Molecular Detection of Urogenital Schistosomiasis in Community Level in Semi-Rural Areas in South-East Gabon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studies Sites
2.2. Data Collection Procedure
2.3. Collection of Urine Samples
2.4. Detection of Hematuria
Microscopy Analysis
2.5. DNA Extraction and PCR Tests
2.6. Data Analysis
3. Results
3.1. Socio-Demographic Characteristics of the Population Studied
3.2. Prevalence and Intensity of Schistosoma Haematobium Infection
3.3. Threshold Range and Cycle Thresholds
3.4. Performance of Urine Strips and PCR Compared to Urinary Filtration
3.5. Detection of Hybrid Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Schistosomiasis (Bilharzia). Available online: https://www.who.int/health-topics/schistosomiasis (accessed on 3 September 2024).
- Barakat, R.M.R. Epidemiology of Schistosomiasis in Egypt: Travel through Time: Review. J. Adv. Res. 2013, 4, 425–432. [Google Scholar] [CrossRef]
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Randrianasolo, B.S.; Jourdan, P.M.; Ravoniarimbinina, P.; Ramarokoto, C.E.; Rakotomanana, F.; Ravaoalimalala, V.E.; Gundersen, S.G.; Feldmeier, H.; Vennervald, B.J.; van Lieshout, L.; et al. Gynecological Manifestations, Histopathological Findings, and Schistosoma-Specific Polymerase Chain Reaction Results Among Women with Schistosoma haematobium Infection: A Cross-sectional Study in Madagascar. J. Infect. Dis. 2015, 212, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Jordan, P.; Webbe, G.; Sturrock, R.F. Human Schistosomiasis. 1993. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19942027156 (accessed on 3 September 2024).
- Deribew, K.; Yewhalaw, D.; Erko, B.; Mekonnen, Z. Urogenital schistosomiasis prevalence and diagnostic performance of urine filtration and urinalysis reagent strip in schoolchildren, Ethiopia. PLoS ONE 2022, 17, e0271569. [Google Scholar] [CrossRef] [PubMed]
- Ibironke, O.A.; Phillips, A.E.; Garba, A.; Lamine, S.M.; Shiff, C. Diagnosis of Schistosoma haematobium by detection of specific DNA fragments from filtered urine samples. Am. J. Trop. Med. Hyg. 2011, 84, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Hatz, C.; Savioli, L.; Mayombana, C.; Dhunputh, J.; Kisumku, U.M.; Tanner, M. Measurement of schistosomiasis-related morbidity at community level in areas of different endemicity. Bull. World Health Organ. 1990, 68, 777–787. [Google Scholar]
- McDonald, M.M.; Swagerty, D.; Wetzel, L. Assessment of microscopic hematuria in adults. Am. Fam. Physician 2006, 73, 1748–1754. [Google Scholar]
- Mewamba, E.M.; Tiofack, A.A.Z.; Kamdem, C.N.; Ngassam, R.I.K.; Mbagnia, M.C.T.; Nyangiri, O.; Noyes, H.; Womeni, H.M.; Njiokou, F.; Simo, G. Field assessment in Cameroon of a reader of POC-CCA lateral flow strips for the quantification of Schistosoma mansoni circulating cathodic antigen in urine. PLoS Neglected Trop. Dis. 2021, 15, e0009569. [Google Scholar] [CrossRef]
- Quan, J.-H.; Choi, I.-W.; Ismail, H.A.H.A.; Mohamed, A.S.; Jeong, H.-G.; Lee, J.-S.; Hong, S.-T.; Yong, T.-S.; Cha, G.-H.; Lee, Y.-H. Genetic Diversity of Schistosoma haematobium Eggs Isolated from Human Urine in Sudan. Korean J. Parasitol. 2015, 53, 271–277. [Google Scholar] [CrossRef]
- Aryeetey, Y.A.; Essien-Baidoo, S.; Larbi, I.A.; Ahmed, K.; Amoah, A.S.; Obeng, B.B.; van Lieshout, L.; Yazdanbakhsh, M.; Boakye, D.A.; Verweij, J.J. Molecular diagnosis of Schistosoma infections in urine samples of school children in Ghana. Am. J. Trop. Med. Hyg. 2013, 88, 1028–1031. [Google Scholar] [CrossRef]
- Lodh, N.; Naples, J.M.; Bosompem, K.M.; Quartey, J.; Shiff, C.J. Detection of Parasite-Specific DNA in Urine Sediment Obtained by Filtration Differentiates between Single and Mixed Infections of Schistosoma mansoni and S. haematobium from Endemic Areas in Ghana. PLoS ONE 2014, 9, e91144. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Gordon, C.A.; Williams, G.M.; Li, Y.; Wang, Y.; Hu, J.; Gray, D.J.; Ross, A.G.; Harn, D.; McManus, D.P. Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infect. Dis. Poverty 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, L.M.V.; Gomes, L.I.; Oliveira, E.; de Oliveira, E.R.; de Oliveira, Á.A.; Enk, M.J.; Carneiro, N.F.; Rabello, A.; Coelho, P.M.Z. Evaluation of parasitological and molecular techniques for the diagnosis and assessment of cure of schistosomiasis mansoni in a low transmission area. Mem. Inst. Oswaldo Cruz 2015, 110, 209–214. [Google Scholar] [CrossRef]
- Teukeng, F.F.D.; Blin, M.; Bech, N.; Gomez, M.R.; Zein-Eddine, R.; Simo, A.M.K.; Allienne, J.-F.; Tchuem-Tchuenté, L.A.; Boissier, J. Hybridization increases genetic diversity in Schistosoma haematobium populations infecting humans in Cameroon. Infect. Dis. Poverty 2022, 11, 37. [Google Scholar] [CrossRef]
- Dejon-Agobé, J.C.; Honkpehedji, Y.J.; Zinsou, J.F.; Edoa, J.R.; Adégbitè, B.R.; Mangaboula, A.; Agnandji, S.T.; Mombo-Ngoma, G.; Ramharter, M.; Kremsner, P.G.; et al. Epidemiology of Schistosomiasis and Soil-Transmitted Helminth Coinfections among Schoolchildren Living in Lambaréné, Gabon. Am. J. Trop. Med. Hyg. 2020, 103, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Mintsa Nguema, R.; Mavoungou, J.F.; Mengue Me Ngou-Milama, K.; Mabicka Mamfoumbi, M.; Koumba, A.A.; Sani Lamine, M.; Diarra, A.; Nkone Asseko, G.; Mourou, J.R.; Bouyou Akotet, M.K.; et al. Baseline Mapping of Schistosomiasis and Soil Transmitted Helminthiasis in the Northern and Eastern Health Regions of Gabon, Central Africa: Recommendations for Preventive Chemotherapy. Trop. Med. Infect. Dis. 2018, 3, 119. [Google Scholar] [CrossRef]
- Kenguele, H.M.; Adegnika, A.A.; Nkoma, A.-M.; Ateba-Ngoa, U.; Mbong, M.; Zinsou, J.; Lell, B.; Verweij, J.J. Impact of Short-Time Urine Freezing on the Sensitivity of an Established Schistosoma Real-Time PCR Assay. Am. J. Trop. Med. Hyg. 2014, 90, 1153–1155. [Google Scholar] [CrossRef]
- Gabon • Fiche Pays • PopulationData.net. 2024. Available online: https://www.populationdata.net/pays/gabon/ (accessed on 4 September 2024).
- Mabika-Mamfoumbi, M.; Moussavou-Boussougou, M.; Nzenze-Afene, S.; Owono-Medang, M.; Bouyou-Okotet, M.; Kendzo, E.; Kombila, M. Prevalence evaluation of intestinal parasites in rural and sub-urban area in Gabon. Bull. Médical d’Owendo 2009, 12, 85–88. [Google Scholar]
- Cnops, L.; Soentjens, P.; Clerinx, J.; Van Esbroeck, M. A Schistosoma haematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants. PLoS Negl. Trop. Dis. 2013, 7, e2413. [Google Scholar] [CrossRef]
- Abd Elraheem, B.A.; Bayoumy, A.S.; El-Faramawy, M.S.; Aly, N.E.M.; El-Badry, A.A. Schistosoma haematobium DNA and eggs in urine of patients from Sohag, Egypt. J. Basic Appl. Zool. 2021, 82, 51. [Google Scholar] [CrossRef]
- Sow, D.; Sylla, K.; Dieng, N.M.; Senghor, B.; Gaye, P.M.; Fall, C.B.; Goumballa, N.; Diallo, A.; Ndiaye, J.L.A.; Parola, P.; et al. Molecular diagnosis of urogenital schistosomiasis in pre-school children, school-aged children and women of reproductive age at community level in central Senegal. Parasites Vectors 2023, 16, 43. [Google Scholar] [CrossRef] [PubMed]
- Knopp, S.; Ame, S.M.; Hattendorf, J.; Ali, S.M.; Khamis, I.S.; Bakar, F.; Khamis, M.A.; Person, B.; Kabole, F.; Rollinson, D. Correction to: Urogenital schistosomiasis elimination in Zanzibar: Accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections. Parasites Vectors 2019, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Degarege, A.; Mekonnen, Z.; Levecke, B.; Legesse, M.; Negash, Y.; Vercruysse, J.; Erko, B. Prevalence of Schistosoma haematobium Infection among School-Age Children in Afar Area, Northeastern Ethiopia. PLoS ONE 2015, 10, e0133142. [Google Scholar] [CrossRef] [PubMed]
- Ndassi, V.D.; Anchang-Kimbi, J.K.; Sumbele, I.U.N.; Wepnje, G.B.; Kimbi, H.K. Prevalence and Risk Factors Associated with S. haematobium Egg Excretion during the Dry Season, Six Months following Mass Distribution of Praziquantel (PZQ) in 2017 in the Bafia Health Area, South West Region Cameroon: A Cross-Sectional Study. J. Parasitol. Res. 2019, 2019, 4397263. [Google Scholar] [CrossRef]
- Zida, A.; Briegel, J.; Kabré, I.; Sawadogo, M.P.; Sangaré, I.; Bamba, S.; Yacouba, A.; Ouédraogo, A.; Yonli, D.; Drabo, F.; et al. Epidemiological and clinical aspects of urogenital schistosomiasis in women, in Burkina Faso, West Africa. Infect. Dis. Poverty 2016, 5, 81. [Google Scholar] [CrossRef]
- Rite, E.E.; Kapalata, S.N.; Munisi, D.Z. Prevalence, Intensity, and Factors Associated with Urogenital Schistosomiasis among Women of Reproductive Age in Mbogwe District Council, Geita Region, Tanzania. Biomed. Res. Int. 2020, 2020, 5923025. [Google Scholar] [CrossRef] [PubMed]
- Mazigo, H.D.; Uisso, C.; Kazyoba, P.; Nshala, A.; Mwingira, U.J. Prevalence, infection intensity and geographical distribution of schistosomiasis among pre-school and school aged children in villages surrounding Lake Nyasa, Tanzania. Sci. Rep. 2021, 11, 295. [Google Scholar] [CrossRef]
- Mazigo, H.D.; Mwingira, U.J.; Zinga, M.M.; Uisso, C.; Kazyoba, P.E.; Kinung’hi, S.M.; Mutapi, F. Urogenital schistosomiasis among pre-school and school aged children in four districts of north western Tanzania after 15 years of mass drug administration: Geographical prevalence, risk factors and performance of haematuria reagent strips. PLoS Neglected Trop. Dis. 2022, 16, e0010834. [Google Scholar] [CrossRef]
- Mutsaka-Makuvaza, M.J.; Matsena-Zingoni, Z.; Tshuma, C.; Ray, S.; Zhou, X.-N.; Webster, B.; Midzi, N. Reinfection of urogenital schistosomiasis in pre-school children in a highly endemic district in Northern Zimbabwe: A 12 months compliance study. Infect. Dis. Poverty 2018, 7, 102. [Google Scholar] [CrossRef]
- WHO Expert Committee on the Control of Schistosomiasis (2001 : Geneva, Switzerland); World Health Organization. (2002). Prevention and Control of Schistosomiasis and Soil-Transmitted Helminthiasis: Report of a WHO Expert Committee; World Health Organization. Available online: https://iris.who.int/handle/10665/42588 (accessed on 3 September 2024).
- Gordon, C.A.; Acosta, L.P.; Gobert, G.N.; Olveda, R.M.; Ross, A.G.; Williams, G.M.; Gray, D.J.; Harn, D.; Li, Y.; McManus, D.P. Real-time PCR Demonstrates High Prevalence of Schistosoma japonicum in the Philippines: Implications for Surveillance and Control. PLoS Neglected Trop. Dis. 2015, 9, e0003483. [Google Scholar] [CrossRef]
- Umar, S.; Shinkafi, S.H.; Hudu, S.A.; Neela, V.; Suresh, K.; Nordin, S.A.; Malina, O. Prevalence and molecular characterisation of Schistosoma haematobium among primary school children in Kebbi State, Nigeria. Ann. Parasitol. 2017, 63, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Melchers, N.V.S.V.; van Dam, G.J.; Shaproski, D.; Kahama, A.I.; Brienen, E.A.T.; Vennervald, B.J.; Lieshout, L. van Diagnostic Performance of Schistosoma Real-Time PCR in Urine Samples from Kenyan Children Infected with Schistosoma haematobium: Day-to-day Variation and Follow-up after Praziquantel Treatment. PLoS Neglected Trop. Dis. 2014, 8, e2807. [Google Scholar] [CrossRef]
- Gillardie, M.-L.; Babba, O.; Mahinc, C.; Duthel, M.; de Bengy, C.; Morineaud, C.; Rivollier, E.; Flori, P. Molecular approach to the epidemiology of urinary schistosomiasis in France. PLoS Negl. Trop. Dis. 2021, 15, e0009515. [Google Scholar] [CrossRef]
- Pomari, E.; Perandin, F.; La Marca, G.; Bisoffi, Z. Improved detection of DNA Schistosoma haematobium from eggs extracted by bead beating in urine. Parasitol. Res. 2019, 118, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Akande, I.S.; Odetola, A.A.; Osamudien, D.O.; Fowora, M.A.; Omonigbehin, E.A.; Akande, I.S.; Odetola, A.A.; Osamudien, D.O.; Fowora, M.A.; Omonigbehin, E.A. Polymerase chain reaction (PCR) investigations of prepatent Schistosoma haematobium cercariae incidence in five water bodies, South West, Nigeria. Afr. J. Med. Med. Sci. 2012, 41, 75–80. [Google Scholar] [PubMed]
- Gandasegui, J.; Fernández-Soto, P.; Dacal, E.; Rodríguez, E.; Saugar, J.M.; Yepes, E.; Aznar-Ruiz-de-Alegría, M.L.; Espasa, M.; Ninda, A.; Bocanegra, C.; et al. Field and laboratory comparative evaluation of a LAMP assay for the diagnosis of urogenital schistosomiasis in Cubal, Central Angola. Trop. Med. Int. Health 2018, 23, 992–1001. [Google Scholar] [CrossRef]
- Xing, W.; Yu, X.; Feng, J.; Sun, K.; Fu, W.; Wang, Y.; Zou, M.; Xia, W.; Luo, Z.; He, H.; et al. Field evaluation of a recombinase polymerase amplification assay for the diagnosis of Schistosoma japonicum infection in Hunan province of China. BMC Infect. Dis. 2017, 17, 164. [Google Scholar] [CrossRef]
Primer Names | Marker | Primer Sequences (5′-3′) | PCR Program |
---|---|---|---|
Sh- FW | DraI | GATCTCACCTATCAGACGAAAC | Denatunation: 95° to 5 min, Denaturation: 95 °C to 30 s, Annealing: 60 °C to 60 s for 39 cycles, starting from the second denaturation step. |
Sh- RV | TCACAACGATACGACCAAC | ||
Probe (FAM 5′-3′ZEN) | TGTTGGTGGAAGTGCCTGTTTCGCAA | ||
ASMIT | COX | TTTTTTGGTCATCCTGAGGTGTAT | Denatunation: 95° to 15 min, Denaturation: 95 °C to 30 s, Annealing: 62 °C to 45 s, Elongation: 72 °C to 45 s, final elongation: 72 °C to 7 min, for 40 cycles, starting from the second denaturation step. |
ShR | TGATAATCAATGACCCTGCAATAA | ||
SbR | -CACAGGATCAGACAAACGAGTACC | ||
ITS2F | ITS2 | GGAAACCAATGTATGGGATTATTG | Denatunation: 95° to 55 min, Denaturation: 95 °C to 30 s, Annealing: 56 °C to 30 s, elongation:72 °C to 1 min 30 s, final elongation: 72 °C to 7 min, for 40 cycles, starting from the second denaturation step. |
ITS2R | ATTAAGCCACGACTCGAGCA |
Parameters | N | Hematuria | Microscopy | Real-Time PCR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | p-Value | n (%) | p-Value | Eggs Means ± SD | p-Value | n (%) | p-Value | CT Means ± SD | p-Value | ||
Total | 281 | 94 (33.5) | 103 (36.7) | 133.85 ± 177 | 115 (40.9) | 28.4 ± 4.1 | |||||
Age | 0.0002 | 0.002 | 0.8 | 0.0001 | 0.7 | ||||||
≤5 years | 58 | 18 (31.03) | 22 (37.93) | 92 ± 132 | 25 (43.10) | 29.8 ± 3.8 | |||||
6–14 years | 106 | 42 (39.62) | 45 (42.45) | 135 ± 204 | 54 (50.94) | 28.3 ± 4.2 | |||||
15–17 years | 18 | 12 (66.7) | 11 (61.11) | 96 ± 122 | 11 (61.11) | 28.7 ± 3.8 | |||||
18–49 years | 62 | 19 (30.6) | 21 (33.87) | 119 ± 116 | 21 (33.87) | 28.4 ± 3.8 | |||||
>49 years | 37 | 3 (8.1) | 4 (10.81) | 197 ± 299 | 4 (10.81) | 27.3 ± 5.02 | |||||
Gender | 0.9 | 0.3 | 0.9 | 0.9 | 0.67 | ||||||
Females | 159 | 57 (35.8) | 62 (39) | 103 ± 143 | 67 (42.1) | 29 ± 3.5 | |||||
Males | 122 | 37 (30.33) | 41 (33.6) | 143 ± 204 | 48 (39.34) | 28.2 ± 4.6 | |||||
Women of childbearing age | 123 | 20 (16.3) | 20 (16.3) | 19 (15.5) | |||||||
Localities | <0.0001 | <0.0001 | 0.7 | <0.0001 | 0.3 | ||||||
LIBONGUI1 | 57 | 34 (59.65) | 34 (59.65) | 131.6 ± 205.6 | 37 (64.91) | 27.8 ± 4.2 | |||||
SETRAG | 173 | 59 (34.10) | 63 (36.42) | 118.6 ± 158.6 | 73 (42.2) | 29.04 ± 3.9 | |||||
LIBONGUI2 | 51 | 1 (2) | 6 (11.76) | 49.8 ± 56.7 | 5 (9.8) | 29.5 ± 3.1 |
Real Time Pcr | Miscroscopy | ||||||||
---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Total | Sensitivity (95%CI) | Spécificity (95%CI) | Vpp (95%CI) | VPN (95%CI) | Kappa | Youden | |
Positive | 102 | 12 | 114 | 99.03 (93–99) | 93.3 (88–96) | 89.5 (81–94) | 99.4 (96–99) | 0.89 | 0.93 |
Negative | 1 | 166 | 167 | ||||||
Total | 103 | 178 | 281 | ||||||
Hematuria | |||||||||
Positive | 80 | 14 | 94 | 74.8 (65–82) | 92.1 (86–95) | 85 (75–91) | 87.7 (82–92) | 0.78 | 0.67 |
Negative | 23 | 164 | 187 | ||||||
Total | 103 | 178 | 281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouna, L.C.; Oyegue-Liabagui, S.L.; Atiga, C.N.; Mbani Mpega Ntigui, C.N.; Imboumy-Limoukou, R.K.; Biteghe BI Essone, J.C.; Ontoua, S.S.; Moukodoum, D.N.; Okouga, A.P.; Lekana-Douki, J.B. Molecular Detection of Urogenital Schistosomiasis in Community Level in Semi-Rural Areas in South-East Gabon. Diagnostics 2025, 15, 1052. https://doi.org/10.3390/diagnostics15091052
Kouna LC, Oyegue-Liabagui SL, Atiga CN, Mbani Mpega Ntigui CN, Imboumy-Limoukou RK, Biteghe BI Essone JC, Ontoua SS, Moukodoum DN, Okouga AP, Lekana-Douki JB. Molecular Detection of Urogenital Schistosomiasis in Community Level in Semi-Rural Areas in South-East Gabon. Diagnostics. 2025; 15(9):1052. https://doi.org/10.3390/diagnostics15091052
Chicago/Turabian StyleKouna, Lady Charlène, Sandrine Lydie Oyegue-Liabagui, Chenis Nick Atiga, Chérone Nancy Mbani Mpega Ntigui, Roméo Karl Imboumy-Limoukou, Jean Claude Biteghe BI Essone, Steede Seinnat Ontoua, Diamella Nancy Moukodoum, Alain Prince Okouga, and Jean Bernard Lekana-Douki. 2025. "Molecular Detection of Urogenital Schistosomiasis in Community Level in Semi-Rural Areas in South-East Gabon" Diagnostics 15, no. 9: 1052. https://doi.org/10.3390/diagnostics15091052
APA StyleKouna, L. C., Oyegue-Liabagui, S. L., Atiga, C. N., Mbani Mpega Ntigui, C. N., Imboumy-Limoukou, R. K., Biteghe BI Essone, J. C., Ontoua, S. S., Moukodoum, D. N., Okouga, A. P., & Lekana-Douki, J. B. (2025). Molecular Detection of Urogenital Schistosomiasis in Community Level in Semi-Rural Areas in South-East Gabon. Diagnostics, 15(9), 1052. https://doi.org/10.3390/diagnostics15091052