A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis
Abstract
:1. Introduction
2. Methods
2.1. Sample Collection
2.2. Sample Preparation and Two-Dimensional Electrophoresis
2.3. Mass Spectrometry Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dubois, E.; Fertin, M.; Burdese, J.; Amouyel, P.; Bauters, C.; Pinet, F. Cardiovascular proteomics: Translational studies to develop novel biomarkers in heart failure and left ventricular remodeling. Proteom. Clin. Appl. 2011, 5, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Subramanian, S.; Hwang, S.-J.; O’Donnell, C.J.; Fox, C.S.; Courchesne, P.; Muntendam, P.; Gordon, N.; Adourian, A.; Juhasz, P.; et al. Protein biomarkers of new-onset cardiovascular disease: Prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arter. Thromb. Vasc. Boil. 2014, 34, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Ward, L.J.; Karlsson, H.; Ljunggren, S.A.; Li, W.; Lindahl, M.; Yuan, X.-M. Distinctive proteomic profiles among different regions of human carotid plaques in men and women. Sci. Rep. 2016, 6, 26231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, D.M.; Mao, C.; Parker SJFu, Z.; Yu, G.; Chen, L.; Venkatraman, V.; Fu, Y.; Wang, Y.; Howard, T.D.; Jun, G.; et al. Proteomic Architecture of Human Coronary and Aortic Atherosclerosis. Circulation 2018, 137, 2741–2756. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhao, S.; Gong YHou, G.; Li, X.; Li, L. Serum cyclin-dependent kinase 9 is a potential biomarker of atherosclerotic inflammation. Oncotarget 2016, 7, 1854–1862. [Google Scholar] [CrossRef]
- Lepedda, A.J.; Cigliano, A.; Cherchi GMSpirito, R.; Maggioni, M.; Carta, F.; Turrini, F.; Edelstein, C.; Scanu, A.M.; Formato, M. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 2009, 203, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Olson, F.J.; Sihlbom, C.; Davidsson PHulthe, J.; Fagerberg, B.; Bergström, G. Consistent differences in protein distribution along the longitudinal axis in symptomatic carotid atherosclerotic plaques. Biochem. Biophys. Res. Commun. 2010, 401, 574–580. [Google Scholar] [CrossRef]
- Waksman, R.; Seruys, P.W. Handbook of the vulnerable plaque; CRC Press: New York, NY, USA, 2004; pp. 1–48. [Google Scholar]
- Shah, P.K. Cellular and Molecular Mechanisms of Plaque Rupture/High-risk Atherosclerotic Plaques: Mechanisms, Imaging, Models, and Therapy; Khachigian, L.M., Ed.; CRC Press: New York, NY, USA, 2005; pp. 1–19. [Google Scholar]
- Janco, M.; Böcking, T.; He, S.; Coster, A.C.F. Interactions of tropomyosin Tpm1.1 on a single actin filament: A method for extraction and processing of high resolution TIRF microscopy data. PLoS ONE 2018, 13, e0208586. [Google Scholar] [CrossRef]
- Matyushenko, A.M.; Koubassova, N.A.; Shchepkin, D.V.; Kopylova, G.V.; Nabiev, S.R.; Nikitina, L.V.; Bershitsky, S.Y.; Levitsky, D.I.; Tsaturyan, A.K. The effects of cardiomyopathy-associated mutations in the head-to-tail overlap junction of α-tropomyosin on its properties and interaction with actin. Int. J. Boil. Macromol. 2019, 125, 1266–1274. [Google Scholar] [CrossRef]
- Hirase, T.; Node, K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Circ. Physiol. 2012, 302, H499–H505. [Google Scholar] [CrossRef] [Green Version]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y.V. Endothelial Barrier and Its Abnormalities in Cardiovascular Disease. Front. Physiol. 2015, 6, 365. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.S.; Broekelmann, T.J.; Mecham, R.P. Microfibril-associated glycoproteins MAGP-1 and MAGP-2 in disease. Matrix Boil. 2018, 72, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Eom, Y.W.; Baik, S.K. Biomarker microfibril-associated glycoprotein 4 for non-invasive diagnosis and therapeutic evaluation of hepatic fibrosis in patients with hepatitis C. Clin. Mol. Hepatol. 2019, 25, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Malaud, E.; Merle, D.; Piquer, D.; Molina, L.; Salvetat, N.; Rubrecht, L.; Dupaty, E.; Galea, P.; Cobo, S.; Blanc, A.; et al. Local carotid atherosclerotic plaque proteins for the identification of circulating biomarkers in coronary patients. Atheroscler. 2014, 233, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Ehrlicher, A.J.; Mahammad, S.; Fabich, H.; Jensen, M.H.; Moore, J.R.; Fredberg, J.J.; Goldman, R.D.; Weitz, D.A. The Role of Vimentin Intermediate Filaments in Cortical and Cytoplasmic Mechanics. Biophys. J. 2013, 105, 1562–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mónico, A.; Duarte, S.; Pajares, M.A.; Pérez-Sala, D. Vimentin disruption by lipoxidation and electrophiles: Role of the cysteine residue and filament dynamics. Redox Biol. 2019, 101098. Available online: https://www.sciencedirect.com/science/article/pii/S2213231718310127 (accessed on 5 November 2019).
- Menko, A.S.; Bleaken, B.M.; Libowitz, A.A.; Zhang, L.; Stepp, M.A.; Walker, J.L. A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol. Boil. Cell 2014, 25, 776–790. [Google Scholar] [CrossRef]
- Perez-Sala, D.; Oeste, C.L.; Martínez, A.E.; Carrasco, M.J.; Garzón, B.; Cañada, F.J. Vimentin filament organization and stress sensing depend on its single cysteine residue and zinc binding. Nat. Commun. 2015, 6, 7287. [Google Scholar] [CrossRef] [Green Version]
- Håversen, L.; Sundelin, J.P.; Mardinoglu, A.; Rutberg, M.; Ståhlman, M.; Wilhelmsson, U.; Hultén, L.M.; Pekny, M.; Fogelstrand, P.; Bentzon, J.F.; et al. Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Sci. Rep. 2018, 8, 16973. [Google Scholar] [CrossRef]
- Stintzing, S.; Ocker, M.; Hartner, A.; Amann, K.; Barbera, L.; Neureiter, D. Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows Archiv 2009, 455, 171–185. [Google Scholar] [CrossRef]
- Saavedra, P.; Girona, J.; Bosquet, A.; Guaita, S.; Canela, N.; Aragonès, G.; Heras, M.; Masana, L. New insights into circulating FABP4: Interaction with cytokeratin 1 on endothelial cell membranes. Biochim. et Biophys. Acta (BBA) Bioenerg. 2015, 1853, 2966–2974. [Google Scholar] [CrossRef] [Green Version]
- Tu, Z.-L.; Yu, B.; Huang, D.-Y.; Ojha, R.; Zhou, S.-K.; An, H.-D.; Liu, R.; Du, C.; Shen, N.; Fu, J.-H.; et al. Proteomic analysis and comparison of intra- and extracranial cerebral atherosclerosis responses to hyperlipidemia in rabbits. Mol. Med. Rep. 2017, 16, 2347–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, D.; Luo, T.; Xiong, H.; Liu, J.; Lu, H.; Li, M.; Hou, Y.; Guo, Z. SAP: Structure, function, and its roles in immune-related diseases. Int. J. Cardiol. 2015, 187, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Xi, D.; Zhao, J.; Guo, K.; Hu, L.; Chen, H.; Fu, W.; Lai, W.; Guo, Z. Serum amyloid P component therapeutically attenuates atherosclerosis in mice via its effects on macrophages. Theranostics 2018, 8, 3214–3223. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, R.; Schurgers, L.; van Gorp, R.; Jaminon, A.; Marx, N.; Reutelingsperger, C. Annexin A5 reduces early plaque formation in ApoE -/- mice. PLoS ONE 2017, 12, e0190229. [Google Scholar] [CrossRef]
- Lee, R.; Fischer, R.; Charles, P.D.; Adlam, D.; Valli, A.; Di Gleria, K.; Kharbanda, R.K.; Choudhury, R.P.; Antoniades, C.; Kessler, B.M.; et al. A novel workflow combining plaque imaging, plaque and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption. Clin. Proteom. 2017, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-J.; Wang, J.; Liu, H.-F.; Zhang, X.-N.; Zhan, M.; Chen, F.-L. Overexpression of mimecan in human aortic smooth muscle cells inhibits cell proliferation and enhances apoptosis and migration. Exp. Ther. Med. 2015, 10, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Fasehee, H.; Fakhraee, M.; Davoudi, S.; Vali, H.; Faghihi, S. Cancer biomarkers in atherosclerotic plaque: Evidenced from structural and proteomic analyses. Biochem. Biophys. Res. Commun. 2019, 509, 687–693. [Google Scholar] [CrossRef]
- Seki, T.; Saita, E.; Kishimoto, Y.; Ibe, S.; Miyazaki, Y.; Miura, K.; Ohmori, R.; Ikegami, Y.; Kondo, K.; Momiyama, Y. Low Levels of Plasma Osteoglycin in Patients with Complex Coronary Lesions. J. Atheroscler. Thromb. 2018, 25, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.M.; Akkerhuis, K.M.; Meilhac, O.; Oemrawsingh, R.M.; Garcia-Garcia, H.M.; van Geuns, R.J.; Piquer, D.; Merle, D.; du Paty, E.; Galéa, P.; et al. Circulating osteoglycin and NGAL/MMP9 complex concentrations predict 1-year major adverse cardiovascular events after coronary angiography. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1078–1084. [Google Scholar] [CrossRef]
- Arques, S. Human serum albumin in cardiovascular diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Dautova, Y.; Kozlova, D.; Skepper, J.N.; Epple, M.; Bootman, M.D.; Proudfoot, D. Fetuin-A and Albumin Alter Cytotoxic Effects of Calcium Phosphate Nanoparticles on Human Vascular Smooth Muscle Cells. PLoS ONE 2014, 9, e97565. [Google Scholar] [CrossRef] [PubMed]
- Lepedda, A.J.; Zinellu, A.; Nieddu, G.; De Muro, P.; Carru, C.; Spirito, R.; Guarino, A.; Piredda, F.; Formato, M. Human serum albumin Cys34 oxidative modifications following infiltration in the carotid atherosclerotic plaque. Oxid. Med. Cell. Longev. 2014, 2014, 690953. [Google Scholar] [CrossRef] [PubMed]
- Dirajlal-Fargo, S.; Kulkarni, M.; Bowman, E.; Shan, L.; Sattar, A.; Funderburg, N.; McComsey, G.A. Serum Albumin Is Associated With Higher Inflammation and Carotid Atherosclerosis in Treated Human Immunodeficiency Virus Infection. Open Forum Infect. Dis. 2018, 5, 291. [Google Scholar] [CrossRef] [PubMed]
№ | ID (NCBI) | Protein Name | pI/Mass (Da) | Sc % | Score |
---|---|---|---|---|---|
1 | ALBU_HUMAN | Serum albumin | 5.92/71317 | 21 | 97 |
2 | ALBU_HUMAN | Serum albumin | 5.92/71317 | 23 | 112 |
3 | ALBU_HUMAN | Serum albumin | 5.92/71317 | 33 | 185 |
4 | VIME_HUMAN | Vimentin | 5.06/53676 | 50 | 252 |
5 | VIME_HUMAN | Vimentin | 5.06/53676 | 60 | 299 |
6 | VIME_HUMAN | Vimentin | 5.06/53676 | 56 | 189 |
7 | TBB4B_HUMAN | Tubulin β -4B chain | 4.79/50255 | 21 | 70 |
TBB2A_HUMAN | Tubulin β -2A chain | 4.78/50274 | 19 | 58 | |
TBB2B_HUMAN | Tubulin β -2B chain | 4.78/50377 | 19 | 58 | |
TBB5_HUMAN | Tubulin β chain | 4.78/50095 | 17 | 57 | |
8 | ACTC_HUMAN | Actin, α cardiac muscle 1 | 5.23/42334 | 50 | 125 |
ACTA_HUMAN | Actin, aortic smooth muscle | 5.23/42381 | 50 | 125 | |
9 | ACTC_HUMAN | Actin, α cardiac muscle 1 | 5.23/42334 | 44 | 127 |
ACTA_HUMAN | Actin, aortic smooth muscle | 5.23/42381 | 26 | 85 | |
10 | ACTC_HUMAN | Actin, α cardiac muscle 1 | 5.23/42334 | 55 | 128 |
ACTA_HUMAN | Actin, aortic smooth muscle | 5.23/42381 | 55 | 128 | |
11 | ACTB_HUMAN | Actin, cytoplasmic 1 | 5.29/42052 | 61 | 157 |
ACTG_HUMAN | Actin, cytoplasmic 2 | 5.29/42108 | 61 | 157 | |
12 | FIBB_HUMAN | Fibrinogen β chain | 8.54/56577 | 21 | 94 |
13 | FIBB_HUMAN | Fibrinogen β chain | 8.54/56577 | 35 | 158 |
14 | FIBB_HUMAN | Fibrinogen β chain | 8.54/56577 | 42 | 191 |
15 | TPM2_HUMAN | Tropomyosin β chain | 4.66/32945 | 38 | 117 |
16 | MFAP4_HUMAN | Microfibril-associated glycoprotein 4 | 5.38/28972 | 24 | 80 |
17 | MFAP4_HUMAN | Microfibril-associated glycoprotein 4 | 5.38/28972 | 24 | 80 |
18 | MFAP4_HUMAN | Microfibril-associated glycoprotein 4 | 5.38/28972 | 22 | 57 |
19 | MIME_HUMAN | Mimecan | 5.46/34243 | 46 | 180 |
20 | ANXA5_HUMAN | Annexin A5 | 4.94/35971 | 58 | 175 |
21 | K1C9_HUMAN | Keratin, type I cytoskeletal 9 | 5.14/62255 | 32 | 79 |
22 | SAMP_HUMAN | Serum amyloid P-component | 6.1/25485 | 28 | 80 |
23 | SAMP_HUMAN | Serum amyloid P-component | 6.1/25485 | 33 | 77 |
Number | Id (NCBI) | Protein Name | Amount of Protein, Relative Units of Intensity, *105 | ||
---|---|---|---|---|---|
StL | StF | Ns | |||
1–3 | ALBU_HUMAN | Serum albumin | 4.3 | 12.3 | 46.3 |
4–6 | VIME_HUMAN | Vimentin | 10.1 | 2.4 | 4.1 |
7 | TBB5_HUMAN | Tubulin β chain | 2.5 | 1.4 | 1.1 |
8–10 | ACTC_HUMAN | Actin, α cardiac muscle Actin, aortic smooth muscle | 84 | 29.2 | 33.4 |
11 | ACTB_HUMAN | Actin, cytoplasmic Actin, cytoplasmic 2 | 91.3 | 18.4 | 37.7 |
12–14 | FIBB_HUMAN | Fibrinogen β chain | 1.3 | 3.2 | 2.9 |
15 | TPM2_HUMAN | Tropomyosin βchain | 40.3 | 2.0 | 2.0 |
16–18 | MFAP4_HUMAN | Microfibril-associated glycoprotein 4 | 22.4 | 4.5 | 3.2 |
19 | MIME_HUMAN | Mimecan | 26.5 | 126.5 | 55.4 |
20 | ANXA5_HUMAN | Annexin A5 | 2.8 | 0.7 | 2.2 |
21 | K2C1_HUMAN | Keratin, type I cytoskeletal 9 | 6.4 | - | 1.7 |
22–23 | SAMP_HUMAN | Serum amyloid P-component | 25.3 | 5.9 | 22.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stakhneva, E.M.; Meshcheryakova, I.A.; Demidov, E.A.; Starostin, K.V.; Sadovski, E.V.; Peltek, S.E.; Voevoda, M.I.; Chernyavskii, A.M.; Volkov, A.M.; Ragino, Y.I. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics 2019, 9, 177. https://doi.org/10.3390/diagnostics9040177
Stakhneva EM, Meshcheryakova IA, Demidov EA, Starostin KV, Sadovski EV, Peltek SE, Voevoda MI, Chernyavskii AM, Volkov AM, Ragino YI. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics. 2019; 9(4):177. https://doi.org/10.3390/diagnostics9040177
Chicago/Turabian StyleStakhneva, Ekaterina M., Irina A. Meshcheryakova, Evgeny A. Demidov, Konstantin V. Starostin, Evgeny V. Sadovski, Sergey E. Peltek, Michael I. Voevoda, Alexander M. Chernyavskii, Alexander M. Volkov, and Yuliya I. Ragino. 2019. "A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis" Diagnostics 9, no. 4: 177. https://doi.org/10.3390/diagnostics9040177
APA StyleStakhneva, E. M., Meshcheryakova, I. A., Demidov, E. A., Starostin, K. V., Sadovski, E. V., Peltek, S. E., Voevoda, M. I., Chernyavskii, A. M., Volkov, A. M., & Ragino, Y. I. (2019). A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics, 9(4), 177. https://doi.org/10.3390/diagnostics9040177