Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases
Abstract
:1. Introduction
2. Methods
2.1. Clinical Measures
2.2. Biochemistry Assessments
2.3. Data Analysis
3. Results
3.1. Demographics
3.2. Biochemistry
3.3. Purine Metabolism Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BMP | Bone Morphogenic Protein |
HDAC | Histone Deacetylase |
ME/CFS | FS Myalgic encephalomyelitis/Chronic Fatigue Syndrome |
PEM | Post-Exertional Malaise |
SMAD | Transforming Growth Factor-Beta Signaling Proteins |
TGF-β | Transforming Growth Factor-Beta |
TCA | tricarboxylic acid cycle |
References
- Brown, A.; Jason, L.A. Meta-analysis investigating post-exertional malaise between patients and controls. J. Health Psychol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, C.W.; McGregor, N.R.; Lewis, D.P.; Butt, H.L.; Gooley, P.R. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics 2015, 11, 1626–1639. [Google Scholar] [CrossRef]
- Fluge, O.; Mella, O.; Bruland, O.; Risa, K.; Dyrstad, S.E.; Alme, K.; Rekeland, I.G.; Sapkota, D.; Rosland, G.V.; Fossa, A.; et al. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight 2016, 1, e89376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.S.; Little, J.B.; Yuan, Z.M. Glycolytic metabolism influences global chromatin structure. Oncotarget 2015, 6, 4214–4225. [Google Scholar] [CrossRef] [PubMed]
- Chano, T.; Avnet, S.; Kusuzaki, K.; Bonuccelli, G.; Sonveaux, P.; Rotili, D.; Mai, A.; Baldini, N. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells. Am. J. Cancer Res. 2016, 6, 859–875. [Google Scholar] [PubMed]
- Jason, L.; Sorenson, M.; Sebally, K.; Alkazemi, D.; Lerch, A.; Porter, N.; Kubow, S. Increased HDAC in association with decreased plasma cortisol in older adults with chronic fatigue syndrome. Brain Behav. Immun. 2011, 25, 1544–1547. [Google Scholar] [CrossRef]
- Whistler, T.; Jones, J.F.; Unger, E.R.; Vernon, S.D. Exercise responsive genes measured in peripheral blood of women with chronic fatigue syndrome and matched control subjects. BMC Physiol. 2005, 5, 5. [Google Scholar] [CrossRef]
- Boeuf, S.; Bovee, J.V.; Lehner, B.; van den Akker, B.; van Ruler, M.; Cleton-Jansen, A.M.; Richter, W. BMP and TGFbeta pathways in human central chondrosarcoma: Enhanced endoglin and Smad 1 signaling in high grade tumors. BMC Cancer 2012, 12, 488. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Wang, L.; Lau, C.W.; Xu, J.; Luo, J.Y.; Gou, L.; Yao, X.; Chen, Z.Y.; Ma, R.C.; et al. Bone Morphogenic Protein 4-Smad-Induced Upregulation of Platelet-Derived Growth Factor AA Impairs Endothelial Function. Arter. Thromb Vasc. Biol. 2016, 36, 553–560. [Google Scholar] [CrossRef]
- Montoya, J.G.; Holmes, T.H.; Anderson, J.N.; Maecker, H.T.; Rosenberg-Hasson, Y.; Valencia, I.J.; Chu, L.; Younger, J.W.; Tato, C.M.; Davis, M.M. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc. Natl. Acad Sci. USA 2017, 114, E7150–E7158. [Google Scholar] [CrossRef] [Green Version]
- Wyller, V.B.; Nguyen, C.B.; Ludviksen, J.A.; Mollnes, T.E. Transforming growth factor beta (TGF-beta) in adolescent chronic fatigue syndrome. J. Transl. Med. 2017, 15, 245. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.S.; Raivio, K.O.; Seegmiller, J.E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J. Biol. Chem. 1979, 254, 8956–8962. [Google Scholar] [PubMed]
- Matsumoto, S.S.; Raivio, K.O.; Willis, R.C.; Seegmiller, J.E. Interactions between energy metabolism and adenine nucleotide metabolism in human lymphoblasts. Adv. Exp. Med. Biol. 1979, 122B, 277–282. [Google Scholar] [PubMed]
- Mensah, F.K.F.; Bansal, A.S.; Ford, B.; Cambridge, G. Chronic fatigue syndrome and the immune system: Where are we now? Neurophysiol. Clin. 2017, 47, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poznanski, S.M.; Barra, N.G.; Ashkar, A.A.; Schertzer, J.D. Immunometabolism of T cells and NK cells: Metabolic control of effector and regulatory function. Inflamm. Res. 2018, 67, 813–828. [Google Scholar] [CrossRef]
- Cheng, S.C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.; Rao, N.A.; Aghajanirefah, A.; et al. mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014, 345, 1250684. [Google Scholar] [CrossRef] [PubMed]
- Georgiades, E.; Behan, W.M.; Kilduff, L.P.; Hadjicharalambous, M.; Mackie, E.E.; Wilson, J.; Ward, S.A.; Pitsiladis, Y.P. Chronic fatigue syndrome: New evidence for a central fatigue disorder. Clin. Sci. (Lond.) 2003, 105, 213–218. [Google Scholar] [CrossRef]
- Choudhary, C.; Kumar, C.; Gnad, F.; Nielsen, M.L.; Rehman, M.; Walther, T.C.; Olsen, J.V.; Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325, 834–840. [Google Scholar] [CrossRef]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.R.; Henry, J.D. The Depression Anxiety Stress Scales (DASS): Normative data and latent structure in a large non-clinical sample. Br. J. Clin. Psychol. 2003, 42, 111–131. [Google Scholar] [CrossRef] [Green Version]
- McGregor, N.R. An Investigation of the Association between Toxin Producing Staphylococcus, Biochemical Changes and Jaw Muscle Pain. Ph.D. Thesis, University of Sydney, Sydney, NSW, Australia, 2000. [Google Scholar]
- McGregor, N.R.; Armstrong, C.W.; Lewis, D.P.; Butt, H.L.; Gooley, P.R. Widespread pain and altered renal function in ME/CFS patients. Fatigue Biomed. Health Behav. 2016, 4, 12. [Google Scholar] [CrossRef]
- Sheedy, J.R.; Ebeling, P.R.; Gooley, P.R.; McConville, M.J. A sample preparation protocol for 1H nuclear magnetic resonance studies of water-soluble metabolites in blood and urine. Anal. Biochem. 2010, 398, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Townsend, M.H.; Robison, R.A.; O’Neill, K.L. A review of HPRT and its emerging role in cancer. Med. Oncol. 2018, 35, 89. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Gomez, M.; Brockdorff, N.; Feil, R. Differential patterns of histone methylation and acetylation distinguish active and repressed alleles at X-linked genes. Cytogenet Genome Res. 2002, 99, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Keohane, A.M.; O’Neill, L.P.; Belyaev, N.D.; Lavender, J.S.; Turner, B.M. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 1996, 180, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Sas, K.M.; Kayampilly, P.; Byun, J.; Nair, V.; Hinder, L.M.; Hur, J.; Zhang, H.; Lin, C.; Qi, N.R.; Michailidis, G.; et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight 2016, 1, e86976. [Google Scholar] [CrossRef]
- Lin, C.L.; Lee, P.H.; Hsu, Y.C.; Lei, C.C.; Ko, J.Y.; Chuang, P.C.; Huang, Y.T.; Wang, S.Y.; Wu, S.L.; Chen, Y.S.; et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J. Am. Soc. Nephrol. 2014, 25, 1698–1709. [Google Scholar] [CrossRef]
- Wang, S.; de Caestecker, M.; Kopp, J.; Mitu, G.; Lapage, J.; Hirschberg, R. Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J. Am. Soc. Nephrol. 2006, 17, 2504–2512. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Y.; Li, S.; Shi, L.; Liu, L.; Zhang, Y.; Shi, M.; Guo, B. BMP-7 enhances SnoN mRNA expression in renal tubular epithelial cells under high-glucose conditions. Mol. Med. Rep. 2017, 16, 3308–3314. [Google Scholar] [CrossRef] [Green Version]
- Vollmer-Conna, U.; Cameron, B.; Hadzi-Pavlovic, D.; Singletary, K.; Davenport, T.; Vernon, S.; Reeves, W.C.; Hickie, I.; Wakefield, D.; Lloyd, A.R.; et al. Postinfective fatigue syndrome is not associated with altered cytokine production. Clin. Infect. Dis. 2007, 45, 732–735. [Google Scholar] [CrossRef]
- Buscarinu, M.C.; Cerasoli, B.; Annibali, V.; Policano, C.; Lionetto, L.; Capi, M.; Mechelli, R.; Romano, S.; Fornasiero, A.; Mattei, G.; et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study. Mult. Scler. 2017, 23, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.K.; Cook, D.; Meyer, J.; Vernon, S.D.; Le, T.; Clevidence, D.; Robertson, C.E.; Schrodi, S.J.; Yale, S.; Frank, D.N. Changes in Gut and Plasma Microbiome following Exercise Challenge in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE 2015, 10, e0145453. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism 2006, 55, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Borsheim, E.; Tipton, K.D.; Wolf, S.E.; Wolfe, R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E648–E657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.L.; Walton, K.L.; Hagg, A.; Colgan, T.D.; Johnson, K.; Qian, H.; Gregorevic, P.; Harrison, C.A. Specific targeting of TGF-beta family ligands demonstrates distinct roles in the regulation of muscle mass in health and disease. Proc. Natl. Acad Sci. USA 2017, 114, E5266–E5275. [Google Scholar] [CrossRef]
- Timmons, J.A.; Gustafsson, T.; Sundberg, C.J.; Jansson, E.; Greenhaff, P.L. Muscle acetyl group availability is a major determinant of oxygen deficit in humans during submaximal exercise. Am. J. Physiol. 1998, 274, E377–E380. [Google Scholar] [CrossRef] [PubMed]
- Nakhooda, A.F.; Wei, C.N.; Marliss, E.B. Muscle protein catabolism in diabetes: 3-methylhistidine excretion in the spontaneously diabetic “BB” rat. Metabolism 1980, 29, 1272–1277. [Google Scholar] [CrossRef]
- White, P.D.; Goldsmith, K.; Johnson, A.L.; Chalder, T.; Sharpe, M. Recovery from chronic fatigue syndrome after treatments given in the PACE trial. Psychol. Med. 2013, 43, 2227–2235. [Google Scholar] [CrossRef] [Green Version]
- White, P.D.; Goldsmith, K.A.; Johnson, A.L.; Potts, L.; Walwyn, R.; DeCesare, J.C.; Baber, H.L.; Burgess, M.; Clark, L.V.; Cox, D.L.; et al. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): A randomised trial. Lancet 2011, 377, 823–836. [Google Scholar] [CrossRef]
- Kindlon, T. Do graded activity therapies cause harm in chronic fatigue syndrome? J. Health Psychol. 2017, 22, 1146–1154. [Google Scholar] [CrossRef]
- Geraghty, K.J.; Blease, C. Myalgic encephalomyelitis/chronic fatigue syndrome and the biopsychosocial model: A review of patient harm and distress in the medical encounter. Disabil. Rehabil. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
Control | ME/CFS NoPEM | ME/CFS PEM | |
---|---|---|---|
Number | 25 | 11 | 35 |
Age | 33.6 ± 7.8 * | 30.9 ± 9.6 | 42.1 ± 16.3 |
%Females | 96% | 100% | 80% |
Duration (years) | - | 8.7 ± 5.4 | 12.1 ± 9.7 |
Age at Onset | - | 22.8 ± 6.8 | 30 ± 13.9 |
Systolic BP | - | 116 ± 12 | 129 ± 17 |
Diastolic BP | - | 79 ± 7 | 83 ± 9 |
Pulse rate | - | 78 ± 11 | 73 ± 13 |
BMI x ± SD | 23.1 ± 2.6 | 22.7 ± 3.6 | 24.9 ± 6.1 |
DASS Depression | 0 | 11.2 ± 10.7 | 11.1 ± 11.1 |
DASS Anxiety | 0.5 ± 0.6 | 13.3 ± 8.3 | 9.8 ± 7.8 |
DASS Stress | 3.5 ± 3.6 * | 20.7 ± 9.4 * | 12.9 ± 8.7 |
PEM 7D | 0.1 ± 0.4 ** | 1.3 ± 0.65 ** | 3.7 ± 0.5 **,‡ |
12F | 0.1 ± 0.4 ** | 2.8 ± 1.2 ** | 3.5 ± 0.6 **,† |
Fatigue 7D | 0.7 ± 0.8 ** | 3.2 ± 0.9 ** | 3.7 ± 0.6 ** |
12F | 1.1 ± 0.8 ** | 3.8 ± 0.6 ** | 3.8 ± 0.4 ** |
Sleep Disturbance 7D | 1.6 ± 2.6 ** | 10.9 ± 2.5 ** | 10.5 ± 3.2 ** |
12F | 2.6 ± 2.3 ** | 12.3 ± 2.7 ** | 11.1 ± 2.8 ** |
Cognition scores 7D | 2.3 ± 2.9 ** | 16.1 ± 5.8 ** | 17.3 ± 6.5 ** |
12F | 3.6 ± 3.7 ** | 18.8 ± 5.6 ** | 18.3 ± 5.9 ** |
Body Pain 7D | 1.3 ± 1.3 ** | 6.3 ± 2.1 ** | 6.3 ± 2.2 ** |
Distribution 12F | 2.6 ± 1.3 ** | 7.1 ± 1.5 ** | 6.9 ± 2.1 ** |
Serum | Control Mean (SD) | ME/CFS NoPEM Mean (SD) | ME/CFS PEM Mean (SD) |
---|---|---|---|
Hypoxanthine (μM) | 15.7 ± 12.2 ** | 3.6 ± 1.4 ** | 6.6 ± 8.2 ** |
Lactate (μM) | 637 ± 335 ** | 339 ± 68 * | 399 ± 240 ** |
Phenylalanine (μM) | 18.4 ± 3.1 ** | 15.5 ± 2.2 | 15.1 ± 3.5 ** |
Glucose (μM) | 971 ± 233 * | 1266 ± 249 * | 1189 ± 318 * |
Hypoxanthine % | 0.55 ± 0.39 ** | 0.14 ± 0.05 ** | 0.24 ± 0.25 ** |
Lactate % | 22.7 ± 10.5 ** | 12.9 ± 2.0 * | 14.7 ± 6.5 ** |
Phenylalanine % | 0.68 ± 0.09 ** | 0.60 ± 0.10 | 0.58 ± 0.10 ** |
Glucose % | 36.2 ± 9.5 ** | 48.1 ± 5.3 ** | 45.4 ± 7.5 ** |
Urine | |||
Acetate (μM) | 91.9 ± 60.3 ** | 37.0 ± 14.9 ** | 63.3 ± 31.8 † |
Formate (μM) | 81.1 ± 56.1 * | 27.1 ± 15.2 ** | 43.0 ± 30.3 * |
Urea (μM) | 7969 ± 3050 * | 4868 ± 2678 ** | 5821 ± 2425 |
Mannitol (μM) | 312 ± 198 * | 96 ± 57 ** | 258 ± 344 * |
Serine (μM) | 383 ± 198 * | 178 ± 108 ** | 313 ± 193 |
Pyruvate (μM) | 22.2 ± 10.7 * | 11.3 ± 6.4 ** | 18.4 ± 12.6 |
Hippurate (μM) | 632 ± 424 * | 297 ± 253 * | 666 ± 612 |
Methylhistidine (μM) | 278 ± 192 * | 230 ± 418 * | 358 ± 373 † |
Pyruvate % | 0.36 ± 0.08 ** | 0.26 ± 0.11 * | 0.27 ± 0.09 ** |
Urea % | 4.7 ± 3.4 ** | 3.8 ± 5.3 | 5.6 ± 5.1 ** |
Serine % | 6.1 ± 1.6 * | 4.2 ± 0.9 * | 4.8 ± 1.9 * |
Creatinine % | 19.7 ± 10.3 * | 33.4 ± 9.2 * | 25.7 ± 11.5 |
Acetate % | 1.53 ± 0.67 * | 0.94 ± 0.26 * | 1.08 ± 0.61 * |
Allantoin % | 0.53 ± 0.28 * | 0.96 ± 0.33 * | 0.78 ± 0.53 |
Tryptophan % | 0.49 ± 0.16 * | 0.49 ± 0.35 | 0.36 ± 0.10 * |
Fecal | |||
Butyrate % | 9.8 ± 3.5 * | 15.2 ± 4.5 * | 11.3 ± 4.4 † |
Ratios | |||
Serum Glucose: Lactate | 2.2 ± 1.4 ** | 3.8 ± 0.7 ** | 3.6 ± 1.4 ** |
Urine Glucose: Lactate | 5.2 ± 2.3 * | 7.8 ± 4.7 * | 6.2 ± 1.8 |
Serum Glucose: Acetate | 96.4 ± 53.6 ** | 150.6 ± 45.8 * | 155.2 ± 72.0 ** |
Urine Glucose: Acetate | 1.37 ± 0.61 * | 1.91 ± 0.52 * | 1.78 ± 0.70 |
Serum Acetate: Urine Acetate | 0.16 ± 0.09 * | 0.30 ± 0.18 * | 0.18 ± 0.09 † |
Serum | 7-Day PEM All Subjects | 7-Day PEM ME/CFS Subjects | 12-Month PEM All Subjects | 12-Month PEM ME/CFS Subjects |
---|---|---|---|---|
Phenylalanine | −0.40 ** | −0.11 | −0.42 ** | −0.08 |
Hypoxanthine | −0.35 * | +0.25 | −0.43 ** | +0.21 |
Lactate | −0.33 * | +0.13 | −0.37 * | +0.18 |
Threonine | −0.31 * | −0.13 | −0.25 | +0.07 |
Glucose | +0.31 * | −0.09 | +0.38 ** | +0.02 |
Urine | ||||
Total Metabolite | +0.10 | +0.38 * | −0.02 | +0.18 |
Mannitol | −0.01 | +0.43 * | −0.15 | +0.20 |
Serine | −0.07 | +0.42 * | −0.22 | +0.17 |
Acetate | −0.18 | +0.41 * | −0.32 * | +0.21 |
p-Methylhistidine | +0.08 | +0.40 * | −0.14 | −0.02 |
Glucose | +0.02 | +0.37 * | −0.09 | +0.23 |
Urine % | ||||
Urea% | −0.42 ** | −0.24 | −0.37 ** | −0.04 |
Pyruvate% | −0.35 * | +0.06 | −0.37 ** | 0.13 |
Tryptophan% | −0.32 * | −0.28 | −0.20 | 0.06 |
Malonate% | −0.32 * | −0.37 * | −0.18 | 0.05 |
Acetate% | −0.30 * | +0.06 | −0.35 * | −0.01 |
Fecal % | ||||
Uracil | +0.04 | +0.46 ** | −0.09 | 0.27 |
Metabolite | Control | NoPEM | PEM |
---|---|---|---|
Serum Hypoxanthine | 15.7 ± 12.2 ** | 3.6 ± 1.4 ** | 6.6 ± 8.2 ** |
% Serum Hypoxanthine | 0.55 ± 0.39% ** | 0.14 ± 0.05% ** | 0.24 ± 0.25% ** |
Urine Hypoxanthine | 14.9 ± 6.7 * | 7.6 ± 4.0* | 14.3 ± 11.3 |
%Urine Hypoxanthine | 0.26 ± 0.13% * | 0.17 ± 0.04% | 0.21 ± 0.10% |
Urine Allantoin | 32.8 ± 19.0 | 36.0 ± 13.5 | 43.7 ± 25.1 |
% Urine Allantoin | 0.53 ± 0.28% * | 0.96 ± 0.33% * | 0.78 ± 0.53% |
Serum Urate | 0.28 ± 0.03 | 0.28 ± 0.06 | 0.29 ± 0.09 |
Serum Purine Ring Precursors | 138.6 ± 32.8 | 117.9 ± 23.9 | 130.2 ± 29.8 |
Ratios | |||
Serum Hypoxanthine: Urine Hypoxanthine | 1.3 ± 1.6 | 0.7 ± 0.6 | 0.9 ± 1.4 |
Serum Hypoxanthine: Urate | 74.2 ± 65.3 ** | 13.6 ± 6.2 ** | 21.6 ± 26.3 ** |
Serum Hypoxanthine: Urine Allantoin | 0.75 ± 1.26 | 0.11 ± 0.05 | 0.34 ± 0.09 |
Urine Allantoin: Serum Urate | 135.5 ± 71.7 | 134.2 ± 57.1 | 162.5 ± 96.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGregor, N.R.; Armstrong, C.W.; Lewis, D.P.; Gooley, P.R. Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics 2019, 9, 70. https://doi.org/10.3390/diagnostics9030070
McGregor NR, Armstrong CW, Lewis DP, Gooley PR. Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics. 2019; 9(3):70. https://doi.org/10.3390/diagnostics9030070
Chicago/Turabian StyleMcGregor, Neil R., Christopher W. Armstrong, Donald P. Lewis, and Paul R. Gooley. 2019. "Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases" Diagnostics 9, no. 3: 70. https://doi.org/10.3390/diagnostics9030070
APA StyleMcGregor, N. R., Armstrong, C. W., Lewis, D. P., & Gooley, P. R. (2019). Post-Exertional Malaise Is Associated with Hypermetabolism, Hypoacetylation and Purine Metabolism Deregulation in ME/CFS Cases. Diagnostics, 9(3), 70. https://doi.org/10.3390/diagnostics9030070