Soluble Suppression of Tumorigenicity 2 (sST2) as a Diagnostic and Prognostic Marker in Acute Heart Failure and Sepsis: A Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. ST2 Testing
2.2. Biomarker Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ST2 | Suppression of Tumorigenicity 2 |
IL-1R | Interleukin-1 receptor |
IL-33 | Interleukin-33 |
sST2 | Soluble Suppression of Tumorigenicity 2 |
AHF | Acute heart failure |
ARDS | Acute respiratory distress syndrome |
COPD | Chronic obstructive pulmonary disease |
IBD | Inflammatory bowel disease |
PCT | Procalcitonin |
SAOD | Sepsis associated with organ damage |
hs-CRP | High-sensitivity C-reactive protein |
NT-ProBNP | N-terminal pro-B-type natriuretic peptide |
MR-proADM | Mid-regional pro-adrenomedullin |
HF | Heart failure |
References
- Chen, W.-Y.; Tsai, T.-H.; Yang, J.-L.; Li, L.-C. Therapeutic Strategies for Targeting IL-33/ST2 Signalling for the Treatment of Inflammatory Diseases. Cell Physiol. Biochem. 2018, 49, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, C.; Zhao, R.; Cao, Z. Diagnostic Value of sST2 in Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2021, 8, 697837. [Google Scholar] [CrossRef]
- Sciatti, E.; Merlo, A.; Scangiuzzi, C.; Limonta, R.; Gori, M.; D’Elia, E.; Aimo, A.; Vergaro, G.; Emdin, M.; Senni, M. Prognostic Value of sST2 in Heart Failure. J. Clin. Med. 2023, 12, 3970. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, X.; Xu, H.; Wu, Y.; Jia, X.; Fang, Y.; Lu, Y.; Xu, Y.; Zhang, J.; Su, Y. Serum Soluble ST2 Is a Valuable Prognostic Biomarker in Patients With Acute Heart Failure. Front. Cardiovasc. Med. 2022, 9, 812654. [Google Scholar] [CrossRef]
- Sahin, A.; Kaya, H.; Gül, İ. Relationship between sST2 Levels and Prognosis in Patients with Pulmonary Arterial Hypertension. Ann. Clin. Anal. Med. 2020, 11, 172–177. [Google Scholar] [CrossRef]
- Patil, T.R.; Patil, S.T.; Patilsss, S.; Patil, A. Non-Cardiac Conditions Which Can Elevate The Serum Levels of sST2. Indian Heart J. 2019, 71, 98. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Hong, X.-Y.; Zhou, H.; Liao, F.-L.; Guo, S.; Li, Y.; Chen, W.; Yang, G.; Ye, G.; Li, Y.; et al. Serum Soluble ST2 as a Novel Biomarker Reflecting Inflammatory Status and Disease Severity in Patients with COVID-19. Biomark. Med. 2020, 14, 1619–1629. [Google Scholar] [CrossRef]
- Inoue, H.; Fukuda, Y.; Ohta, S.; Homma, T.; Mochizuki, K.; Ikeda, H.; Ebato, T.; Mikuni, H.; Okazaki, T.; Uno, T.; et al. Elevated Serum Levels of Soluble ST2 in Severe COVID-19: As a Potential Biomarker for Invasive Mechanical Ventilation. Eur. Respir. J. 2022, 60, 1058. [Google Scholar] [CrossRef]
- Wei, Y.; Xiao, P.; Wu, B.; Chen, F.; Shi, X. Significance of sTREM-1 and sST2 Combined Diagnosis for Sepsis Detection and Prognosis Prediction. Open Life Sci. 2023, 18, 20220639. [Google Scholar] [CrossRef]
- Arnaldos-Carrillo, M.; Noguera-Velasco, J.A.; Martínez-Ardil, I.M.; Riquelme-Pérez, A.; Cebreiros-López, I.; Hernández-Vicente, Á.; Ros-Lucas, J.A.; Khan, A.; Bayes-Genís, A.; Pascual-Figal, D. Value of Increased Soluble Suppressor Tumorigenicity Biomarker 2 (sST2) on Admission as an Indicator of Severity in Patients with COVID-19. Med. Clin. 2023, 161, 185–191. [Google Scholar] [CrossRef]
- Sinha, N.; Kumar, V.; Verma, D.K.; Bhatnagar, P.; Singh, D.K. A Study to Determine Systemic Anti-Inflammatory Mediators in Chronic Obstructive Pulmonary Disorder. Asian J. Med. Sci. 2023, 14, 112–119. [Google Scholar] [CrossRef]
- Miftode, R.-S.; Constantinescu, D.; Cianga, C.M.; Petris, A.O.; Timpau, A.-S.; Crisan, A.; Costache, I.-I.; Mitu, O.; Anton-Paduraru, D.-T.; Miftode, I.-L.; et al. A Novel Paradigm Based on ST2 and Its Contribution towards a Multimarker Approach in the Diagnosis and Prognosis of Heart Failure: A Prospective Study during the Pandemic Storm. Life 2021, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Pec, J.; Tafelmeier, M.; Schmid, C.H.; Maier, L.; Arzt, M.; Wagner, S. Association of Soluble ST2 with Heart Failure and Other Comorbidities in Patients with Severe Coronary Heart Disease. Eur. Heart J. 2024, 45, ehae666.979. [Google Scholar] [CrossRef]
- Li, J.; Cao, T.; Wei, Y.; Zhang, N.; Zhou, Z.; Wang, Z.; Li, J.; Zhang, Y.; Wang, S.; Wang, P.; et al. A Review of Novel Cardiac Biomarkers in Acute or Chronic Cardiovascular Diseases: The Role of Soluble ST2 (sST2), Lipoprotein-Associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO), and Procalcitonin (PCT). Dis. Markers 2021, 2021, 6258865. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, W.S.; Roger, V.L.; Jaffe, A.S.; Weston, S.A.; AbouEzzeddine, O.F.; Jiang, R.; Manemann, S.M.; Enriquez-Sarano, M. Prognostic Value of Soluble ST2 After Myocardial Infarction: A Community Perspective. Am. J. Med. 2017, 130, 1112.e9–1112.e15. [Google Scholar] [CrossRef]
- Wang, J.; He, M.; Li, H.; Chen, Y.; Nie, X.; Cai, Y.; Xie, R.; Li, L.; Chen, P.; Sun, Y.; et al. Soluble ST2 Is a Sensitive and Specific Biomarker for Fulminant Myocarditis. J. Am. Heart Assoc. 2022, 11, e024417. [Google Scholar] [CrossRef]
- Lin, W.; Fu, C.; Miao, J.; Hong, W.; Chen, X.; Yan, S.; Lin, Y. Association between the Serum Albumin-Creatinine Ratio and 28-Day Intensive Care Unit Mortality among Patients with Sepsis: A Multicenter Retrospective Cohort Study. Front. Med. 2024, 11, 1484370. [Google Scholar] [CrossRef]
- Dudek, M.; Kałużna-Oleksy, M.; Migaj, J.; Sawczak, F.; Krysztofiak, H.; Lesiak, M.; Straburzyńska-Migaj, E. sST2 and Heart Failure-Clinical Utility and Prognosis. J. Clin. Med. 2023, 12, 3136. [Google Scholar] [CrossRef]
- Wacker, C.; Prkno, A.; Brunkhorst, F.M.; Schlattmann, P. Procalcitonin as a Diagnostic Marker for Sepsis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2013, 13, 426–435. [Google Scholar] [CrossRef]
- Rhee, C.; Filbin, M.R. Can Procalcitonin and Other Biomarkers Help Rapidly Identify Sepsis Among Undifferentiated High-Risk Patients in the Emergency Department? Crit. Care Med. 2024, 52, 979–982. [Google Scholar] [CrossRef]
- Doganci, M.; Eraslan Doganay, G.; Sazak, H.; Alagöz, A.; Cirik, M.O.; Hoşgün, D.; Cakiroglu, E.B.; Yildiz, M.; Ari, M.; Ozdemir, T.; et al. The Utility of C-Reactive Protein, Procalcitonin, and Leukocyte Values in Predicting the Prognosis of Patients with Pneumosepsis and Septic Shock. Medicina 2024, 60, 1560. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Singh Patel, S.; Sahu, C.; Singh, A.K.; Tejan, N.; Varghese, G.; Jamwal, A.; Singh, P.; Ghar, M. Bacterial Profile of Wound Site Infections and Evaluation of Risk Factors for Sepsis among Road Traffic Accident Patients from Apex Trauma Centre, Northern India. Access Microbiol. 2024, 6, 000836.v4. [Google Scholar] [CrossRef]
- Bouhemad, B.; Mongodi, S.; Via, G.; Rouquette, I. Ultrasound for “Lung Monitoring” of Ventilated Patients. Anesthesiology 2015, 122, 437–447. [Google Scholar] [CrossRef]
- Dieplinger, B.; Mueller, T. Soluble ST2 in Heart Failure. Clin. Chim. Acta 2015, 443, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Srdić, T.; Đurašević, S.; Lakić, I.; Ružičić, A.; Vujović, P.; Jevđović, T.; Dakić, T.; Đorđević, J.; Tosti, T.; Glumac, S.; et al. From Molecular Mechanisms to Clinical Therapy: Understanding Sepsis-Induced Multiple Organ Dysfunction. Int. J. Mol. Sci. 2024, 25, 7770. [Google Scholar] [CrossRef]
- Maisel, A.S.; Nakao, K.; Ponikowski, P.; Peacock, W.F.; Yoshimura, M.; Suzuki, T.; Tsutamoto, T.; Filippatos, G.S.; Saito, Y.; Seino, Y.; et al. Japanese-Western Consensus Meeting on Biomarkers. Int. Heart J. 2011, 52, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Khalid, S.; Jiang, L. Diagnostic and Predictive Performance of Biomarkers in Patients with Sepsis in an Intensive Care Unit. J. Int. Med. Res. 2019, 47, 44–58. [Google Scholar] [CrossRef]
- Rahman, T.M.; Hodgson, H.J.F. The Effects of Early and Late Administration of Inhibitors of Inducible Nitric Oxide Synthase in a Thioacetamide-Induced Model of Acute Hepatic Failure in the Rat. J. Hepatol. 2003, 38, 583–590. [Google Scholar] [CrossRef]
- Alcidi, G.; Goffredo, G.; Correale, M.; Brunetti, N.D.; Iacoviello, M. Brain Natriuretic Peptide Biomarkers in Current Clinical and Therapeutic Scenarios of Heart Failure. J. Clin. Med. 2022, 11, 3192. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Docherty, K.F.; Petrie, M.C.; Januzzi, J.L.; Mueller, C.; Anderson, L.; Bozkurt, B.; Butler, J.; Chioncel, O.; Cleland, J.G.F.; et al. Practical Algorithms for Early Diagnosis of Heart Failure and Heart Stress Using NT-proBNP: A Clinical Consensus Statement from the Heart Failure Association of the ESC. Eur. J. Heart Fail. 2023, 25, 1891–1898. [Google Scholar] [CrossRef]
- Elke, G.; Bloos, F.; Wilson, D.C.; Brunkhorst, F.M.; Briegel, J.; Reinhart, K.; Loeffler, M.; Kluge, S.; Nierhaus, A.; Jaschinski, U.; et al. The Use of Mid-Regional Proadrenomedullin to Identify Disease Severity and Treatment Response to Sepsis—A Secondary Analysis of a Large Randomised Controlled Trial. Crit. Care 2018, 22, 79. [Google Scholar] [CrossRef]
- Latini, R.; Masson, S.; Pirelli, S.; Barlera, S.; Pulitano, G.; Carbonieri, E.; Gulizia, M.; Vago, T.; Favero, C.; Zdunek, D.; et al. Circulating Cardiovascular Biomarkers in Recurrent Atrial Fibrillation: Data from the GISSI-Atrial Fibrillation Trial. J. Intern. Med. 2011, 269, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Wilson, D.C.; Bloos, F.; Schuetz, P.; van der Does, Y.; Melander, O.; Hausfater, P.; Legramante, J.M.; Claessens, Y.-E.; Amin, D.; et al. The Early Identification of Disease Progression in Patients with Suspected Infection Presenting to the Emergency Department: A Multi-Centre Derivation and Validation Study. Crit. Care 2019, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G.; et al. Albumin Replacement in Patients with Severe Sepsis or Septic Shock. N. Engl. J. Med. 2014, 370, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Januzzi, J.L.; Butler, J.; Jarolim, P.; Sattar, N.; Vijapurkar, U.; Desai, M.; Davies, M.J. Effects of Canagliflozin on Cardiovascular Biomarkers in Older Adults With Type 2 Diabetes. J. Am. Coll. Cardiol. 2017, 70, 704–712. [Google Scholar] [CrossRef]
- Gruden, G.; Carucci, P.; Barutta, F.; Burt, D.; Ferro, A.; Rolle, E.; Pinach, S.; Abate, M.L.; Campra, D.; Durazzo, M. Serum Levels of Anti-Heat Shock Protein 27 Antibodies in Patients with Chronic Liver Disease. Cell Stress. Chaperones 2021, 26, 151–157. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J.; CANTOS Trial Group. Relationship of C-Reactive Protein Reduction to Cardiovascular Event Reduction Following Treatment with Canakinumab: A Secondary Analysis from the CANTOS Randomised Controlled Trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef]
- Sorensen, L.L.; Liang, H.-Y.; Pinheiro, A.; Hilser, A.; Dimaano, V.; Olsen, N.T.; Hansen, T.F.; Sogaard, P.; Nowbar, A.; Pisanello, C.; et al. Safety Profile and Utility of Treadmill Exercise in Patients with High-Gradient Hypertrophic Cardiomyopathy. Am. Heart J. 2017, 184, 47–54. [Google Scholar] [CrossRef]
- Popov, D.; Borovkova, U.; Rybka, M.; Ramnyonok, T.; Golukhova, E. Mid-Regional pro-Adrenomedullin as a Predictor of in-Hospital Mortality in Adult Patients with COVID-19: A Single-Centre Prospective Study. Anaesthesiol. Intensive Ther. 2022, 54, 242–246. [Google Scholar] [CrossRef]
- Arroyo-Espliguero, R.; Viana-Llamas, M.C.; Silva-Obregón, A.; Avanzas, P. The Role of C-Reactive Protein in Patient Risk Stratification and Treatment. Eur. Cardiol. 2021, 16, e28. [Google Scholar] [CrossRef]
- Omote, K.; Verbrugge, F.H.; Borlaug, B.A. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu. Rev. Med. 2022, 73, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Caironi, P.; Spanuth, E.; Thomae, R.; Panigada, M.; Sangiorgi, G.; Fumagalli, R.; Mauri, T.; Isgrò, S.; Fanizza, C.; et al. Presepsin (Soluble CD14 Subtype) and Procalcitonin Levels for Mortality Prediction in Sepsis: Data from the Albumin Italian Outcome Sepsis Trial. Crit. Care 2014, 18, R6. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-C.; Xu, Y.-C.; Zhang, Z.-C. Multi-Biomarker Strategy for Prediction of Myocardial Dysfunction and Mortality in Sepsis. J. Zhejiang Univ. Sci. B 2020, 21, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Mueller, T.; Gegenhuber, A.; Kronabethleitner, G.; Leitner, I.; Haltmayer, M.; Dieplinger, B. Plasma Concentrations of Novel Cardiac Biomarkers before and after Hemodialysis Session. Clin. Biochem. 2015, 48, 1163–1166. [Google Scholar] [CrossRef]
Total (74 Patients) | Survivors (67 Patients) | Non-Survivors (7 Patients) | p-Value * | |
---|---|---|---|---|
Male (%) | 43 (58) | 34 (50.6) | 6 (85.7) | 0.078 |
Female (%) | 31 (42) | 33 (49.4) | 1 (14.3) | 0.078 |
Median age [IQR 25–75] | 82 [73–88] | 82 [72–88] | 81 [78–84] | 0.741 ** |
Hypertension (%) | 65 (88) | 61 (90.6) | 4 (57.1) | 0.011 |
Diabetes (%) | 22 (29.3) | 20 (29.4) | 2 (28.6) | 0.965 |
Hyperlipidemia (%) | 26 (34.8) | 25 (36.5) | 1 (14.3) | 0.242 |
Smoking (%) | 26 (34.8) | 24 (35.3) | 2 (28.6) | 0.724 |
Atrial Fibrillation (%) | 41 (55.4) | 29 (57.6) | 2 (28.6) | 0.145 |
Hypertensive Cardiopathy (%) | 22 (29.3) | 20 (29.4) | 2 (28.6) | 0.965 |
Hypertensive-Degenerative Cardiopathy (%) | 39 (52.2) | 35 (52.9) | 3 (42.9) | 0.616 |
Ischemic Heart Disease (%) | 23 (31.5) | 22(32.9) | 1 (14.3) | 0.315 |
Cerebrovascular Disease (%) | 26 (34.8) | 25 (36.5) | 1 (14.3) | 0.242 |
Atherosclerotic Disease (%) | 20 (27.2) | 18 (27.1) | 2 (28.6) | 0.932 |
Chronic Obstructive Pulmonary Disease (COPD) (%) | 26 (34.8) | 24 (35.3) | 2 (28.6) | 0.724 |
Neoplasia (%) | 14 (18.5) | 11 (16.5) | 3 (42.9) | 0.092 |
Chronic Renal Failure (%) | 49 (66.3) | 45 (67.1) | 4 (57.1) | 0.597 |
Preserved EF (≥50%) | 35 (46.7) | 33 (49.4%) | 1 (24.3%) | 0.192 |
Mildly Reduced EF (between 49 and 41) | 7 (9.8) | 7 (10.6%) | 0 | - |
Reduced EF (≤40%) | 32 (43.5) | 27 (40%) | 6 (85.7%) | 0.020 |
Total Readmissions | 11 (15.2) | 11 (16.5) | na | - |
Readmission at 30 days (%) | 4 (5.4) | 4 (5.9) | na | - |
Readmission at 60 days (%) | 4 (5.4) | 4 (5.9) | na | - |
Readmission at 90 days (%) | 3 (4.3) | 3 (4.7) | na | - |
Not Readmitted (%) | 57 (77.2) | 56 (83.5) | na | - |
Median LOS [IQR 25–75] | 10 [7–16.5] | 10 [7–15] | 15 [9.5–22] | 0.368 ** |
Variables | Patients with AHF N = 57 | Patients with Sepsis and AHF N = 9 | Patients with Sepsis N = 8 |
---|---|---|---|
sST2 (ng/mL) [IQR 25–75] | 42.24 [16.68–102.77] | 113.88 [57.54–189.38] | 83.84 [62.09–197.66] |
hs-CRP (mg/dL) [IQR 25–75] | 2.08 [0.64–4.84] | 15.57 [4.52–39.98] | 6.45 [5.59–9.69] |
NT-proBNP (pg/mL) [IQR 25–75] | 5727 [2304.50–11343] | 4544 [1653.27–13817.75] | 1974.5 [1067.50–2441.50] |
PCT (ng/mL) [IQR 25–75] | 0.07 [0.03–0.2] | 0.23 [0.13–1.37] | 0.21 [0.21–0.67] |
MR-proAM (nmol/L) [IQR 25–75] | 2.13 [1.30–2.68] | 2.38 [1.76–2.62] | 1.48 [1.36–2.50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davini, F.; Fogolari, M.; D’Avanzo, G.; Ristori, M.V.; Nucciarelli, S.; Bani, L.; Cristiano, A.; De Cesaris, M.; Spoto, S.; Angeletti, S. Soluble Suppression of Tumorigenicity 2 (sST2) as a Diagnostic and Prognostic Marker in Acute Heart Failure and Sepsis: A Comparative Analysis. Diagnostics 2025, 15, 1010. https://doi.org/10.3390/diagnostics15081010
Davini F, Fogolari M, D’Avanzo G, Ristori MV, Nucciarelli S, Bani L, Cristiano A, De Cesaris M, Spoto S, Angeletti S. Soluble Suppression of Tumorigenicity 2 (sST2) as a Diagnostic and Prognostic Marker in Acute Heart Failure and Sepsis: A Comparative Analysis. Diagnostics. 2025; 15(8):1010. https://doi.org/10.3390/diagnostics15081010
Chicago/Turabian StyleDavini, Flavio, Marta Fogolari, Giorgio D’Avanzo, Maria Vittoria Ristori, Serena Nucciarelli, Lucrezia Bani, Antonio Cristiano, Marina De Cesaris, Silvia Spoto, and Silvia Angeletti. 2025. "Soluble Suppression of Tumorigenicity 2 (sST2) as a Diagnostic and Prognostic Marker in Acute Heart Failure and Sepsis: A Comparative Analysis" Diagnostics 15, no. 8: 1010. https://doi.org/10.3390/diagnostics15081010
APA StyleDavini, F., Fogolari, M., D’Avanzo, G., Ristori, M. V., Nucciarelli, S., Bani, L., Cristiano, A., De Cesaris, M., Spoto, S., & Angeletti, S. (2025). Soluble Suppression of Tumorigenicity 2 (sST2) as a Diagnostic and Prognostic Marker in Acute Heart Failure and Sepsis: A Comparative Analysis. Diagnostics, 15(8), 1010. https://doi.org/10.3390/diagnostics15081010