessibility Cognitive behavioral therapy, gut hypnosis, acupuncture, etc. |
Herbal formulations | Improve dyspepsia symptoms May modulate gastric emptying | Complementary Can trial in all patients | Trial based on patient acceptability and accessibility |
Cannabinoids | Improve nausea, vomiting, and inability to finish a meal | Complementary Can trial in patients with medical marijuana or legal age | Trial based on local availability, patient acceptability and accessibility Sublingual or ingested agents may be preferred |
Immunomodulator agents | Improve nausea, vomiting, abdominal pain, bloating | Can trial in patients with known or suspected autoimmune gastrointestinal disorders refractory to other treatments | Consider neurologic or immune testing such as autonomic, sensory, serologic, pan gut motility, or gastric full thickness biopsy |
Transcutaneous auricular Vagus nerve stimulation | Improves antral contractions, gastroduodenal motility, pain thresholds, and gastroparesis-like symptoms | Can trial in all patients refractory to other treatments | Out of pocket cost Noninvasive with short term effect that requires repeated or daily use |
Thoracic spinal magnetic neuromodulation therapy | Improves symptoms particularly nausea, vomiting, and upper abdominal pain | Available in research settings only for severe refractory gastroparesis | Noninvasive with prolonged effect but requires repetitive stimulation over days |
Pyloric botulinum toxin (Botox) Injection | May improve gastroparesis-like symptoms, pyloric dysfunction, and gastric emptying | Not guideline recommended Some centers still use in severe refractory gastroparesis | Prolonged effect can last for months but requires repeated endoscopy May cause fibrosis |
Gastric per oral pyloromyotomy (G-POP) | Improves gastric emptying and symptoms particularly nausea and vomiting | Consider in severe predominant nausea vomiting gastroparesis refractory to other treatments with impaired quality of life (QOL) | Only consider with documented delay in gastric emptying Noninferior to surgical pyloromyotomy and less invasive therefore preferred, particularly for lung transplant patients with refractory gastroparesis |
Gastric electrical stimulation | Improves nausea | Consider in severe gastroparesis refractory to other treatments with impaired QOL | Low conditional guideline recommendation as humanitarian use device most efficacious in diabetic gastroparesis |
Celiac plexus block | Improves pain and increases gastrointestinal motility | Not guideline recommended | Consider with caution in pain predominant patients refractory to other treatments with impaired QOL |
Surgical intervention | Improves gastric emptying and symptoms particularly nausea and vomiting | Not guideline recommended | Consider surgical pyloromyotomy in predominant nausea vomiting gastroparesis refractory to other treatments with impaired QOL if G-POP is not available, G-POP was failed, or there is an additional indication or preference for surgery |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimino, J.; Kuo, B. Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management. Diagnostics 2025, 15, 935. https://doi.org/10.3390/diagnostics15070935
Dimino J, Kuo B. Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management. Diagnostics. 2025; 15(7):935. https://doi.org/10.3390/diagnostics15070935
Chicago/Turabian StyleDimino, Jennifer, and Braden Kuo. 2025. "Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management" Diagnostics 15, no. 7: 935. https://doi.org/10.3390/diagnostics15070935
APA StyleDimino, J., & Kuo, B. (2025). Current Concepts in Gastroparesis and Gastric Neuromuscular Disorders—Pathophysiology, Diagnosis, and Management. Diagnostics, 15(7), 935. https://doi.org/10.3390/diagnostics15070935