16S rRNA Gene Sequence Analysis of V6–V8 Region Provides Limited Advantage in Diagnosis of Chronic Prostatitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Investigations
2.3. Laboratory Methods
2.4. Routine Microbiological Tests and Semen Analysis
2.5. DNA Extraction and 16S rRNA Gene Sequence Analysis
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Questionnaires
3.3. Andrological Results
3.4. Microbiology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Pathogen | Patients with Positive Microbiology in First Void Urine, n (%) (n = 33) | Patients with Positive STI-PCR, n (%) (n = 7) | Patients WHO Received a 16S rRNA Analysis, n (%) (n = 188) |
---|---|---|---|
Mixed flora 1 | 14 (42) | ||
Streptococcus mitis | 11 (33) | 1 (0.5) | |
Escherichia coli | 3 (9) | ||
Enterococcus faecalis | 3 (9) | ||
Klebsiella pneuminae | 2 (6) | ||
Urealplasma urealyticum | 7 (100) | ||
No pathogen detected | 169 (90) | ||
Fusobacterium nucleatum | 12 (6) | ||
Baterioidaceae species | 5 (3) | ||
Finegoldia magna | 1 (0.5) |
Pathogen | Patients with Positive Microbiology in Post Prostatic Massage Urine, n (%) (n = 21) | Patients with Positive STI-PCR, n (%) (n = 7) | Patients Who Received a 16S rRNA Analysis, n (%) (n = 200) |
---|---|---|---|
Mixed flora | 6 (29) | ||
Streptococcus mitis | 4 (19) | 5 (3) | |
Staphyloccocus epidermidis | 4 (19) | ||
Escherichia coli | 2 (10) | ||
Enterococcus faecalis | 2 (9) | ||
Klebsiella pneumoniae | 2 (9) | ||
Morganella morganii | 1 (5) | ||
Ureaplasma urealyticum | 7 (100) | ||
No pathogen detected | 186 (93) | ||
Baterioidaceae species | 8 (4) | ||
Gardnerella vaginalis | 1 (0.5) |
Pathogen | Patients with Positive Microbiology in Ejaculate, n (%) (n = 30) | Patients with Positive STI-PCR, n (%) (n = 8) | Patients Who Received a 16S rRNA Analysis, n (%) (n = 199) |
---|---|---|---|
Mixed flora | 10 (33) | ||
Streptococcus mitis | 6 (20) | 1 (0.5) | |
Enterococcus faecalis | 6 (20) | 1 (0.5) | |
Staphylococcus epidermidis | 4 (13) | 1 (0.5) | |
Escherichia coli | 2 (7) | 1 (0.5) | |
Klebsiella species | 2 (7) | ||
Ureaplasma urealyticum | 7 (88) | ||
Mycoplasma hominis | 1 (12) | ||
No pathogen detected | 184 (92) | ||
Lactobacillus iners | 8 (4) | ||
Fusobacterium nucleatum | 2 (1) | ||
Corynebacterium striatum | 1 (0.5) | ||
Finegoldia magna | 1 (0.5) |
Correlation Coefficient r | p (Univariate) | Correlation Coefficient β | p (Multivariate) | |
---|---|---|---|---|
CPSI total score | −0.038 | 0.575 | −0.029 | 0.668 |
Sperm concentration | −0.091 | 0.169 | −0.103 | 0.132 |
Leukocytes in ejaculate | 0.218 | 0.001 | −0.017 | 0.806 |
Seminal plasma elastase | 0.012 | 0.856 | −0.055 | 0.444 |
Seminal plasma IL-8 | 0.04 | 0.555 | 0.066 | 0.359 |
Correlation Coefficient r | p (Univariate) | Correlation Coefficient β | p (Multivariate) | |
---|---|---|---|---|
CPSI total score | −0.013 | 0.845 | −0.151 | 0.880 |
Sperm concentration | −0.029 | 0.665 | 0.150 | 0.881 |
Leukocytes in ejaculate | −0.017 | 0.806 | 0.014 | 0.989 |
Seminal plasma elastase | 0.006 | 0.928 | −0.055 | 0.446 |
Seminal plasma IL-8 | 0.043 | 0.519 | 0.037 | 0.609 |
Correlation Coefficient r | p (Univariate) | Correlation Coefficient β | p (Multivariate) | |
---|---|---|---|---|
CPSI total score | −0.03 | 0.672 | −0.052 | 0.462 |
Sperm concentration | 0.086 | 0.209 | 0.014 | 0.843 |
Leukocytes in ejaculate | −0.036 | 0.602 | −0.056 | 0.430 |
Seminal plasma elastase | −0.041 | 0.555 | −0.218 | 0.827 |
Seminal plasma IL-8 | 0.027 | 0.696 | −0.021 | 0.776 |
References
- Suskind, A.M.; Berry, S.H.; Ewing, B.A.; Elliott, M.N.; Suttorp, M.J.; Clemens, J.Q. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: Results of the RAND Interstitial Cystitis Epidemiology male study. J. Urol. 2013, 189, 141–145. [Google Scholar] [PubMed]
- Krieger, J.N.; Lee, S.W.; Jeon, J.; Cheah, P.Y.; Liong, M.L.; Riley, D.E. Epidemiology of prostatitis. Int. J. Antimicrob. Agents. 2008, 31 (Suppl. 1), S85–S90. [Google Scholar]
- Sharp, V.J.; Takacs, E.B.; Powell, C.R. Prostatitis: Diagnosis and treatment. Am. Fam. Physician. 2010, 82, 397–406. [Google Scholar] [PubMed]
- Nickel, J.C.; Alexander, R.B.; Schaeffer, A.J.; Landis, J.R.; Knauss, J.S.; Propert, K.J. Chronic Prostatitis Collaborative Research Network Study Group. Leukocytes and bacteria in men with chronic prostatitis/chronic pelvic pain syndrome compared to asymptomatic controls. J. Urol. 2003, 170, 818–822. [Google Scholar]
- Nickel, J.C.; Ardern, D.; Downey, J. Cytologic evaluation of urine is important in evaluation of chronic prostatitis. Urology 2002, 60, 225–227. [Google Scholar] [PubMed]
- Rees, J.; Abrahams, M.; Doble, A.; Cooper, A. Prostatitis Expert Reference Group (PERG). Diagnosis and treatment of chronic bacterial prostatitis and chronic prostatitis/chronic pelvic pain syndrome: A consensus guideline. BJU Int. 2015, 116, 509–525. [Google Scholar]
- Krieger, J.N.; Nyberg, L.; Nickel, J.C. NIH consensus definition and classification of prostatitis. JAMA 1999, 282, 236–237. [Google Scholar]
- Nickel, J.C.; Shoskes, D.; Wang, Y.; Alexander, R.B.; Fowler, J.E.; Zeitlin, S.; O’Leary, M.P.; Pontari, M.A.; Schaeffer, A.J.; Landis, J.R.; et al. How does the pre-massage and post-massage 2-glass test compare to the Meares-Stamey 4-glass test in men with chronic prostatitis/chronic pelvic pain syndrome? J. Urol. 2006, 176, 119–124. [Google Scholar]
- Domes, T.; Lo, K.C.; Grober, E.D.; Mullen, J.B.; Mazzulli, T.; Jarvi, K. The incidence and effect of bacteriospermia and elevated seminal leukocytes on semen parameters. Fertil Steril. 2012, 97, 1050–1055. [Google Scholar]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm microbiota and its impact on semen parameters. Front Microbiol. 2019, 10, 234. [Google Scholar] [CrossRef]
- Rana, N.; Vaid, R.K.; Phulia, S.K.; Singh, P. Assessment of bacterial diversity in fresh bubaline semen. Indian J. Anim. Sci. 2012, 82, 596–598. [Google Scholar]
- Koedooder, R.; Mackens, S.; Budding, A.; Fares, D.; Blockeel, C.; Laven, J.; Schoenmakers, S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum. Reprod. Update 2019, 25, 298–325. [Google Scholar] [CrossRef] [PubMed]
- Church, D.L.; Cerutti, L.; Gürtler, A.; Griener, T.; Zelazny, A.; Emler, S. Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin. Microbiol. Rev. 2020, 33, e00053-19. [Google Scholar] [CrossRef]
- Mignard, S.; Flandrois, J.P. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J. Microbiol. Methods 2006, 67, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Kolbert, C.P.; Persing, D.H. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens. Curr. Opin. Microbiol. 1999, 2, 299–305. [Google Scholar] [CrossRef]
- Clarridge, J.E., 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Angiuoli, S.V.; White, J.R.; Matalka, M.; White, O.; Fricke, W.F. Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS ONE 2011, 6, e26624. [Google Scholar] [CrossRef]
- Rao, K.; Seekatz, A.; Bassis, C.; Sun, Y.; Mantlo, E.; Bachman, M.A. Enterobacterales Infection after Intestinal Dominance in Hospitalized Patients. mSphere 2020, 5, e00450-20. [Google Scholar] [CrossRef]
- Tripathi, P.; Banerjee, G.; Gupta, M.K.; Saxena, S.; Ramteke, P.W. Assessment of phylogenetic affiliation using 16S rRNA gene sequence analysis for Pseudomonas aeruginosa in patients of lower respiratory tract infection. Indian J. Med. Res. 2013, 138, 557–559. [Google Scholar]
- Ogawa, M.; Hoshina, T.; Haro, K.; Kumadaki, T.; Ishii, M.; Fujino, Y.; Fukuda, K.; Kusuhara, K. The microbiological characteristics of lower respiratory tract infection in patients with neuromuscular disorders: An investigation based on a multiplex polymerase chain reaction to detect viruses and a clone library analysis of the bacterial 16S rRNA gene sequence in sputum samples. J. Microbiol. Immunol. Infect. 2019, 52, 827–830. [Google Scholar]
- Marshall, C.W.; Kurs-Lasky, M.; McElheny, C.L.; Bridwell, S.; Liu, H.; Shaikh, N. Performance of Conventional Urine Culture Compared to 16S rRNA Gene Amplicon Sequencing in Children with Suspected Urinary Tract Infection. Microbiol. Spectr. 2021, 9, e0186121. [Google Scholar]
- Sathiananthamoorthy, S.; Malone-Lee, J.; Gill, K.; Tymon, A.; Nguyen, T.K.; Gurung, S.; Collins, L.; Kupelian, A.S.; Swamy, S.; Khasriya, R.; et al. Reassessment of Routine Midstream Culture in Diagnosis of Urinary Tract Infection. J. Clin. Microbiol. 2019, 57, e01452-18. [Google Scholar] [PubMed]
- Ishihara, T.; Watanabe, N.; Inoue, S.; Aoki, H.; Tsuji, T.; Yamamoto, B.; Yanagi, H.; Oki, M.; Kryukov, K.; Nakagawa, S.; et al. Usefulness of next-generation DNA sequencing for the diagnosis of urinary tract infection. Drug Discov. Ther. 2020, 14, 42–49. [Google Scholar] [CrossRef]
- Kawai, Y.; Ozawa, N.; Fukuda, T.; Suzuki, N.; Mikata, K. Development of an efficient antimicrobial susceptibility testing method with species identification by Nanopore sequencing of 16S rRNA amplicons. PLoS ONE 2022, 17, e0262912. [Google Scholar]
- Song, W.J.; Gao, J.; Huang, J.W.; Liu, Y.; Long, Z.; He, L.Y. Is type III prostatitis also associated with bacterial infection? Front. Cell. Infect. Microbiol. 2023, 13, 1189081. [Google Scholar]
- Rosellen, J.; Dittmar, F.; Hauptmann, A.; Diemer, T.; Schuppe, H.C.; Schagdarsurengin, U.; Fritzenwanker, M.; Wagenlehner, F.; Pilatz, A. Impaired Semen Quality in Patients with Chronic Prostatitis. J. Clin. Med. 2024, 13, 2884. [Google Scholar] [CrossRef]
- Berg, E.; Houska, P.; Nesheim, N.; Schuppe, H.C.; Pilatz, A.; Fijak, M.; Manthey, M.; Steger, K.; Wagenlehner, F.; Schagdarsurengin, U. Chronic Prostatitis/Chronic Pelvic Pain Syndrome Leads to Impaired Semen Parameters, Increased Sperm DNA Fragmentation and Unfavorable Changes of Sperm Protamine mRNA Ratio. Int. J. Mol. Sci. 2021, 22, 7854. [Google Scholar] [CrossRef]
- Pilatz, A.; Rusz, A.; Wagenlehner, F.; Weidner, W.; Altinkilic, B. Reference values for testicular volume, epididymal head size and peak systolic velocity of the testicular artery in adult males measured by ultrasonography. Ultraschall Med. 2013, 34, 349–354. [Google Scholar]
- Aprikian, S.; Luz, M.; Brimo, F.; Scarlata, E.; Hamel, L.; Cury, F.L.; Tanguay, S.; Aprikian, A.G.; Kassouf, W.; Chevalier, S. Improving ultrasound-based prostate volume estimation. BMC Urol. 2019, 19, 68. [Google Scholar]
- Domann, E.; Hong, G.; Imirzalioglu, C.; Turschner, S.; Kühle, J.; Watzel, C.; Chakraborty, T. Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 2003, 41, 5500–5510. [Google Scholar]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Solomon, M.; Henkel, R. Semen culture and the assessment of genitourinary tract infections. Indian J. Urol. 2017, 33, 188–193. [Google Scholar] [PubMed]
- Ludwig, M.; Dimitrakov, J.; Diemer, T.; Huwe, P.; Weidner, W. Das Prostatitissyndrom. Ejakulatveränderungen und Auswirkungen auf die Fertilität [Prostatitis syndrome. Changes in the ejaculate and effects on fertility]. Urol. A 2001, 40, 18–23. [Google Scholar] [CrossRef]
- Ipe, D.S.; Horton, E.; Ulett, G.C. The Basics of Bacteriuria: Strategies of Microbes for Persistence in Urine. Front. Cell. Infect. Microbiol. 2016, 6, 14. [Google Scholar]
- Goel, N.; Wattal, C. 16S Ribosomal RNA Analysis for the Diagnosis of Urinary Tract Infection of Infants: Has the Time Arrived? Indian J. Pediatr. 2023, 90, 641–642. [Google Scholar] [CrossRef]
- Aragón, I.M.; Herrera-Imbroda, B.; Queipo-Ortuño, M.I.; Castillo, E.; Del Moral, J.S.; Gómez-Millán, J.; Yucel, G.; Lara, M.F. The Urinary Tract Microbiome in Health and Disease. Eur. Urol. Focus. 2018, 4, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Mashaly, M.; Masallat, D.T.; Elkholy, A.A.; Abdel-Hamid, I.A.; Mostafa, T. Seminal Corynebacterium strains in infertile men with and without leucocytospermia. Andrologia 2016, 48, 355–359. [Google Scholar]
- Vilvanathan, S.; Kandasamy, B.; Jayachandran, A.L.; Sathiyanarayanan, S.; Tanjore Singaravelu, V.; Krishnamurthy, V.; Elangovan, V. Bacteriospermia and its impact on basic semen parameters among infertile men. Interdiscip. Perspect. Infect. Dis. 2016, 2016, 2614692. [Google Scholar] [CrossRef] [PubMed]
- Moretti, E.; Capitani, S.; Figura, N.; Pammolli, A.; Federico, M.G.; Giannerini, V. The presence of bacteria species in semen and sperm quality. J. Assist. Reprod. Genet. 2009, 26, 47–56. [Google Scholar] [CrossRef]
- Upadhyaya, M.; Hibbard, B.M.; Walker, S.M. The effect of Ureaplasma urealyticum on semen characteristics. Fertil Steril. 1984, 41, 304–308. [Google Scholar] [CrossRef]
- Desai, S.; Cohen, S.; Khatamee, M.; Leiter, E. Ureaplasma urealyticum (T-mycoplasma) infection: Does it have a role in male infertility? J. Urol. 1980, 124, 469–471. [Google Scholar] [CrossRef]
Parameter | Median (IQR) or n (%) | Number of Patients |
---|---|---|
Age (years) | 37 (30–46) | 228 |
Type of prostatitis | 228 | |
Type IIIA | 11.8% | |
Type IIIB | 88.2% | |
IPSS (points) | 10 (6–16) | 201 |
IIEF (points) | 28 (22–30) | 142 |
CPSI-I (points) | 12 (8–14) | 220 |
CPSI-II (points) | 3 (2–6) | 220 |
CPSI-III (points) | 9 (7–11) | 220 |
CPSI total score (points) | 24 (19–28) | 220 |
Total testosterone (ng/dL) | 460 (352–563) | 226 |
PSA (ng/mL) | 0.67 (0.45–1.0) | 224 |
Estradiol (pg/mL) | 31 (26–27) | 225 |
CRP (mg/L) | 0.5 (0.5–1.8) | 225 |
Testicular volume (mL) | 15.0 (13–18) | 227 |
Prostate volume (mL) | 20.0 (16–25) | 225 |
Parameter | Patients with Chronic Prostatitis/CPPS (n = 228) | WHO 2021 Reference Values | Number of Patients |
---|---|---|---|
Volume | 2.5 (1.5–3.8) | 1.4 1 | 228 |
pH value | 7.8 (7.5–8.0) | ≥7.2 2 | 228 |
Sperm concentration (106/mL) | 52.5 (20.5–115.9) | 16 1 | 228 |
Total sperm count (106/ejaculate) | 127.5 (34.7–278.7) | 39 1 | 228 |
Progressive motility (%) | 49 (35–56) | 30 1 | 179 |
Sperm vitality (%) | 60 (54–75) | 58 1 | 61 |
Normal forms (%) | 12 (7–16) | 4 1 | 211 |
α-glucosidase (mU/ejaculate) | 46.9 (25.1–76.5) | ≥20/ejaculate 2 | 225 |
Fructose (µmol/ejaculate) | 26.8 (9.7–49.8) | ≥13/ejaculate 2 | 225 |
7.0 (3.8–13.8) | ≥2.4/ejaculate 2 | 225 | |
Peroxidase-positive leukocytes (106/mL) | 0.2 (0–0.5) | <1 2 | 228 |
Elastase (ng/mL) | 43.0 (14–121) | <250 3 | 223 |
Interleukin-8 (pg/mL) | 3308.0 (2061–5804) | <10,000 3 | 223 |
Parameter | Patients with Negative 16S rRNA Analysis (n = 184) | Patients with Positive Microbiology in Semen (n = 30) | Patients with Positive PCR for STI (n = 8) | Patients with Positive 16S rRNA (n = 15) | WHO 2021 Reference Values | p 1 |
---|---|---|---|---|---|---|
CPSI total score | 23.8 (19–28) | 23.1 (19–28) | 23.1 (14–28) | 23.2 (14–28) | n.a. | 0.537 |
Sperm concentration (106/mL) | 88.4 (20.8–126) | 60.0 (8.9–926) | 93.6 (18.8–157.5) | 113.1 (48.6–144.3) | 16 2 | 0.095 |
Peroxidase-positive leukocytes (106/mL) | 0 (0–1) | 1 (0–2) | 0 (0–1) | 0 (0–0) | 0 3 | 0.197 |
Elastase (ng/mL) | 42 (14–119) | 40 (15–206) | 59 (18–157) | 37 (10–77) | <250 4 | 0.789 |
Interleukin-8 (pg/mL) | 4893 (2085–5854) | 5599 (1986–7379) | 5456 (2820–6312) | 4609 (2143–7428) | <10,000 4 | 0.505 |
Parameter | Patients with No Microbiological Findings (n = 134) | Patients with at Least One Positive Finding (n = 94) | p 1 |
---|---|---|---|
Age (years) | 39 (31–47) | 37 (30–44) | 0.549 |
IPSS (points) | 11 (6–16) | 12 (6–17) | 0.822 |
IIEF (points) | 25 (22–30) | 24 (21–30) | 0.959 |
CPSI (points) | 24 (19–29) | 25 (19–29) | 0.619 |
Total testosterone (ng/mL) | 446 (330–539) | 496 (385–604) | 0.231 |
PSA (ng/mL) | 0.91 (0.46–1.08) | 0.73 (0.44–0.93) | 0.439 |
Estradiol (pg/mL) | 31 (26–36) | 33 (26–37) | 0.453 |
CRP (mg/L) | 1.44 (0.5–1.52) | 2.1 (0.5–2.2) | 0.501 |
Mean testicular volume (mL) | 15.3 (12–18) | 15.2 (13–18) | 0.401 |
Prostate volume (mL) | 21.4 (17–26) | 18.6 (16–25) | 0.212 |
Parameter | Patients with No Microbiological Findings (n = 134) | Patients with at Least One Positive Finding (n = 94) | WHO 2021 Reference Values | p 1 |
---|---|---|---|---|
Volume (mL) | 2.8 (1.5–4.0) | 2.7 (1.3–3.5) | 1.4 2 | 0.781 |
pH value | 7.8 (7.5–8.0) | 7.9 (7.5–8.4) | ≥7.2 3 | 0.348 |
Sperm concentration (106/mL) | 52.5 (21.0–133.8) | 53.7 (13.4–110.3) | 16 2 | 0.667 |
Total sperm count (106/ejaculate) | 132.8 (38.4–295.2) | 120.2 (29.9–279.8) | 39 2 | 0.594 |
Progressive motility (%) | 44 (39–57) | 43 (32–57) | 30 2 | 0.937 |
Sperm vitality (%) | 65 (53–77) | 61 (54–73) | 58 2 | 0.465 |
Normal forms (%) | 11 (7–12) | 12 (7–16) | 4 2 | 0.755 |
α-glucosidase (mU/ejaculate) | 48.1 (27.7–79.8) | 54.8 (21.8–73.1) | ≥20/ejaculate 3 | 0.525 |
Fructose (µmol/ejaculate) | 28.6 (10.3–50.8) | 35.2 (8.8–45.7) | ≥13/ejaculate 3 | 0.459 |
Peroxidase-positive leukocytes (106/mL) | 0.5 (0–1) | 0.5 (0–1) | <1 3 | 0.265 |
Elastase (ng/mL) | 45.0 (12.3–132.8) | 43.1 (17.0–151.1) | <250 4 | 0.988 |
Interleukin-8 (pg/mL) | 4814 (2146–5813) | 5374 (2068–6830) | <10,000 4 | 0.326 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosellen, J.; Fritzenwanker, M.; Schuppe, H.-C.; Schagdarsurengin, U.; Wagenlehner, F.; Pilatz, A. 16S rRNA Gene Sequence Analysis of V6–V8 Region Provides Limited Advantage in Diagnosis of Chronic Prostatitis. Diagnostics 2025, 15, 1003. https://doi.org/10.3390/diagnostics15081003
Rosellen J, Fritzenwanker M, Schuppe H-C, Schagdarsurengin U, Wagenlehner F, Pilatz A. 16S rRNA Gene Sequence Analysis of V6–V8 Region Provides Limited Advantage in Diagnosis of Chronic Prostatitis. Diagnostics. 2025; 15(8):1003. https://doi.org/10.3390/diagnostics15081003
Chicago/Turabian StyleRosellen, Jens, Moritz Fritzenwanker, Hans-Christian Schuppe, Undraga Schagdarsurengin, Florian Wagenlehner, and Adrian Pilatz. 2025. "16S rRNA Gene Sequence Analysis of V6–V8 Region Provides Limited Advantage in Diagnosis of Chronic Prostatitis" Diagnostics 15, no. 8: 1003. https://doi.org/10.3390/diagnostics15081003
APA StyleRosellen, J., Fritzenwanker, M., Schuppe, H.-C., Schagdarsurengin, U., Wagenlehner, F., & Pilatz, A. (2025). 16S rRNA Gene Sequence Analysis of V6–V8 Region Provides Limited Advantage in Diagnosis of Chronic Prostatitis. Diagnostics, 15(8), 1003. https://doi.org/10.3390/diagnostics15081003