Stroke and Risk Factors in Antiphospholipid Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Baseline Data Collection
2.2. Assessment of Stroke
2.3. Detection of aPLs and aGAPSS
2.4. Follow-Up
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the APS Group
- A total of 361 patients were enrolled in the final analysis, with 279 females and 82 males, aged 44.7 (16.8) years (range 16–88 years). While 51.2% (185/361) of the patients had primary APS, secondary APS accounted for 48.8% (176/361) of the cohort. Systemic lupus erythematosus was the most commonly combined autoimmune disease (75.0%, 132/176). A total of 63.2% (228/361) of the patients presented with isolated thrombotic APS, 28.0% (101/361) of them presented with isolated obstetric APS, and 8.9% (32/361) with both.
- Stroke was found in 25.8% (93/361) of the whole cohort. Among the patients, ischemic stroke was the most frequent (23.5%, 85/361), followed by TIA (1.7%, 6/361) and cerebral venous sinus thrombosis (1.1%, 4/361). Among ischemic stroke, the percentage of acute ischemic stroke was 35.3% (30/85). There were two patients with both ischemic stroke and TIA and one patient with both ischemic stroke and venous sinus thrombosis, while ICH occurred in one patient.
- In the samples we collected, 34.1% (123/361) had central system involvement. Except for stroke, the neuropsychiatric abnormalities were the second-most common manifestations (19.5%, 24/123), followed by seizures and epilepsy (14.6%, 18/123), migraine (11.3%, 14/123), cognitive impairment (5.7%, 7/123), optic neuritis (4.9%, 6/123), multiple-sclerosis-like disease (2.4%, 3/123), and movement disorders (2.4%, 3/123).
3.2. Distribution of Risk Factors and Treatment between Patients with and without Stroke
3.3. Follow-Up and Stroke Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. JTH 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Gaspar, P.; Cohen, H.; Isenberg, D.A. The assessment of patients with the antiphospholipid antibody syndrome: Where are we now? Rheumatology 2020, 59, 1489–1494. [Google Scholar] [CrossRef]
- Xourgia, E.; Tektonidou, M.G. An Update on Antiphospholipid Syndrome. Curr. Rheumatol. Rep. 2022, 23, 84. [Google Scholar] [CrossRef]
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Primers 2018, 4, 17103. [Google Scholar] [CrossRef]
- Cervera, R.; Boffa, M.C.; Khamashta, M.A.; Hughes, G.R. The Euro-Phospholipid project: Epidemiology of the antiphospholipid syndrome in Europe. Lupus 2009, 18, 889–893. [Google Scholar] [CrossRef]
- Cervera, R.; Serrano, R.; Pons-Estel, G.J.; Ceberio-Hualde, L.; Shoenfeld, Y.; de Ramón, E.; Buonaiuto, V.; Jacobsen, S.; Zeher, M.M.; Tarr, T.; et al. Morbidity and mortality in the antiphospholipid syndrome during a 10-year period: A multicentre prospective study of 1000 patients. Ann. Rheum. Dis. 2015, 74, 1011–1018. [Google Scholar] [CrossRef]
- Sciascia, S.; Sanna, G.; Khamashta, M.A.; Cuadrado, M.J.; Erkan, D.; Andreoli, L.; Bertolaccini, M.L. The estimated frequency of antiphospholipid antibodies in young adults with cerebrovascular events: A systematic review. Ann. Rheum. Dis. 2015, 74, 2028–2033. [Google Scholar] [CrossRef]
- Jerez-Lienas, A.; Mathian, A.; Aboab, J.; Crassard, I.; Hie, M.; Cohen-Aubart, F.; Haroche, J.; Wahl, D.; Cervera, R.; Amoura, Z. Cerebral Vein Thrombosis in the Antiphospholipid Syndrome: Analysis of a Series of 27 Patients and Review of the Literature. Brain Sci. 2021, 11, 1641. [Google Scholar] [CrossRef]
- Knight, J.S.; Kanthi, Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin. Immunopathol. 2022, 44, 347–362. [Google Scholar] [CrossRef]
- Tu, W.J.; Wang, L.D. China stroke surveillance report 2021. Mil. Med. Res. 2023, 10, 33. [Google Scholar] [CrossRef]
- Tu, W.J.; Zhao, Z.; Yin, P.; Cao, L.; Zeng, J.; Chen, H.; Fan, D.; Fang, Q.; Gao, P.; Gu, Y.; et al. Estimated Burden of Stroke in China in 2020. JAMA Netw. Open 2023, 6, e231455. [Google Scholar] [CrossRef]
- Radin, M.; Sciascia, S.; Erkan, D.; Pengo, V.; Tektonidou, M.G.; Ugarte, A.; Meroni, P.; Ji, L.; Belmont, H.M.; Cohen, H.; et al. The adjusted global antiphospholipid syndrome score (aGAPSS) and the risk of recurrent thrombosis: Results from the APS ACTION cohort. Semin. Arthritis Rheum. 2019, 49, 464–468. [Google Scholar] [CrossRef]
- Girón-González, J.A.; García del Río, E.; Rodríguez, C.; Rodríguez-Martorell, J.; Serrano, A. Antiphospholipid syndrome and asymptomatic carriers of antiphospholipid antibody: Prospective analysis of 404 individuals. J. Rheumatol. 2004, 31, 1560–1567. [Google Scholar]
- Hansen, K.E.; Kong, D.F.; Moore, K.D.; Ortel, T.L. Risk factors associated with thrombosis in patients with antiphospholipid antibodies. J. Rheumatol. 2001, 28, 2018–2024. [Google Scholar]
- Pablo, R.D.; Cacho, P.M.; López-Hoyos, M.; Calvo-Río, V.; Riancho-Zarrabeitia, L.; Martínez-Taboada, V.M. Risk Factors for the Development of the Disease in Antiphospholipid Antibodies Carriers: A Long-term Follow-up Study. Clin. Rev. Allergy Immunol. 2022, 62, 354–362. [Google Scholar] [CrossRef]
- Stojanovich, L.; Djokovic, A.; Stanisavljevic, N.; Zdravkovic, M. The cutaneous manifestations are significantly related to cerebrovascular in a Serbian cohort of patients with Hughes syndrome. Lupus 2018, 27, 858–863. [Google Scholar] [CrossRef]
- Shoenfeld, Y.; Lev, S.; Blatt, I.; Blank, M.; Font, J.; von Landenberg, P.; Lev, N.; Zaech, J.; Cervera, R.; Piette, J.C.; et al. Features associated with epilepsy in the antiphospholipid syndrome. J. Rheumatol. 2004, 31, 1344–1348. [Google Scholar]
- Donnellan, C.; Cohen, H.; Werring, D.J. Cognitive dysfunction and associated neuroimaging biomarkers in antiphospholipid syndrome: A systematic review. Rheumatology 2021, 61, 24–41. [Google Scholar] [CrossRef]
- Hughes, G.R. Heparin, antiphospholipid antibodies and the brain. Lupus 2012, 21, 1039–1040. [Google Scholar] [CrossRef]
- Radin, M.; Schreiber, K.; Cecchi, I.; Roccatello, D.; Cuadrado, M.J.; Sciascia, S. The risk of ischaemic stroke in primary antiphospholipid syndrome patients: A prospective study. Eur. J. Neurol. 2018, 25, 320–325. [Google Scholar] [CrossRef]
- García-Grimshaw, M.; Posadas-Pinto, D.R.; Jiménez-Ruiz, A.; Valdés-Ferrer, S.I.; Cadena-Fernández, A.; Torres-Ruiz, J.J.; Barrientos-Guerra, J.D.; Amancha-Gabela, M.; Chiquete, E.; Flores-Silva, F.D.; et al. Antiphospholipid syndrome-mediated acute cerebrovascular diseases and long-term outcomes. Lupus 2022, 31, 228–237. [Google Scholar] [CrossRef]
- Volkov, I.; Seguro, L.; Leon, E.P.; Kovács, L.; Roggenbuck, D.; Schierack, P.; Gilburd, B.; Doria, A.; Tektonidou, M.G.; Agmon-Levin, N. Profiles of criteria and non-criteria anti-phospholipid autoantibodies are associated with clinical phenotypes of the antiphospholipid syndrome. Auto-Immun. Highlights 2020, 11, 8. [Google Scholar] [CrossRef]
- Giannakopoulos, B.; Krilis, S.A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 2013, 368, 1033–1044. [Google Scholar] [CrossRef]
- Matus-Mayorga, R.; Barrera-Vargas, A.; Rull-Gabayet, M.; Aguirre-Aguilar, E.; Valdez-López, M.; Espinoza-Lira, F.; Ramos-Ventura, C.; Cano-Nigenda, V.; Barboza, M.A.; Merayo-Chalico, J.; et al. Risk factors for ischemic antiphospholipid syndrome: A case-control study. Clin. Neurol. Neurosurg. 2021, 202, 106492. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dörner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Aibar, J.; Schulman, S. Arterial Thrombosis in Patients with Antiphospholipid Syndrome: A Review and Meta-Analysis. Semin. Thromb. Hemost. 2021, 47, 709–723. [Google Scholar] [CrossRef]
- Schmidt-Tanguy, A.; Voswinkel, J.; Henrion, D.; Subra, J.F.; Loufrani, L.; Rohmer, V.; Ifrah, N.; Belizna, C. Antithrombotic effects of hydroxychloroquine in primary antiphospholipid syndrome patients. J. Thromb. Haemost. JTH 2013, 11, 1927–1929. [Google Scholar] [CrossRef]
- Nuri, E.; Taraborelli, M.; Andreoli, L.; Tonello, M.; Gerosa, M.; Calligaro, A.; Argolini, L.M.; Kumar, R.; Pengo, V.; Meroni, P.L.; et al. Long-term use of hydroxychloroquine reduces antiphospholipid antibodies levels in patients with primary antiphospholipid syndrome. Immunol. Res. 2017, 65, 17–24. [Google Scholar] [CrossRef]
- Yun, J.; Gu, J.; Kim, H.K. Double positivity of anti-β(2)-glycoprotein I domain I and anti-phosphatidylserine/prothrombin antibodies enhances both thrombosis and positivity of anti-ADAMTS13 antibody. J. Thromb. Thrombolysis 2021, 52, 1133–1136. [Google Scholar] [CrossRef]
Variables | All Cases (n = 361) | With Stroke (n = 93) | Without Stoke (n = 268) | p |
---|---|---|---|---|
Male gender, n (%) | 82 (22.7) | 29 (31.2) | 53 (19.8) | 0.024 |
Age (years), mean (SD) | 44.7 (16.5) | 51.0 (16.8) | 42.5 (15.8) | <0.001 |
APS duration (months), median (IQR) | 10.0 (2.0, 36.0) | 10.0 (3.0, 36.0) | 9.5 (2.0, 36.0) | 0.292 |
Secondary APS, n (%) | 176 (48.8) | 56 (60.2) | 120 (44.8) | 0.010 |
Isolated thrombotic APS, n (%) | 228 (63.2) | 78 (83.9) | 150 (56.0) | <0.001 |
Isolated obstetric APS, n (%) | 101 (28.0) | 0 (0.0) | 101 (37.7) | <0.001 |
Thrombotic and obstetric APS, n (%) | 32 (8.9) | 15 (16.1) | 17 (6.3) | 0.004 |
Extracranial thrombotic events, n (%) | 185 (51.2) | 46 (49.5) | 139 (51.9) | 0.690 |
Extracranial arterial thrombotic events, n (%) | 90 (24.9) | 25 (26.9) | 65 (24.3) | 0.614 |
Extracranial venous thrombotic events, n (%) | 130 (36.0) | 30 (32.3) | 100 (37.3) | 0.382 |
Other CNS manifestations, n (%) | 60 (16.6) | 30 (32.3) | 30 (11.2) | <0.001 |
Livedo reticularis, n (%) | 13 (3.6) | 8 (8.6) | 5 (1.9) | 0.003 |
aGAPSS, median (IQR) | 10.0 (5.0, 13.0) | 10.0 (7.0, 13.0) | 9.0 (5.0, 13.0) | 0.022 |
BMI, mean (SD) | 24.4 ± 4.5 | 23.8 ± 4.0 | 24.6 ± 4.6 | 0.162 |
Smoking, n (%) | 56 (15.5) | 18 (19.4) | 38 (14.2) | 0.235 |
Hypertension, n (%) | 109 (30.2) | 47 (50.5) | 62 (23.1) | <0.001 |
Diabetes, n (%) | 31 (8.6) | 23 (24.7) | 8 (3.0) | <0.001 |
Hyperlipidemia, n (%) | 55 (15.2) | 23 (24.7) | 32 (11.9) | 0.003 |
Chronic kidney disease, n (%) | 25 (6.9) | 9 (9.7) | 16 (6.0) | 0.225 |
Hyperuricemia, n (%) | 35 (9.7) | 12 (12.9) | 23 (8.6) | 0.225 |
Atrial fibrillation, n (%) | 0 (0) | 0 (0) | 0 (0) | 1.000 |
aβ2GPIs, n (%) | 247 (68.4) | 62 (66.7) | 185 (69.0) | 0.673 |
aCL, n (%) | 253 (70.1) | 69 (74.2) | 184 (68.7) | 0.315 |
LA, n (%) | 235 (65.1) | 64 (68.8) | 171 (63.8) | 0.659 |
Triple aPL positivity, n (%) | 125 (34.6) | 33 (35.5) | 92 (34.3) | 0.840 |
Platelet (×109/L), median (IQR) | 151.4 (80.8, 215.5) | 121.0 (58.0, 202.9) | 165.5 (95.3, 217.8) | 0.027 |
Thrombocytopenia, n (%) | 143 (39.6) | 46 (49.5) | 97 (36.2) | 0.024 |
PT (s), median (IQR) | 11.5 (10.4, 13.3) | 11.7 (10.6, 13.5) | 11.4 (10.4, 13.3) | 0.433 |
APTT (s), median (IQR) | 34.0 (29.5, 48.9) | 35.6 (29.6,51.4) | 33.4 (29.4,47.4) | 0.322 |
D-Dimer (ng/mL), median (IQR) | 298.0 (110.9, 703.5) | 218.0 (97.5, 553.5) | 325.5 (123.0, 746.0) | 0.050 |
Low C3, n (%) | 171 (47.4) | 52 (55.9) | 119 (44.4) | 0.055 |
Low C4, n (%) | 341 (94.5) | 90 (96.8) | 251 (93.7) | 0.257 |
Antiplatelet drugs, n (%) | 136 (37.7) | 38 (40.9) | 98 (36.6) | 0.462 |
Anticoagulants, n (%) | 203 (56.2) | 45 (48.4) | 158 (59.0) | 0.077 |
Both antiplatelet drugs and anticoagulants, n (%) | 69 (19.1) | 13 (14.0) | 56 (20.9) | 0.144 |
HCQ, n (%) | 241 (66.8) | 49 (52.7) | 192 (71.6) | 0.001 |
Statins, n (%) | 34 (9.4) | 16 (17.2) | 18 (6.7) | 0.003 |
Immunosuppressants, n (%) | 187 (51.8) | 55 (59.1) | 132 (49.3) | 0.100 |
Variables | OR | 95%CI | p |
---|---|---|---|
Male gender | 1.838 | (1.080, 3.129) | 0.025 |
Age (years) | 1.031 | (1.017, 1.047) | ˂0.001 |
APS duration (months) | 1.002 | (0.998, 1.005) | 0.402 |
Secondary APS | 1.867 | (1.155, 3.017) | 0.011 |
Extracranial thrombotic events | 0.908 | (0.567, 1.456) | 0.690 |
Extracranial arterial thrombotic events | 1.148 | (0.671, 1.964) | 0.614 |
Extracranial venous thrombotic events | 0.800 | (0.485, 1.319) | 0.382 |
Other CNS involvements | 3.778 | (2.121, 6.729) | ˂0.001 |
aGAPSS | 1.068 | (1.006, 1.135) | 0.032 |
BMI | 0.961 | (0.909, 1.016) | 0.162 |
Smoking | 1.453 | (0.783, 2.696) | 0.237 |
Hypertension | 3.395 | (2.068, 5.574) | ˂0.001 |
Diabetes | 10.679 | (4.579, 24.901) | ˂0.001 |
Hyperlipidemia | 2.423 | (1.332, 4.409) | 0.004 |
Chronic kidney disease | 1.687 | (0.719, 3.961) | 0.229 |
Hyperuricemia | 1.578 | (0.752, 3.314) | 0.228 |
Livedo reticularis | 4.951 | (1.577, 15.538) | 0.006 |
aβ2GPIs | 0.897 | (0.543, 1.484) | 0.673 |
aCL | 1.312 | (0.771, 2.233) | 0.316 |
LA | 1.252 | (0.756, 2.073) | 0.383 |
Triple aPL positivity | 1.052 | (0.642, 1.724) | 0.840 |
Thrombocytopenia | 1.725 | (1.071, 2.779) | 0.025 |
Low C3 | 1.588 | (0.988, 2.554) | 0.056 |
Low C4 | 2.032 | (0.582, 7.097) | 0.267 |
Antiplatelet drugs | 1.199 | (0.740, 1.942) | 0.462 |
Anticoagulants | 0.653 | (0.406, 1.048) | 0.078 |
Both antiplatelet drugs and anticoagulants | 0.615 | (0.319, 1.185) | 0.147 |
HCQ | 0.441 | (0.271, 0.717) | 0.001 |
Statins | 2.886 | (1.404, 5.931) | 0.004 |
Immunosuppressants | 1.491 | (0.925, 2.405) | 0.101 |
Model 1 | Model 2 | |||||
---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | |
Age (years) | 1.005 | (0.987, 1.024) | 0.566 | 1.015 | (0.999, 1.032) | 0.073 |
Male gender | 1.634 | (0.877, 3.043) | 0.107 | 1.716 | (0.929, 3.169) | 0.085 |
Secondary APS | 1.463 | (0.828, 2.588) | 0.190 | 1.381 | (0.788, 2.421) | 0.260 |
Other CNS involvements | 1.929 | (0.971, 3.835) | 0.061 | 1.973 | (1.000, 3.894) | 0.050 |
aGAPSS | / | / | / | 1.028 | (0.959, 1.102) | 0.437 |
Hypertension | 2.201 | (1.184, 4.089) | 0.013 | / | / | / |
Hyperlipidemia | 1.305 | (0.632, 2.694) | 0.471 | / | / | / |
Diabetes | 6.185 | (2.441, 15.676) | <0.001 | 6.004 | (2.385, 15.111) | <0.001 |
Livedo reticularis | 5.027 | (1.341, 18.851) | 0.017 | 5.338 | (1.491, 19.106) | 0.010 |
Thrombocytopenia | 1.494 | (0.864, 2.583) | 0.151 | 1.526 | (0.888, 2.625) | 0.126 |
HCQ | 0.589 | (0.337, 1.029) | 0.063 | 0.549 | (0.316, 0.952) | 0.033 |
Statins | 2.027 | (0.884, 4.646) | 0.095 | 2.135 | (0.940, 4.874) | 0.070 |
Univariate Analysis | |||
---|---|---|---|
HR | 95% CI | p | |
Age at diagnosis (years) | 0.966 | (0.927, 1.007) | 0.101 |
Male gender | 1.303 | (0.350, 4.855) | 0.693 |
Disease duration (months) | 1.005 | (0.997, 1.013) | 0.257 |
Secondary APS | 0.507 | (0.143, 1.800) | 0.293 |
Thrombotic APS | 0.457 | (0.106, 1.971) | 0.294 |
Extracranial thrombotic events | 1.260 | (0.356, 4.457) | 0.720 |
Extracranial arterial thrombotic events | 0.570 | (0.114, 2.841) | 0.493 |
Extracranial venous thrombotic events | 1.900 | (0.530, 6.810) | 0.324 |
Other CNS involvements | 0.764 | (0.188, 3.112) | 0.707 |
aGAPSS | 1.038 | (0.887, 1.214) | 0.645 |
Obesity (BMI ≥ 30) | 1.540 | (0.163, 14.550) | 0.706 |
Smoking | 1.675 | (0.397, 7.071) | 0.483 |
Hypertension | 0.794 | (0.224, 2.807) | 0.720 |
Diabetes | 0.646 | (0.129, 3.231) | 0.594 |
Hyperlipidemia | 1.895 | (0.500, 7.173) | 0.347 |
Chronic kidney disease * | 0 | / | 0.999 |
Hyperuricemia | 1.600 | (0.302, 8.490) | 0.581 |
Livedo reticularis | 2.815 | (0.493, 16.087) | 0.245 |
Thrombocytopenia | 0.082 | (0.010, 0.672) | 0.020 |
aβ2GPIs | 1.383 | (0.340, 5.625) | 0.651 |
aCL | 0.565 | (0.150, 2.130) | 0.399 |
LA | 2.209 | (0.446, 10.941) | 0.332 |
Triple aPL positivity | 1.607 | (0.451, 5.732) | 0.465 |
Low C3 | 0.405 | (0.110, 1.492) | 0.174 |
Low C4 | 0.250 | (0.021, 3.012) | 0.275 |
Antiplatelet drugs | 1.237 | (0.349, 4.390) | 0.742 |
Anticoagulants | 2.026 | (0.551, 7.457) | 0.288 |
Both antiplatelet drugs and anticoagulants | 2.700 | (0.613, 11.892) | 0.189 |
HCQ | 1.667 | (0.453, 6.131) | 0.442 |
Immunosuppressants | 0.808 | (0.228, 2.867) | 0.742 |
Statins | 1.079 | (0.210, 5.545) | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Y.; Xu, Y.; Zhang, S.; Song, X.; Liu, Z.; Tu, W.; Li, C. Stroke and Risk Factors in Antiphospholipid Syndrome. J. Pers. Med. 2024, 14, 24. https://doi.org/10.3390/jpm14010024
Fan Y, Xu Y, Zhang S, Song X, Liu Z, Tu W, Li C. Stroke and Risk Factors in Antiphospholipid Syndrome. Journal of Personalized Medicine. 2024; 14(1):24. https://doi.org/10.3390/jpm14010024
Chicago/Turabian StyleFan, Yangyi, Yicheng Xu, Sifan Zhang, Xiaodong Song, Zunjing Liu, Wenjun Tu, and Chun Li. 2024. "Stroke and Risk Factors in Antiphospholipid Syndrome" Journal of Personalized Medicine 14, no. 1: 24. https://doi.org/10.3390/jpm14010024
APA StyleFan, Y., Xu, Y., Zhang, S., Song, X., Liu, Z., Tu, W., & Li, C. (2024). Stroke and Risk Factors in Antiphospholipid Syndrome. Journal of Personalized Medicine, 14(1), 24. https://doi.org/10.3390/jpm14010024