Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Retrospective Chart Review
3.1.1. Duplicate Test Results
3.1.2. Pharmacogenetic Problem List Entries
3.2. Clinical Services
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Relling, M.V.; Klein, T.E.; Gammal, R.S.; Whirl-Carrillo, M.; Hoffman, J.M.; Caudle, K.E. The Clinical Pharmacogenetics Implementation Consortium: 10 Years Later. Clin. Pharmacol. Ther. 2019, 107, 171–175. [Google Scholar] [CrossRef]
- FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling. 2020. Available online: https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling (accessed on 8 September 2020).
- Hoffman, J.M.; Haidar, C.E.; Wilkinson, M.R.; Crews, K.R.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Pui, C.-H.; Reiss, U.M.; Gaur, A.H.; et al. PG4KDS: A model for the clinical implementation of pre-emptive pharmacogenetics. Am. J. Med Genet. Part C Semin. Med Genet. 2014, 166, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Bielinski, S.J.; Olson, J.E.; Pathak, J.; Weinshilboum, R.M.; Wang, L.; Lyke, K.J.; Ryu, E.; Targonski, P.V.; Van Norstrand, M.D.; Hathcock, M.A.; et al. Preemptive genotyping for personalized medicine: Design of the right drug, right dose, right time-using genomic data to individualize treatment protocol. Mayo Clin. Proc. 2014, 89, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational Implementation of Prospective Genotyping for Personalized Medicine: The Design of the Vanderbilt PREDICT Project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, P.H.; Bush, A.; Spitz, J.; Danahey, K.; Saner, D.; Das, S.; Cox, N.J.; Ratain, M.J. The 1200 patients project: Creating a new medical model system for clinical implementation of pharmacogenomics. Clin. Pharmacol. Ther. 2012, 92, 446–469. [Google Scholar] [CrossRef] [Green Version]
- Shuldiner, A.R.; Palmer, K.; Pakyz, R.E.; Alestock, T.D.; Maloney, K.A.; O’Neill, C.; Bhatty, S.; Schub, J.; Overby, C.L.; Horenstein, R.B.; et al. Implementation of pharmacogenetics: The University of Maryland Personalized Anti-platelet Pharmacogenetics Program. Am. J. Med Genet. Part C Semin. Med Genet. 2014, 166, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Harada, S.; Zhou, Y.; Duncan, S.; Armstead, A.R.; Coshatt, G.M.; Dillon, C.; Brott, B.C.; Willig, J.; Alsip, J.A.; Hillegass, W.B.; et al. Precision Medicine at the University of Alabama at Birmingham: Laying the Foundational Processes Through Implementation of Genotype-Guided Antiplatelet Therapy. Clin. Pharmacol. Ther. 2017, 102, 493–501. [Google Scholar] [CrossRef]
- Cavallari, L.H.; Weitzel, K.W.; Elsey, A.R.; Liu, X.; A Mosley, S.; Smith, D.M.; Staley, B.J.; Winterstein, A.G.; Mathews, C.A.; Franchi, F.; et al. Institutional profile: University of Florida Health Personalized Medicine Program. Pharmacogenomics 2017, 18, 421–426. [Google Scholar] [CrossRef]
- Dunnenberger, H.M.; Biszewski, M.; Bell, G.C.; Sereika, A.; May, H.; Johnson, S.G.; Hulick, P.J.; Khandekar, J. Implementation of a multidisciplinary pharmacogenomics clinic in a community health system. Am. J. Heal. Pharm. 2016, 73, 1956–1966. [Google Scholar] [CrossRef]
- Arwood, M.J.; Dietrich, E.; Duong, B.Q.; Smith, D.M.; Cook, K.; Elchynski, A.; Rosenberg, E.I.; Huber, K.N.; Nagoshi, Y.L.; Wright, A.; et al. Design and Early Implementation Successes and Challenges of a Pharmacogenetics Consult Clinic. J. Clin. Med. 2020, 9, 2274. [Google Scholar] [CrossRef]
- Haga, S.B.; Kantor, A. Horizon Scan of Clinical Laboratories Offering Pharmacogenetic Testing. Heal. Aff. 2018, 37, 717–723. [Google Scholar] [CrossRef]
- Hoffman, J.M.; Dunnenberger, H.M.; Hicks, J.K.; E Caudle, K.; Whirl-Carrillo, M.; Freimuth, R.; Williams, M.S.; E Klein, T.; Peterson, J.F. Developing knowledge resources to support precision medicine: Principles from the Clinical Pharmacogenetics Implementation Consortium (CPIC). J. Am. Med. Inform. Assoc. 2016, 23, 796–801. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences Engineering and Medicine. DIGITizE: Displaying and Integrating Genetic Information through the EHR. 2020. Available online: http://www.nationalacademies.org/hmd/Activities/Research/GenomicBasedResearch/Innovation-Collaboratives/EHR.aspx (accessed on 8 September 2020).
- Alterovitz, G.; Heale, B.; Jones, J.; Kreda, D.; Lin, F.; Liu, L.; Liu, X.; Mandl, K.D.; Poloway, D.W.; Ramoni, R.; et al. FHIR Genomics: Enabling standardization for precision medicine use cases. NPJ Genom. Med. 2020, 5, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Weitzel, K.W.; Smith, D.M.; Elsey, A.R.; Duong, B.Q.; Burkley, B.; Clare-Salzler, M.; Gong, Y.; Higgins, T.A.; Kong, B.; Langaee, T.; et al. Implementation of Standardized Clinical Processes for TPMT Testing in a Diverse Multidisciplinary Population: Challenges and Lessons Learned. Clin. Transl. Sci. 2018, 11, 175–181. [Google Scholar] [CrossRef]
- Kheterpal, S. RDW/DataDirect: A Self-Serve Tool for Data Retrieval. 2015. Available online: https://datadirect.med.umich.edu/ (accessed on 8 September 2020).
- Hanauer, D.A.; Mei, Q.; Law, J.; Khanna, R.; Zheng, K. Supporting information retrieval from electronic health records: A report of University of Michigan’s nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). J. Biomed. Inform. 2015, 55, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, J.A.; Fletcher, A.H.; Procop, G.; Keren, D.F.; Singh, I.R.; Garcia, J.J.; Carpenter, R.B.; Miles, J.; Jackson, B.; Astion, M.L. Transforming Laboratory Utilization Review into Laboratory Stewardship: Guidelines by the PLUGS National Committee for Laboratory Stewardship. J. Appl. Lab. Med. 2017, 2, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.K.; Sangkuhl, K.; Swen, J.J.; Ellingrod, V.L.; Müller, D.J.; Shimoda, K.; Bishop, J.R.; Kharasch, E.D.; Skaar, T.C.; Gaedigk, A.; et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017, 102, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, B.; Obeng, A.O.; Barbarino, J.; Penzak, S.R.; Henning, S.A.; Scott, S.A.; Agúndez, J.A.; Wingard, J.R.; McLeod, H.L.; Klein, T.E.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP2C19 and Voriconazole Therapy. Clin. Pharmacol. Ther. 2017, 102, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Muller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; Llerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline forCYP2D6andCYP2C19Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.-S.; Mega, J.L.; Roden, D.M.; Klein, T.E.; Sabatine, M.S.; Johnson, J.A.; Shuldiner, A.R. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update. Clin. Pharmacol. Ther. 2013, 94, 317–323. [Google Scholar] [CrossRef]
- Bousman, C.A.; Dunlop, B.W. Genotype, phenotype, and medication recommendation agreement among commercial pharmacogenetic-based decision support tools. Pharmacogenomics J. 2018, 18, 613–622. [Google Scholar] [CrossRef]
- Empey, P.E.; Stevenson, J.M.; Tuteja, S.; Weitzel, K.W.; Angiolillo, D.J.; Beitelshees, A.L.; Coons, J.C.; Duarte, J.D.; Franchi, F.; Jeng, L.J.; et al. Multisite Investigation of Strategies for the Implementation of CYP2C19 Genotype-Guided Antiplatelet Therapy. Clin. Pharmacol. Ther. 2018, 104, 664–674. [Google Scholar] [CrossRef] [Green Version]
Test | N (%) | Laboratory | Order Process | Result Location | Result Format |
---|---|---|---|---|---|
TPMT enzyme assay | 2694 (42.7) | External | Discrete | EMR Results | Text |
G6PD activity | 2122 (33.7) | Internal | Discrete | EMR Results | Discrete |
HLA-B*57:01 | 579 (9.2) | Internal | Discrete | EMR Results | Text |
TPMT Genotype | 496 (7.9) | External | Discrete | EMR Results | Text |
Genesight® | 200 (3.2) | External | External | Clinical Note/Media | NA |
UGT1A1 Genotype | 178 (2.8) | Internal | Discrete | EMR Results | Text |
IL28B Genotype | 15 (0.2) | External | Discrete | EMR Results | Discrete |
HLA-B*15:02 | 5 (0.08) | Internal | Discrete | EMR Results | Text |
DPYD Genotype | 5 (0.08) | External | Non-discrete | EMR Results | Text |
CYP2D6 Genotype | 4 (0.06) | External | Non-discrete | EMR Results | Text |
CYP2C9/VKORC1 genotype | 2 (0.03) | External | Non-discrete | EMR Results | Text |
HLA-B*58:01 | 1 (0.02) | External | Non-discrete | EMR Results | Text |
Drug metabolizing enzyme panel | 1 (0.02) | External | Non-discrete | EMR Results | Text |
Gene | Problem List Entry | N |
---|---|---|
TPMT | Intermediate TPMT activity | 33 |
TPMT intermediate metabolizer | 1 | |
Poor metabolizer of azathioprine | 1 | |
Thiopurine methytransferase deficiency | 1 | |
RYR1 | Monoallelic mutation of RYR1 | 14 |
Biallelic mutation of RYR1 | 2 | |
CYP2D6 | CYP2D6 deficiency | 2 |
Cytochrome p450 2D6 enzyme deficiency | 2 | |
Poor drug metabolizer due to cytochrome p450 CYP2D6 variant | 2 | |
DPD | DPD Deficiency | 6 |
CYP2C9 | Monoallelic mutation of CYP2C9 gene | 1 |
CYP2C9 deficiency | 2 | |
CYP3A4 | Ultra-rapid metabolizer associated with CYP3A4 | 2 |
Cytochrome p450 3A4 enzyme deficiency | 1 | |
CACN1S | Monoallelic mutation in CACN1S | 2 |
CYP1A2 | CYP1A2 gene mutation | 2 |
CYP2C19 | CYP2C19 intermediate metabolizer | 1 |
Cytochrome p450 2C19 enzyme deficiency | 1 | |
CYP mutation | CYP gene mutation – unknown type | 1 |
Mutation of liver cytochrome that can lead to impaired drug metabolism | 1 | |
MTHFR | Biallelic mutation of MTHFR gene | 1 |
CYP2B6 | CYP2B6 intermediate metabolizer | 1 |
CYP3A5 | CYP3A5 gene mutation | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasternak, A.L.; Ward, K.M.; Ateya, M.B.; Choe, H.M.; Thompson, A.N.; Clark, J.S.; Ellingrod, V. Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center. J. Pers. Med. 2020, 10, 154. https://doi.org/10.3390/jpm10040154
Pasternak AL, Ward KM, Ateya MB, Choe HM, Thompson AN, Clark JS, Ellingrod V. Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center. Journal of Personalized Medicine. 2020; 10(4):154. https://doi.org/10.3390/jpm10040154
Chicago/Turabian StylePasternak, Amy L., Kristen M. Ward, Mohammad B. Ateya, Hae Mi Choe, Amy N. Thompson, John S. Clark, and Vicki Ellingrod. 2020. "Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center" Journal of Personalized Medicine 10, no. 4: 154. https://doi.org/10.3390/jpm10040154
APA StylePasternak, A. L., Ward, K. M., Ateya, M. B., Choe, H. M., Thompson, A. N., Clark, J. S., & Ellingrod, V. (2020). Establishment of a Pharmacogenetics Service Focused on Optimizing Existing Pharmacogenetic Testing at a Large Academic Health Center. Journal of Personalized Medicine, 10(4), 154. https://doi.org/10.3390/jpm10040154