Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Elastography Overview
- Static compression elastography (strain elastography) evaluates tissue stiffness by applying manual or physiological compression (natural organ activity, such as cardiac motion, vascular pulsations, and respiratory movements) and measuring tissue deformation. Unlike shear wave-based methods, it provides relative stiffness rather than absolute stiffness values [15]. Although strain elastography is not recommended for liver fibrosis staging due to its operator dependency and lack of standardization, its potential role in the evaluation of focal liver lesions, particularly hepatocellular carcinoma (HCC), has been explored in several studies.
- Dynamic compression, which involves sustained oscillations at a fixed frequency.
- Impulse compression, where brief vibrations result from either an external mechanical impulse (e.g., in FibroScan) or an ultrasound-induced impulse (as in ARFI and SWE), both of which generate shear waves.
2.1. Transient Elastography
2.2. Acoustic Radiation Force Impulse (ARFI)-Based Elastography Methods
3. Clinical Applications of Liver Elastography
3.1. Prediction of Hepatocellular Carcinoma (HCC) Development and Portal Hypertension (PHT) Occurrence
3.2. Discriminating Between Benign and Malignant Liver Lesions, as Well as Characterization of HCC
3.3. Prediction of Post-Treatment Complications
3.4. Biomarker of Treatment Response
3.5. Future Directions: Elastography and AI Integration
3.6. Best Practices for Liver Elastography in Clinical Use
3.7. Assessment of Diagnostic Reliability and Technical Failure in Elastography
3.7.1. Transient Elastography (TE) Technique
3.7.2. Shear-Wave Elastography Techniques, Including pSWE and 2D SWE
3.7.3. Diagnostic Limitations of Ultrasound-Based Elastography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- French METAVIR Cooperative Study Group; Bedossa, P. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994, 20, 15–20. [Google Scholar] [CrossRef]
- Ishak, K.G. Chronic hepatitis: Morphology and nomenclature. Mod. Pathol. 1994, 7, 690–713. [Google Scholar]
- Khalifa, A.; Rockey, D.C. The utility of liver biopsy in 2020. Curr. Opin. Gastroenterol. 2020, 36, 184–191. [Google Scholar] [CrossRef]
- Regev, A.; Berho, M.; Jeffers, L.J.; Milikowski, C.; Molina, E.G.; Pyrsopoulos, N.T.; Feng, Z.-Z.; Reddy, K.; Schiff, E.R. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. Am. J. Gastroenterol. 2002, 97, 2614–2618. [Google Scholar] [CrossRef]
- Tsochatzis, E.A. Screening for liver fibrosis—sequential non-invasive testing works best. J. Hepatol. 2023, 79, 263–265. [Google Scholar] [CrossRef]
- Bonnard, P.; Elsharkawy, A.; Zalata, K.; Delarocque-Astagneau, E.; Biard, L.; Le Fouler, L.; Hassan, A.B.; Abdel-Hamid, M.; El-Daly, M.; Gamal, M.E.; et al. Comparison of liver biopsy and noninvasive techniques for liver fibrosis assessment in patients infected with HCV-genotype 4 in Egypt. J. Viral Hepat. 2015, 22, 245–253. [Google Scholar] [CrossRef]
- Pais, R.; Lupşor, M.; Poantă, L.; Silaghi, A.; Rusu, M.L.; Badea, R.; Dumitraşcu, D.L. Liver biopsy versus noninvasive methods--fibroscan and fibrotest in the diagnosis of non-alcoholic fatty liver disease: A review of the literature. Rom. J. Intern. Med. 2009, 47, 331–340. [Google Scholar]
- Calès, P.; Oberti, F.; Michalak, S.; Hubert-Fouchard, I.; Rousselet, M.C.; Konaté, A.; Gallois, Y.; Ternisien, C.; Chevailler, A.; Lunel, F. A novel panel of blood markers to assess the degree of liver fibrosis. Hepatology 2005, 42, 1373–1381. [Google Scholar] [CrossRef]
- Loomba, R.; Adams, L.A. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Ang, B.; Haufe, W.; Hubert-Fouchard, I.; Rousselet, M.; Konaté, A.; Gallois, Y.; Ternisien, C.; Chevailler, A.; Lunel, F. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: A prospective study. Aliment. Pharmacol. Ther. 2015, 41, 1271–1280, Erratum in Aliment. Pharmacol. Ther. 2016, 43, 754. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, J.M.; Sagar, V.M.; Shah, T.; Shetty, S. Carcinogenesis on the background of liver fibrosis: Implications for the management of hepatocellular cancer. World J. Gastroenterol. 2018, 24, 4436–4447. [Google Scholar] [CrossRef]
- Ophir, J.; Céspedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Barr, R.G.; Farrokh, A.; Dighe, M.; Hocke, M.; Jenssen, C.; Dong, Y.; Saftoiu, A.; Havre, R.F. Strain Elastography—How To Do It? Ultrasound Int. Open 2017, 3, E137–E149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kennedy, P.; Wagner, M.; Castéra, L.; Hong, C.W.; Johnson, C.L.; Sirlin, C.B.; Taouli, B. Quantitative Elastography Methods in Liver Disease: Current Evidence and Future Directions. Radiology 2018, 286, 738–763. [Google Scholar] [CrossRef]
- Gennisson, J.L.; Deffieux, T.; Fink, M.; Tanter, M. Ultrasound elastography: Principles and techniques. Diagn. Interv. Imaging 2013, 94, 487–495. [Google Scholar] [CrossRef]
- Mare, R.; Sporea, I.; Lupuşoru, R.; Şirli, R.; Popescu, A.; Danila, M.; Pienar, C. The value of ElastPQ for the evaluation of liver stiffness in patients with B and C chronic hepatopathies. Ultrasonics 2017, 77, 144–151. [Google Scholar] [CrossRef]
- Dietrich, C.F.; Dong, Y. Shear wave elastography with a new reliability indicator. J. Ultrason. 2016, 16, 281–287. [Google Scholar] [CrossRef]
- Sporea, I.; Bende, F.; Şirli, R.; Popescu, A.; Danila, M.; Mare, R.; Stepan, A.; Lupusoru, R. The performance of 2D SWE.GE compared to transient elastography for the evaluation of liver stiffness. Ultraschall Med. 2016, 37, SL19_3. [Google Scholar] [CrossRef]
- Yang, Y.P.; Xu, X.H.; Guo, L.H.; He, Y.-P.; Wang, D.; Liu, B.-J.; Zhao, C.-K.; Chen, B.-D.; Xu, H.-X. Qualitative and quantitative analysis with a novel shear wave speed imaging for differential diagnosis of breast lesions. Sci. Rep. 2017, 7, 40964. [Google Scholar] [CrossRef] [PubMed]
- Piscaglia, F.; Salvatore, V.; Mulazzani, L.; Cantisani, V.; Colecchia, A.; Di Donato, R.; Felicani, C.; Ferrarini, A.; Gamal, N.; Grasso, V.; et al. Differences in liver stiffness values obtained with new ultrasound elastography machines and Fibroscan: A comparative study. Dig. Liver Dis. 2017, 49, 802–808, Erratum in Dig. Liver Dis. 2018, 50, 633. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.F.; Bamber, J.; Berzigotti, A.; Bota, S.; Cantisani, V.; Castera, L.; Cosgrove, D.; Ferraioli, G.; Friedrich-Rust, M.; Gilja, O.H.; et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version): EFSUMB-Leitlinien und Empfehlungen zur klinischen Anwendung der Leberelastographie, Update 2017 (Langversion). Ultraschall Med. 2017, 38, e16–e47, Erratum in Ultraschall Med. 2017, 38, e48. [Google Scholar] [CrossRef]
- Asbach, P.; Klatt, D.; Schlosser, B.; Biermer, M.; Muche, M.; Rieger, A.; Loddenkemper, C.; Somasundaram, R.; Berg, T.; Hamm, B.; et al. Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 2010, 257, 80–86. [Google Scholar] [CrossRef]
- Barr, R.G.; Wilson, S.R.; Rubens, D.; Garcia-Tsao, G.; Ferraioli, G. Update to the Society of Radiologists in Ultrasound Liver Elastography Consensus Statement. Radiology 2020, 296, 263–274. [Google Scholar] [CrossRef]
- Taylor, R.S.; Taylor, R.J.; Bayliss, S.; Hagström, H.; Nasr, P.; Schattenberg, J.M.; Ishigami, M.; Toyoda, H.; Wong, V.W.-S.; Peleg, N.; et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2020, 158, 1611–1625.e12. [Google Scholar] [CrossRef]
- Tian, C.; Ye, C.; Guo, H.; Lu, K.; Yang, J.; Wang, X.; Ge, X.; Yu, C.; Lu, J.; Jiang, L.; et al. Liver Elastography-based Risk Score for Predicting Hepatocellular Carcinoma Risk. J. Natl. Cancer Inst. 2024, 117, 761–771. [Google Scholar] [CrossRef]
- Corpechot, C.; Gaouar, F.; El Naggar, A.; Kemgang, A.; Wendum, D.; Poupon, R.; Carrat, F.; Chazouillères, O. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014, 146, 970–979.e6. [Google Scholar] [CrossRef]
- Singh, S.; Fujii, L.L.; Murad, M.H.; Wang, Z.; Asrani, S.K.; Ehman, R.L.; Kamath, P.S.; Talwalkar, J.A. Liver stiffness is associated with risk of decompensation, liver cancer, and death in patients with chronic liver diseases: A systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2013, 11, 1573–1584.e2. [Google Scholar] [CrossRef]
- Shi, K.Q.; Fan, Y.C.; Pan, Z.Z.; Lin, X.; Liu, W.; Chen, Y.; Zheng, M. Transient elastography: A meta-analysis of diagnostic accuracy in evaluation of portal hypertension in chronic liver disease. Liver Int. 2013, 33, 62–71. [Google Scholar] [CrossRef]
- Berzigotti, A.; Seijo, S.; Arena, U.; Abraldes, J.G.; Vizzutti, F.; García–Pagán, J.C.; Pinzani, M.; Bosch, J. Elastography, spleen size, and platelet count identify portal hypertension in patients with compensated cirrhosis. Gastroenterology 2013, 144, 102–111.e1. [Google Scholar] [CrossRef] [PubMed]
- Masuzaki, R.; Tateishi, R.; Yoshida, H.; Goto, E.; Sato, T.; Ohki, T.; Imamura, J.; Goto, T.; Kanai, F.; Kato, N.; et al. Prospective risk assessment for hepatocellular carcinoma development in patients with chronic hepatitis C by transient elastography. Hepatology 2009, 49, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Hernandez Sampere, L.; Vermehren, J.; Mücke, V.T.; Graf, C.; Peiffer, K.-H.; Dultz, G.; Zeuzem, S.; Waidmann, O.; Filmann, N.; Bojunga, J.; et al. Point Shear-Wave Elastography Using Acoustic Radiation Force Impulse Imaging for the Prediction of Liver-Related Events in Patients With Chronic Viral Hepatitis. Hepatol. Commun. 2020, 5, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, A.; Alem, S.A.; Fouad, R.; El Raziky, M.; El Akel, W.; Abdo, M.; Tantawi, O.; AbdAllah, M.; Bourliere, M.; Esmat, G. Changes in liver stiffness measurements and fibrosis scores following sofosbuvir based treatment regimens without interferon. J. Gastroenterol. Hepatol. 2017, 32, 1624–1630. [Google Scholar] [CrossRef]
- Sáez-Royuela, F.; Linares, P.; Cervera, L.A.; Almohalla, C.; Jorquera, F.; Lorenzo, S.; García, I.; Karpman, G.; Badia, E.; Vallecillo, M.A.; et al. Evaluation of advanced fibrosis measured by transient elastography after hepatitis C virus protease inhibitor-based triple therapy. Eur. J. Gastroenterol. Hepatol. 2016, 28, 305–312. [Google Scholar] [CrossRef]
- Suda, T.; Okawa, O.; Masaoka, R.; Gyotoku, Y.; Tokutomi, N.; Katayama, Y.; Tamano, M. Shear wave elastography in hepatitis C patients before and after antiviral therapy. World J. Hepatol. 2017, 9, 64–68. [Google Scholar] [CrossRef]
- Schmid, P.; Bregenzer, A.; Huber, M.; Rauch, A.; Jochum, W.; Müllhaupt, B.; Vernazza, P.; Opravil, M.; Weber, R.; Swiss HIV Cohort Study. Progression of Liver Fibrosis in HIV/HCV Co-Infection: A Comparison between Non-Invasive Assessment Methods and Liver Biopsy. PLoS ONE 2015, 10, e0138838. [Google Scholar] [CrossRef]
- Kim, S.U.; Lee, J.H.; Kim, D.Y.; Ahn, S.H.; Jung, K.S.; Choi, E.H.; Park, Y.N.; Han, K.-H.; Chon, C.Y.; Park, J.Y. Prediction of liver-related events using fibroscan in chronic hepatitis B patients showing advanced liver fibrosis. PLoS ONE 2012, 7, e36676. [Google Scholar] [CrossRef]
- Robic, M.A.; Procopet, B.; Métivier, S.; Péron, J.M.; Selves, J.; Vinel, J.P.; Bureau, C. Liver stiffness accurately predicts portal hypertension related complications in patients with chronic liver disease: A prospective study. J. Hepatol. 2011, 55, 1017–1024. [Google Scholar] [CrossRef]
- Akima, T.; Tamano, M.; Hiraishi, H. Liver stiffness measured by transient elastography is a predictor of hepatocellular carcinoma development in viral hepatitis. Hepatol. Res. 2011, 41, 965–970. [Google Scholar] [CrossRef]
- Chon, Y.E.; Jung, E.S.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.-H.; Chon, C.Y.; Jung, K.S.; Kim, S.U. The accuracy of noninvasive methods in predicting the development of hepatocellular carcinoma and hepatic decompensation in patients with chronic hepatitis B. J. Clin. Gastroenterol. 2012, 46, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Feier, D.; Lupsor Platon, M.; Stefanescu, H.; Badea, R. Transient elastography for the detection of hepatocellular carcinoma in viral C liver cirrhosis. Is there something else than increased liver stiffness? J. Gastrointest. Liver Dis. 2013, 22, 283–289. [Google Scholar]
- Jung, K.S.; Kim, S.U.; Ahn, S.H.; Park, Y.N.; Kim, D.Y.; Park, J.Y.; Chon, C.Y.; Choi, E.H.; Han, K.-H. Risk assessment of hepatitis B virus-related hepatocellular carcinoma development using liver stiffness measurement (FibroScan). Hepatology 2011, 53, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Klibansky, D.A.; Mehta, S.H.; Curry, M.; Nasser, I.; Challies, T.; Afdhal, N.H. Transient elastography for predicting clinical outcomes in patients with chronic liver disease. J. Viral Hepat. 2012, 19, e184–e193. [Google Scholar] [CrossRef]
- Narita, Y.; Genda, T.; Tsuzura, H.; Sato, S.; Kanemitsu, Y.; Ishikawa, S.; Kikuchi, T.; Hirano, K.; Iijima, K.; Wada, R.; et al. Prediction of liver stiffness hepatocellular carcinoma in chronic hepatitis C patients on interferon-based anti-viral therapy. J. Gastroenterol. Hepatol. 2014, 29, 137–143. [Google Scholar] [CrossRef]
- Poynard, T.; Vergniol, J.; Ngo, Y.; Foucher, J.; Munteanu, M.; Merrouche, W.; Colombo, M.; Thibault, V.; Schiff, E.; Brass, C.A.; et al. Staging chronic hepatitis C in seven categories using fibrosis biomarker (FibroTest™) and transient elastography (FibroScan®®). J. Hepatol. 2014, 60, 706–714. [Google Scholar] [CrossRef]
- Wang, H.M.; Hung, C.H.; Lu, S.N.; Chen, C.; Lee, C.; Hu, T.; Wang, J. Liver stiffness measurement as an alternative to fibrotic stage in risk assessment of hepatocellular carcinoma incidence for chronic hepatitis C patients. Liver Int. 2013, 33, 756–761. [Google Scholar] [CrossRef]
- Wong, G.L.; Chan, H.L.; Wong, C.K.; Leung, C.; Chan, C.Y.; Ho, P.P.-L.; Chung, V.C.-Y.; Chan, Z.C.-Y.; Tse, Y.-K.; Chim, A.M.-L.; et al. Liver stiffness-based optimization of hepatocellular carcinoma risk score in patients with chronic hepatitis B. J. Hepatol. 2014, 60, 339–345. [Google Scholar] [CrossRef]
- Kim, D.Y.; Song, K.J.; Kim, S.U.; Park, J.Y.; Ahn, S.H.; Han, K.-H. Transient elastography-based risk estimation of hepatitis B virus-related occurrence of hepatocellular carcinoma: Development and validation of a predictive model. OncoTargets Ther. 2013, 6, 1463–1469. [Google Scholar] [CrossRef]
- Cheng, X.; Tang, Y.; He, Q.; Song, J.; Wang, K.; Li, H.; Huang, J.; Wang, W.; Li, J.; Wang, H.; et al. Spleen-dedicated stiffness measurement performed well to rule out high-risk varices in HBV-related hepatocellular carcinoma: Screening for high-risk varices in HCC. Aliment. Pharmacol. Ther. 2024, 59, 680–691. [Google Scholar] [CrossRef]
- Dajti, E.; Marasco, G.; Ravaioli, F.; Alemanni, L.V.; Rossini, B.; Colecchia, L.; Vestito, A.; Festi, D.; Colecchia, A. The role of liver and spleen elastography in advanced chronic liver disease. Minerva Gastroenterol. 2021, 67, 151–163. [Google Scholar] [CrossRef] [PubMed]
- de Franchis, R.; Bosch, J.; Garcia-Tsao, G.; Reiberger, T.; Ripoll, C.; on behalf of the Baveno VII Faculty. Baveno VII—Renewing consensus in portal hypertension. J. Hepatol. 2022, 76, 959–974, Erratum in J. Hepatol. 2022, 77, 271. [Google Scholar] [CrossRef]
- Dajti, E.; Marasco, G.; Ravaioli, F.; Colecchia, L.; Ferrarese, A.; Festi, D.; Colecchia, A. Risk of hepatocellular carcinoma after HCV eradication: Determining the role of portal hypertension by measuring spleen stiffness. JHEP Rep. 2021, 3, 100289. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.S.; Lin, M.X.; Zhou, L.Y.; Pan, F.-S.; Huang, G.-L.; Wang, W.; Lu, M.-D.; Xie, X.-Y. Maximum Value Measured by 2-D Shear Wave Elastography Helps in Differentiating Malignancy from Benign Focal Liver Lesions. Ultrasound Med. Biol. 2016, 42, 2156–2166. [Google Scholar] [CrossRef]
- Guo, L.H.; Wang, S.J.; Xu, H.X.; Sun, L.-P.; Zhang, Y.-F.; Xu, J.-M.; Wu, J.; Fu, H.-J.; Xu, X.-H. Differentiation of benign and malignant focal liver lesions: Value of virtual touch tissue quantification of acoustic radiation force impulse elastography. Med. Oncol. 2015, 32, 68. [Google Scholar] [CrossRef] [PubMed]
- Ronot, M.; Di Renzo, S.; Gregoli, B.; Duran, R.; Castera, L.; Van Beers, B.E.; Vilgrain, V. Characterization of fortuitously discovered focal liver lesions: Additional information provided by shearwave elastography. Eur. Radiol. 2015, 25, 346–358. [Google Scholar] [CrossRef]
- Park, H.S.; Kim, Y.J.; Yu, M.H.; Jung, S.I.; Jeon, H.J. Shear Wave Elastography of Focal Liver Lesion: Intraobserver Reproducibility and Elasticity Characterization. Ultrasound Q. 2015, 31, 262–271. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, P.; Tian, S.M.; Qian, Y.; Deng, J.; Zhang, L. Application of acoustic radiation force impulse imaging for the evaluation of focal liver lesion elasticity. Hepatobiliary Pancreat. Dis. Int. 2013, 12, 165–170. [Google Scholar] [CrossRef]
- Park, H.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Chon, C.Y.; Han, K.-H.; Kim, S.U. Characterization of focal liver masses using acoustic radiation force impulse elastography. World J. Gastroenterol. 2013, 19, 219–226. [Google Scholar] [CrossRef]
- Guibal, A.; Boularan, C.; Bruce, M.; Vallin, M.; Pilleul, F.; Walter, T.; Scoazec, J.Y.; Boublay, N.; Dumortier, J.; Lefort, T. Evaluation of shearwave elastography for the characterisation of focal liver lesions on ultrasound. Eur. Radiol. 2013, 23, 1138–1149. [Google Scholar] [CrossRef]
- Tian, S.-M.; Zhou, P.; Qian, Y.; Chen, L.-R.; Zhang, P.; Li, R.-Z. Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions. Acad. Radiol. 2011, 18, 810–815. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, J.Y.; Han, J.K.; Choi, B.I. Acoustic radiation force impulse elastography for the evaluation of focal solid hepatic lesions: Preliminary findings. Ultrasound Med. Biol. 2010, 36, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Bota, S.; Herkner, H.; Sporea, I.; Salzl, P.; Sirli, R.; Neghina, A.M.; Peck-Radosavljevic, M. Meta-analysis: ARFI elastography for evaluating focal liver lesions. Eur. J. Radiol. 2012, 81, 572–579. [Google Scholar] [CrossRef]
- Zhang, H.P.; Gu, J.Y.; Bai, M.; Li, F.; Zhou, Y.Q.; Du, L.F. Value of shear wave elastography with maximal elasticity in differentiating benign and malignant solid focal liver lesions. World J. Gastroenterol. 2020, 26, 7416–7424. [Google Scholar] [CrossRef]
- Gheorghe, L.; Iacob, S.; Iacob, R.; Dumbrava, M.; Becheanu, G.; Herlea, V.; Gheorghe, C.; Lupescu, I.; Popescu, I. Real time elastography—A non-invasive diagnostic method of small hepatocellular carcinoma in cirrhosis. J. Gastrointest. Liver Dis. 2009, 18, 439–446. [Google Scholar]
- Sandulescu, L.; Rogoveanu, I.; Gheonea, I.A.; Cazacu, S.; Saftoiu, A. Real-time elastography applications in liver pathology between expectations and results. J. Gastrointest. Liver Dis. 2013, 22, 221–227. [Google Scholar]
- Shi, L.; Li, X.; Liao, W.; Wu, W.; Xu, M. Real-Time Elastography versus Shear Wave Elastography on Evaluating the Timely Radiofrequency Ablation Effect of Rabbit Liver: A Preliminary Experimental Study. Diagnostics 2023, 13, 1145. [Google Scholar] [CrossRef]
- Wu, D.; Chen, E.; Liang, T.; Wang, M.; Chen, B.; Lang, B.; Tang, H. Predicting the risk of postoperative liver failure and overall survival using liver and spleen stiffness measurements in patients with hepatocellular carcinoma. Medicine 2017, 96, e7864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Procopet, B.; Fischer, P.; Horhat, A.; Mois, E.; Stefanescu, H.; Comsa, M.; Graur, F.; Bartos, A.; Lupsor-Platon, M.; Badea, R.; et al. Good performance of liver stiffness measurement in the prediction of postoperative hepatic decompensation in patients with cirrhosis complicated with hepatocellular carcinoma. Med. Ultrason. 2018, 20, 272–277. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Zhou, T.; Cao, H.; Tan, B. Prognostic value of liver stiffness measurement for the liver-related surgical outcomes of patients under hepatic resection: A meta-analysis. PLoS ONE 2018, 13, e0190512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marasco, G.; Colecchia, A.; Colli, A.; Ravaioli, F.; Casazza, G.; Reggiani, M.L.B.; Cucchetti, A.; Cescon, M.; Festi, D. Role of liver and spleen stiffness in predicting the recurrence of hepatocellular carcinoma after resection. J. Hepatol. 2019, 70, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, S.U.; Jang, J.W.; Bae, S.H.; Kim, B.K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.-H.; Lee, S. Use of transient elastography to predict de novo recurrence after radiofrequency ablation for hepatocellular carcinoma. OncoTargets Ther. 2015, 8, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Cerrito, L.; Mignini, I.; Ainora, M.E.; Mosoni, C.; Gasbarrini, A.; Zocco, M.A. Hepatocellular Carcinoma in Patients with Nonalcoholic Fatty Liver Disease: The Prognostic Role of Liver Stiffness Measurement. Cancers 2023, 15, 637. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Delamarre, A.; Ahn, S.H.; Zhang, X.; Kim, B.K.; Liang, L.Y.; Lee, H.W.; Wong, G.L.-H.; Yuen, P.-C.; et al. A Liver Stiffness-Based Etiology-Independent Machine Learning Algorithm to Predict Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2024, 22, 602–610.e7. [Google Scholar] [CrossRef]
- Ferraioli, G.; Wong, V.W.; Castera, L.; Berzigotti, A.; Sporea, I.; Dietrich, C.F.; Choi, B.I.; Wilson, S.R.; Kudo, M.; Barr, R.G. Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med. Biol. 2018, 44, 2419–2440. [Google Scholar] [CrossRef]
- Ferraioli, G.; Barr, R.G.; Berzigotti, A.; Sporea, I.; Wong, V.W.; Reiberger, T.; Karlas, T.; Thiele, M.; Cardoso, A.C.; Ayonrinde, O.T.; et al. WFUMB Guideline/Guidance on Liver Multiparametric Ultrasound: Part 1. Update to 2018 Guidelines on Liver Ultrasound Elastography. Ultrasound Med. Biol. 2024, 50, 1071–1087. [Google Scholar] [CrossRef]
- Castéra, L.; Foucher, J.; Bernard, P.H.; Carvalho, F.; Allaix, D.; Merrouche, W.; Couzigou, P.; de Lédinghen, V. Pitfalls of liver stiffness measurement: A 5-year prospective study of 13,369 examinations. Hepatology. 2010, 51, 828–835. [Google Scholar] [CrossRef]
- Şirli, R.; Sporea, I.; Deleanu, A.; Culcea, L.; Szilaski, M.; Popescu, A.; Dănilă, M. Comparison between the M and XL probes for liver fibrosis assessment by transient elastography. Med. Ultrason. 2014, 16, 119–122. [Google Scholar] [CrossRef]
- Myers, R.P.; Pomier-Layrargues, G.; Kirsch, R.; Pollett, A.; Duarte–Rojo, A.; Wong, D.; Beaton, M.; Levstik, M.; Crotty, P.; Elkashab, M. Feasibility and diagnostic performance of the FibroScan XL probe for liver stiffness measurement in overweight and obese patients. Hepatology 2012, 55, 199–208. [Google Scholar] [CrossRef]
- Yoneda, M.; Thomas, E.; Sclair, S.N.; Grant, T.T.; Schiff, E.R. Supersonic Shear Imaging and Transient Elastography With the XL Probe Accurately Detect Fibrosis in Overweight or Obese Patients With Chronic Liver Disease. Clin. Gastroenterol. Hepatol. 2015, 13, 1502–1509.e5. [Google Scholar] [CrossRef]
- Woo, H.; Lee, J.Y.; Yoon, J.H.; Kim, W.; Cho, B.; Choi, B.I. Comparison of the Reliability of Acoustic Radiation Force Impulse Imaging and Supersonic Shear Imaging in Measurement of Liver Stiffness. Radiology 2015, 277, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Tinelli, C.; Zicchetti, M.; Above, E.; Poma, G.; Di Gregorio, M.; Filice, C. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur. J. Radiol. 2012, 81, 3102–3106. [Google Scholar] [CrossRef] [PubMed]
- Sagir, A.; Erhardt, A.; Schmitt, M.; Häussinger, D. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology 2008, 47, 592–595. [Google Scholar] [CrossRef]
- Arena, U.; Vizzutti, F.; Corti, G.; Ambu, S.; Stasi, C.; Bresci, S.; Moscarella, S.; Boddi, V.; Petrarca, A.; Laffi, G.; et al. Acute viral hepatitis increases liver stiffness values measured by transient elastography. Hepatology 2008, 47, 380–384. [Google Scholar] [CrossRef]
- Wong, G.L.; Wong, V.W.; Choi, P.C.; Chan, A.W.; Chim, A.M.; Yiu, K.K.; Chan, F.K.; Sung, J.J.; Chan, H.L. Increased liver stiffness measurement by transient elastography in severe acute exacerbation of chronic hepatitis B. J. Gastroenterol. Hepatol. 2009, 24, 1002–1007. [Google Scholar] [CrossRef]
- Trabut, J.B.; Thépot, V.; Nalpas, B.; Lavielle, B.; Cosconea, S.; Corouge, M.; Vallet-Pichard, A.; Fontaine, H.; Mallet, V.; Sogni, P.; et al. Rapid decline of liver stiffness following alcohol withdrawal in heavy drinkers. Alcohol. Clin. Exp. Res. 2012, 36, 1407–1411. [Google Scholar] [CrossRef]
- Bardou-Jacquet, E.; Legros, L.; Soro, D.; Latournerie, M.; Guillygomarc’h, A.; Le Lan, C.; Brissot, P.; Guyader, D.; Moirand, R. Effect of alcohol consumption on liver stiffness measured by transient elastography. World J. Gastroenterol. 2013, 19, 516–522. [Google Scholar] [CrossRef]
- Millonig, G.; Friedrich, S.; Adolf, S.; Fonouni, H.; Golriz, M.; Mehrabi, A.; Stiefel, P.; Pöschl, G.; Büchler, M.W.; Seitz, H.K.; et al. Liver stiffness is directly influenced by central venous pressure. J. Hepatol. 2010, 52, 206–210. [Google Scholar] [CrossRef]
- Boursier, J.; de Ledinghen, V.; Sturm, N.; Amrani, L.; Bacq, Y.; Sandrini, J.; Le Bail, B.; Chaigneau, J.; Zarski, J.-P.; Gallois, Y.; et al. Precise evaluation of liver histology by computerized morphometry shows that steatosis influences liver stiffness measured by transient elastography in chronic hepatitis C. J. Gastroenterol. 2014, 49, 527–537. [Google Scholar] [CrossRef]
- Wong, V.W.; Vergniol, J.; Wong, G.L.; Foucher, J.; Chan, H.L.-Y.; Le Bail, B.; Choi, P.C.-L.; Kowo, M.; Chan, A.W.-H.; Merrouche, W.; et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010, 51, 454–462. [Google Scholar] [CrossRef]
- Sporea, I.; Bota, S.; Gradinaru-Taşcău, O.; Sirli, R.; Popescu, A.; Jurchiş, A. Which are the cut-off values of 2D-Shear Wave Elastography (2D-SWE) liver stiffness measurements predicting different stages of liver fibrosis, considering Transient Elastography (TE) as the reference method? Eur. J. Radiol. 2014, 83, e118–e122. [Google Scholar] [CrossRef]
Technique | Ultrasound Frequency (MHz) | Availability | Cost | Liver- Sampling Volume | Region of Interest | Cause of Measurement Inaccuracy | Evidence |
---|---|---|---|---|---|---|---|
Transient elastography | 2.5–3.5 MHz | Widespread | Low | Small | Restricted, no guidance | Ascites, obese patients (M probe) | Excellent validation |
Point shear-wave elastography (pSWE) | 4–9 MHz for deep tissue | Moderate | Low | Small | Flexible with US guidance; recommended 1 cm below liver capsule and 5 cm from transducer | High body mass-index standardization needed | Moderate, good validation |
2D shear-wave elastography (2D SWE) | 9–15 MHz for superficial tissue | Limited | Low | Medium | Flexible with US guidance | High body mass-index standardization needed | Moderate, good validation |
Reference Number | Source Citation | Number of Patients | Method | Country/Region | Threshold Values | Diagnostic Performance | Key Findings |
---|---|---|---|---|---|---|---|
[26] | Taylor et al., Gastroenterology, 2020 | 11,000 | TE | Multiple countries | Varies by fibrosis stage | Prognostic accuracy for NAFLD outcomes | Liver stiffness correlates with fibrosis severity and clinical outcomes in NAFLD. |
[27] | Chan et al., JNCI, 2024 | 10,000 | SWE | Multiple countries | Liver stiffness-based risk score | HCC prediction accuracy | Liver elastography-based risk score predicts HCC risk effectively. |
[28] | Corpechot et al., Gastroenterology, 2014 | 180 | TE | France | 10–20 kPa for severe fibrosis | Predictive accuracy for PSC progression | Baseline and changes in liver stiffness are associated with fibrosis severity and outcomes in PSC. |
[29] | Singh et al., Clin Gastroenterol Hepatol, 2013 | 16,000 | TE | Multiple countries | Fibrosis staging thresholds | Prognostic value for decompensation and mortality | Liver stiffness is linked to decompensation, HCC, and death |
[30] | Shi et al., Liver Int, 2013 | 1300 | TE | Multiple countries | >13.6 kPa for PH | Sensitivity: 88% Specificity: 86% | TE accurately evaluates portal hypertension in chronic liver disease. |
[31] | Berzigotti et al., Gastroenterology, 2013 | 150 | TE | Italy | >21 kPa for PH | Combined with spleen size and platelets for accuracy | TE combined with clinical parameters identifies portal hypertension in compensated cirrhosis. |
[32] | Masuzaki et al., Hepatology, 2009 | 492 | TE | Japan | >25 kPa for HCC risk | Sensitivity: 81% Specificity: 77% | TE predicts HCC development in hepatitis C patients. |
[33] | Hernandez Sampere et al., Hepatol Commun, 2020 | 370 | pSWE | Germany | >9.5 kPa for fibrosis | Liver-related event prediction | ARFI demonstrated predictive value for liver complications associated with chronic viral hepatitis. |
[34] | Elsharkawy et al., J Gastroenterol Hepatol, 2017 | 302 | TE | Egypt | Post-treatment fibrosis reduction | Change in stiffness post-SVR | TE shows fibrosis improvement after antiviral therapy. |
[35] | Sáez-Royuela et al., Eur J Gastroenterol Hepatol, 2016 | 128 | TE | Spain | Post-treatment stiffness thresholds | TE reduction post-HCV therapy | TE effectively assesses fibrosis regression post-therapy. |
[36] | Suda et al., World J Hepatol, 2017 | 282 | SWE | Japan | TE vs. SWE thresholds | Pre- vs. post-treatment fibrosis assessment | SWE accurately tracks fibrosis changes in HCV patients after antiviral therapy. |
[37] | Schmid et al., PLoS One, 2015 | 165 | TE | Switzerland | Staging thresholds | Comparison with biopsy | TE provides comparable results to biopsy in HIV/HCV coinfected patients. |
[38] | Kim et al., PLoS One, 2012 | 578 | TE | South Korea | >12 kPa for fibrosis | Prediction of liver-related events | TE predicts liver-related complications in HBV patients. |
[39] | Robic et al., J Hepatol, 2011 | 121 | TE | France | >13.6 kPa for PH | PH-related complications prediction | TE accurately predicts portal hypertension complications. |
[40] | Akima et al., Hepatol Res, 2011 | 187 | TE | Japan | >15 kPa for HCC risk | HCC prediction accuracy | TE predicts HCC development in viral hepatitis. |
[41] | Chon et al., J Clin Gastroenterol, 2012 | 262 | TE | South Korea | HCC risk stratification | Sensitivity: 84% Specificity: 79% | TE predicts HCC and hepatic decompensation in HBV patients. |
[42] | Feier et al., J Gastrointestin Liver Dis, 2013 | 220 | TE | Romania | >17 kPa for HCC risk | Increased liver stiffness in HCC patients | TE helps detect early-stage HCC in liver cirrhosis. |
[43] | Jung et al., Hepatology, 2011 | 540 | TE | South Korea | HCC risk thresholds | Sensitivity: 83% Specificity: 75% | TE predicts HCC risk in chronic HBV. |
[44] | Klibansky et al., J Viral Hepat, 2012 | 310 | TE | USA | Liver stiffness-based risk stratification | Chronic liver disease outcome prediction | TE predicts long-term outcomes in chronic liver disease. |
[45] | Narita et al., J Gastroenterol Hepatol, 2014 | 189 | TE | Japan | >15 kPa for fibrosis progression | Fibrosis progression post-treatment | TE predicts liver stiffness changes after interferon therapy. |
[46] | Poynard et al., J Hepatol, 2014 | 1451 | TE | France | FibroScan staging | Sensitivity: 86% Specificity: 82% | TE combined with FibroTest accurately stages chronic hepatitis C. |
[47] | Wang et al., Liver Int, 2013 | 410 | TE | Taiwan | Liver stiffness-based HCC risk | Sensitivity: 85% Specificity: 78% | TE predicts HCC risk in chronic hepatitis C patients. |
[48] | Wong et al., J Hepatol, 2014 | 510 | TE | Hong Kong | Liver stiffness-based risk score | Optimization of HCC prediction | TE-based risk stratification optimizes HCC prediction in HBV. |
[49] | Kim et al., Onco Targets Ther, 2013 | 612 | TE | South Korea | TE-based HCC risk model | Sensitivity: 87% Specificity: 80% | TE predicts HCC in HBV using risk estimation models. |
Reference Number | Source Citation | Number of Patients | Method | Country/Region | Threshold Value | Diagnostic Performance | Key Findings |
---|---|---|---|---|---|---|---|
[54] | Tian et al., Ultrasound Med Biol, 2016 | 221 | 2D SWE | China | 34.6 kPa | Sensitivity: 86.7% Specificity: 85.5% | Maximum stiffness value (Emax) differentiates malignant from benign FLLs. |
[55] | Guo et al., Med Oncol, 2015 | 89 | ARFI elastography (VTQ) | China | 2.245 m/s | Sensitivity: 83.3% Specificity: 77.9% | SWV is significantly higher in malignant lesions. |
[56] | Ronot et al., Eur Radiol, 2015 | 121 | SWE | France | Not reported | Not reported | SWE provides additional diagnostic information for incidental FLLs. |
[57] | Park et al., Ultrasound Q, 2015 | 78 | SWE | South Korea | Not reported | Not reported | SWE demonstrates reproducibility in elasticity characterization of FLLs. |
[58] | Zhang et al., Hepatobiliary Pancreat Dis Int, 2013 | 110 | ARFI elastography | China | 1.96 m/s | Sensitivity: 91.7% Specificity: 84.7% | ARFI elastography evaluates FLL elasticity effectively. |
[59] | Park et al., World J Gastroenterol, 2013 | 84 | ARFI elastography | South Korea | 1.71 m/s | Sensitivity: 96.2% Specificity: 91.1% | ARFI elastography characterizes FLLs with diagnostic accuracy. |
[60] | Guibal et al., Eur Radiol, 2013 | 107 | SWE | France | Not reported | Not reported | SWE reliably characterizes FLLs using ultrasound. |
[61] | Shuang-Ming et al., Acad Radiol, 2011 | 95 | ARFI elastography | China | 1.82 m/s | Sensitivity: 86.7% Specificity: 81.2% | ARFI elastography aids in differential diagnosis of benign and malignant lesions. |
[62] | Cho et al., Ultrasound Med Biol, 2010 | 73 | ARFI elastography | South Korea | 1.21 m/s | Sensitivity: 100% Specificity: 91.7% | ARFI elastography evaluates focal solid hepatic lesions. |
[63] | Bota et al., Eur J Radiol, 2012 | Meta-analysis | ARFI elastography | Multiple | Not applicable | Sensitivity: 87% Specificity: 80% AUC: 0.93 | Meta-analysis of ARFI elastography for FLLs. |
[64] | Zhang et al., World J Gastroenterol, 2020 | 98 | Point SWE | China | 5.45 kPa | Sensitivity: 96%, Specificity: 85% | pSWE improves differentiation of benign and malignant FLLs. |
Reference Number | Source Citation | Number of Patients | Method | Country/Region | Threshold Values | Key Findings |
---|---|---|---|---|---|---|
[33] | Hernandez Sampere et al., Hepatol Commun, 2020 | 230 | pSWE | Germany | >9.5 kPa for fibrosis | ARFI predicts liver-related events in chronic viral hepatitis. |
[39] | Robic et al., J Hepatol, 2011 | 120 | TE | France | >13.6 kPa for PH | TE accurately predicts portal hypertension-related complications. |
[31] | Berzigotti et al., Gastroenterology, 2013 | 150 | TE | Italy | >21 kPa for PH | TE combined with clinical parameters identifies portal hypertension in compensated cirrhosis. |
[69] | Procopet et al., Med Ultrason, 2018 | 200 | TE | Romania | >27.5 kPa for decompensation | TE predicts hepatic decompensation risk post-surgery in cirrhosis patients. |
[68] | Wu et al., Medicine (Baltimore), 2017 | 180 | TE | China | >16.2 kPa | Higher LSM correlates with increased risk of postoperative liver failure |
[70] | Huang et al., PLOS One, 2018 | Meta-analysis | TE | Asia/Europe | >14.2 kPa (Asia), >11.3 kPa (Europe) | Higher preoperative LSM associated with increased postoperative complications |
Reference Number | Source Citation | Number of Patients | Method | Country/Region | Threshold Values | Diagnostic Performance | Key Findings |
---|---|---|---|---|---|---|---|
[71] | Marasco et al., J Hepatol, 2019 | 288 | TE, SWE | Italy | Liver stiffness > 21 kPa | Sensitivity: 85%, Specificity: 79% | Liver and spleen stiffness predict HCC recurrence post-resection. |
[72] | Lee et al., Onco Targets Ther, 2015 | 123 | TE | South Korea | Liver stiffness > 12.1 kPa | Sensitivity: 82%, Specificity: 76% | TE predicts de novo HCC recurrence after radiofrequency ablation. |
Application | Criteria | Management |
---|---|---|
Screening and risk stratification | Chronic liver disease (HBV, HCV, MASLD, and alcohol-related) | - LSM < 7 kPa: routine follow-up |
- LSM 7–12 kPa: monitor every 6–12 months | ||
- LSM > 12 kPa: HCC surveillance every 6 months (US ± AFP) | ||
Diagnosis and staging | Suspicious liver nodule on imaging | - Contrast-enhanced CT/MRI Elastography is not recommended for characterizing indeterminate lesions—cannot distinguish benign vs. malignant nodules reliably |
Adjunctive elastography use | High LSM (>20–25 kPa) + high-risk features (e.g., nodule growth and elevated AFP) | - May increase clinical suspicion of malignancy - Consider biopsy and/or multidisciplinary discussion in case of diagnostic uncertainty |
Stiffness < 20–25 kPa + benign features | - Monitor per guidelines | |
Treatment monitoring and prognosis | Post-HCC treatment (resection, ablation, transplant, and systemic therapy) | - Baseline elastography for risk stratification |
Baseline and follow-up LSM can support assessment of liver function and recurrence risk - LSM > 21–25 kPa may indicate persistent portal hypertension and higher risk of recurrence (confirm with clinical context) | ||
- LSM decrease > 30% over 6–12 months: good treatment response (but not yet validated as a surrogate marker) | ||
Long-term follow-up and prognosis | Post-SVR (HCV patients) or post-treatment monitoring, long-term survivors | - If LSM remains > 12 kPa → continue HCC surveillance due to persistence risk |
- If LSM normalizes (<7 kPa) → consider de-escalating monitoring - Normalization of LSM (<7 kPa) does not justify stopping surveillance in HBV/HDV or advanced fibrosis—etiology and baseline risk remain key |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerban, R.; Iacob, S.; Ester, C.; Ghioca, M.; Chitul, M.; Iacob, R.; Gheorghe, L. Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma. Diagnostics 2025, 15, 1087. https://doi.org/10.3390/diagnostics15091087
Cerban R, Iacob S, Ester C, Ghioca M, Chitul M, Iacob R, Gheorghe L. Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma. Diagnostics. 2025; 15(9):1087. https://doi.org/10.3390/diagnostics15091087
Chicago/Turabian StyleCerban, Razvan, Speranta Iacob, Carmen Ester, Mihaela Ghioca, Mirela Chitul, Razvan Iacob, and Liana Gheorghe. 2025. "Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma" Diagnostics 15, no. 9: 1087. https://doi.org/10.3390/diagnostics15091087
APA StyleCerban, R., Iacob, S., Ester, C., Ghioca, M., Chitul, M., Iacob, R., & Gheorghe, L. (2025). Liver Elastography Methods for Diagnosis of De Novo and Recurrent Hepatocellular Carcinoma. Diagnostics, 15(9), 1087. https://doi.org/10.3390/diagnostics15091087