Validation of Binocular Vision and Ocular Surface Assessment Tools in Digital Eye Strain Syndrome: The DESIROUS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
2.3. Informed Consent
2.4. Sample Size Calculation
2.5. Study Procedures and Schedule of Assessments
2.6. Study Instruments
2.7. Questionnaires
2.8. Computer Vision Syndrome Questionnaire
2.9. Convergence Insufficiency Symptom Survey
2.10. Dry Eye Questionnaire
2.11. Binocular Vision and Screen Time Assessment
- Subjective data will be collected by asking the amount of time (in hours) spent using various digital devices, including desktops, laptops, tablets, and smartphones. Additionally, data regarding the number of hours of sleep per day, averaged over the past week (7 days), will also be gathered.
- Objective data on screen time will be collected by examining the participant’s mobile phone usage (average daily time over the past week, last 7 days), phone model, and screen size. Smartphones (Android and iOS systems) have this information available in the digital well-being area for Android devices and in screen time settings for iOS devices. In addition to this information, participants will be asked about the electronic device (desktop, laptop, tablet, smartphone) used most frequently per day and if they own a smartwatch.
- Evaluation of objective refraction without cycloplegia, using the automatic refractometer GR-21 GRAND SEIKO (Japan).
- Distance visual acuity assessment with refractive correction using the CSV-1000 ETDRS provides a full range of LogMAR testing (1.0 to −0.3) at a test distance of 8 feet using standardized luminance, 85 cd/m2.
- Identification of oculomotor deviations using the cover test for near and distance vision, with the Lang fixation cube (LANG-STEREOTEST AG) at 40 cm for near and a distant fixation point for far. An opaque cover spoon will be employed at both distances.
- Evaluation of near stereopsis using the Random Dot Butterfly stereotest (Stereo Optical Co., Chicago, IL, USA) graded circle test at 40 cm, 800 to 40 s of arc.
- Assessment of near point of convergence (NPC) and accommodation (NPA) using the RAF (Royal Air Force) ruler (Haag-Streit, UK). For measuring the NPC, the target used is the fixation point on the near point card. The card will be brought from a distance of 50 cm along the facial midline in free space, moving approximately 2 cm/s towards the participant’s nasal bridge. The card will be stopped when the participant reports seeing double or when the examiner obvers any eye deviation. This measurement will be repeated three times. The measurement of the NPA is similar to that of the NPC. However, in this test, the target used is the N5 horizontal line, and the card is stopped when the participant reports that the letters are blurred.
- Assessment of accommodative facility using Flippers ±2.00 Diopter and near visual acuity chart “1” in LogMAR sizes for testing at 16 inches (40 cm). The patient focuses on the 0.1 visual acuity line on the near vision scale, and the examiner counts how many cycles the participant can complete in one minute. Each cycle consists of one positive lens and one negative lens. The examiner places the flipper, and when the vision becomes clear, the participant indicates this quickly by saying “now”, after which the examiner alternates the lens.
- Assessment of fusional amplitudes in space, convergence, and divergence for near and distance vision using horizontal prism bar and for near Lang fixation cube (LANG-STEREOTEST AG) and for far distant fixation point.
2.12. Ocular Surface Assessment
2.13. Statistical Analysis
3. Results
3.1. Validation of the Questionnaires
3.2. Binocular Vision and Ocular Surface Assessment
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
BAF | Binocular accommodative facility |
BUT | Tear film break-up time |
CI | Convergence insufficiency |
CISS | Convergence Insufficiency Symptom Survey |
CITT | Convergence Insufficiency Treatment Trial |
cm | Centimeters |
cpm | Cycles per minute |
CVS | Computer Vision Syndrome |
CVS-Q | Computer Vision Syndrome Questionnaire |
DED | Dry eye disease |
DEQ-5 | Dry Eye Questionnaire version 5 |
DESS | Digital Eye Strain Syndrome |
ESTeSL | Lisbon School of Health Technology |
ICC | Intraclass Correlation Coefficient |
LE | Left Eye |
NFV | Negative Fusional Vergence |
NPA | Near point accommodation |
NPC | Near point of convergence |
OSDI | Ocular Surface Disease Index |
PD | Prismatic Diopter |
PFV | Positive Fusional Vergence |
QOL | Quality of Life |
RAF | Royal Air Force ruler |
RE | Right Eye |
SD | Standard deviation |
SS | Sjögren’s Syndrome |
SQVD | Symptom Questionnaire for Visual Dysfunctions |
VA | Visual acuity |
References
- Sheppard, A.L.; Wolffsohn, J.S. Digital eye strain: Prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018, 3, e000146. [Google Scholar] [CrossRef]
- Blehm, C.; Vishnu, S.; Khattak, A.; Mitra, S.; Yee, R.W. Computer vision syndrome: A review. Surv. Ophthalmol. 2005, 50, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, M. Computer vision syndrome: A review of ocular causes and potential treatments. Ophthalmic Physiol. Opt. 2011, 31, 502–515. [Google Scholar] [CrossRef]
- Seguí, M.; Cabrero-garcía, J.; Crespo, A.; Verdú, J.; Ronda, E. A reliable and valid questionnaire was developed to measure Computer Vision Syndrome at the workplace. J. Clin. Epidemiol. 2015, 68, 662–673. [Google Scholar] [CrossRef]
- Seresirikachorn, K.; Thiamthat, W.; Sriyuttagrai, W.; Soonthornworasiri, N.; Singhanetr, P.; Yudtanahiran, N.; Theeramunkong, T. Effects of digital devices and online learning on computer vision syndrome in students during the COVID-19 era: An online questionnaire study. BMJ Paediatr. Open 2022, 6, e001429. [Google Scholar] [CrossRef]
- Abusamak, M.; Jaber, H.M.; Alrawashdeh, H.M. The Effect of Lockdown Due to the COVID-19 Pandemic on Digital Eye Strain Symptoms Among the General Population: A Cross-Sectional Survey. Front. Public Health 2022, 10, 895517. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, P.K.; Nti, A.N.; Ankamah-Lomotey, S.; Frimpong, A.A.; Fummey, J.; Boadi, P.; Osei-Poku, K.; Adjei-Anang, J. Digital Device Use, Computer Vision Syndrome, and Sleep Quality among an African Undergraduate Population. Adv. Public Health 2021, 2021, 6611348. [Google Scholar] [CrossRef]
- Almudhaiyan, T.M.; Aldebasi, T.; Alakel, R.; Marghlani, L.; Aljebreen, A.; Moazin, O.M. The Prevalence and Knowledge of Digital Eye Strain Among the Undergraduates in Riyadh, Saudi Arabia. Cureus J. Med. Sci. 2023, 15, e37081. [Google Scholar] [CrossRef]
- Gammoh, Y. Digital Eye Strain and Its Risk Factors Among a University Student Population in Jordan: A Cross-Sectional Study. Cureus 2021, 13, 6–13. [Google Scholar] [CrossRef]
- Iqbal, M.; Soliman, A.; Ibrahim, O.; Gad, A. Analysis of the Outcomes of the Screen-Time Reduction in Computer Vision Syndrome: A Cohort Comparative Study. Clin. Ophthalmol. 2023, 17, 123–134. [Google Scholar] [CrossRef]
- Peter, R.G.; Giloyan, A.; Harutyunyan, T.; Petrosyan, V. Computer vision syndrome (CVS): The assessment of prevalence and associated risk factors among the students of the American University of Armenia. J. Public Health 2023, 2023, 1–10. [Google Scholar] [CrossRef]
- Sharma, A.; Satija, J.; Antil, P.; Dahiya, R.; Shekhawat, S. Determinants of digital eye strain among university students in a district of India: A cross-sectional study. J. Public Health 2023, 32, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wei, X.; Deng, Y. Computer Vision Syndrome During SARS-CoV-2 Outbreak in University Students: A Comparison Between Online Courses and Classroom Lectures. Front. Public Health 2021, 9, 696036. [Google Scholar] [CrossRef] [PubMed]
- Wangsan, K.; Upaphong, P.; Assavanopakun, P.; Sapbamrer, R.; Sirikul, W.; Kitro, A.; Sirimaharaj, N.; Kuanprasert, S.; Saenpo, M.; Saetiao, S.; et al. Self-Reported Computer Vision Syndrome among Thai University Students in Virtual Classrooms during the COVID-19 Pandemic: Prevalence and Associated Factors. Int. J. Environ. Res. Public Health 2022, 19, 3996. [Google Scholar] [CrossRef]
- Anshel, J. The Eyes and Visual System. In Visual Ergonomics Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 232. [Google Scholar]
- Shrestha, G.S.; Mohamed, F.N.; Shah, D.N. Visual problems among video display terminal (VDT) users in Nepal. J. Optom. 2011, 4, 56–62. [Google Scholar] [CrossRef]
- Yang, S.N.; Tai, Y.C.; Hayes, J.R.; Doherty, R.; Corriveau, P.; Sheedy, J.E. Effects of font size and display quality on reading performance and visual discomfort of developmental readers. Optom. Vis. Sci. 2010, 87, 105–244. [Google Scholar]
- Rosenfield, M.; Li, R.T.; Kirsch, N.T. A double-blind test of blue-blocking filters on symptoms of digital eye strain. Work 2020, 65, 343–348. [Google Scholar] [CrossRef]
- Cacho-Martínez, P.; Cantó-Cerdán, M.; Carbonell-Bonete, S.; García-Muñoz, Á. Characterization of visual symptomatology associated with refractive, accommodative, and binocular anomalies. J. Ophthalmol. 2015, 2015, 31–42. [Google Scholar] [CrossRef]
- Jaiswal, S.; Asper, L.; Long, J.; Lee, A.; Harrison, K.; Golebiowski, B. Ocular and visual discomfort associated with smartphones, tablets and computers: What we do and do not know. Clin. Exp. Optom. 2019, 102, 463–477. [Google Scholar] [CrossRef]
- Gowrisankaran, S.; Sheedy, J.E. Computer vision syndrome: A review. Work 2015, 52, 303–314. [Google Scholar] [CrossRef]
- Sánchez-Brau, M.; Domenech-Amigot, B.; Brocal-Fernández, F.; Quesada-Rico, J.A.; Seguí-Crespo, M. Prevalence of Computer Vision Syndrome and Its Relationship with Ergonomic and Individual Factors in Presbyopic VDT Workers Using Progressive Addition Lenses. Int. J. Environ. Res. Public Health 2020, 17, 1003. [Google Scholar] [CrossRef] [PubMed]
- Soria-Oliver, M.; López, J.S.; Torrano, F.; García-González, G.; Lara, Á. New patterns of information and communication technologies usage at work and their relationships with visual discomfort and musculoskeletal diseases: Results of a cross-sectional study of spanish organizations. Int. J. Environ. Res. Public Health 2019, 16, 3166. [Google Scholar] [CrossRef] [PubMed]
- Mowatt, L.; Gordon, C.; Santosh, A.B.R.; Jones, T. Computer vision syndrome and ergonomic practices among undergraduate university students. Int. J. Clin. Pract. 2018, 72, e13035. [Google Scholar] [CrossRef] [PubMed]
- Cacho-Martínez, P.; Cantó-Cerdán, M.; Lara-Lacárcel, F.; García-Muñoz, Á. Assessing the role of visual dysfunctions in the association between visual symptomatology and the use of digital devices. J. Optom. 2024, 17, 100510. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Alabdulkader, A.M.; Alghamdi, A.N.; Altayeb, J.; Jabaan, R.; Assaf, L.; A Alanazi, R. Prevalence of Digital Eye Strain Among University Students and Its Association with Virtual Learning During the COVID-19 Pandemic. Clin. Ophthalmol. 2023, 17, 1755–1768. [Google Scholar] [CrossRef]
- Artime-Ríos, E.; Suárez-Sánchez, A.; Sánchez-Lasheras, F.; Seguí-Crespo, M. Computer vision syndrome in healthcare workers using video display terminals: An exploration of the risk factors. J. Adv. Nurs. 2022, 78, 2095–2110. [Google Scholar] [CrossRef]
- De-Hita-Cantalejo, C.; García-pérez, Á.; Capote-puente, R.; Sánchez-gonzález, M.C. Accommodative and binocular disorders in preteens with computer vision syndrome: A cross-sectional study. Ann. N. Y. Acad. Sci. 2021, 1492, 73–81. [Google Scholar] [CrossRef]
- De-Hita-Cantalejo, C.; Sanchez-Gonzalez, J.M.; Silva-Viguera, C.; Sanchez-Gonzalez, M.C. Tweenager Computer Visual Syndrome Due to Tablets and Laptops during the Postlockdown COVID-19 Pandemic and the Influence on the Binocular and Accommodative System. J. Clin. Med. 2022, 11, 5317. [Google Scholar] [CrossRef]
- Maharjan, U.; Rijal, S.; Jnawali, A.; Sitaula, S.; Bhattarai, S.; Shrestha, G.B. Binocular vision findings in normally-sighted school aged children who used digital devices. PLoS ONE 2022, 17, e0266068. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, K.Y.; Gao, S.A.; Yang, J.; Qiu, W. Correlation between Eye Movements and Asthenopia: A Prospective Observational Study. J. Clin. Med. 2022, 11, 7043. [Google Scholar] [CrossRef]
- Auffret, E.; Mielcarek, M.; Bourcier, T.; Delhommais, A.; Speeg-Schatz, C.; Sauer, A. Digital eye strain. Functional symptoms and binocular balance analysis in intensive digital users. J. Fr. D’ophtalmol. 2022, 45, 438–445. [Google Scholar] [CrossRef]
- Yammouni, R.; Evans, B.J.W. Is reading rate in digital eyestrain influenced by binocular and accommodative anomalies? J. Optom. 2021, 14, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Golebiowski, B.; Long, J.; Harrison, K.; Lee, A.; Chidi-Egboka, N.; Asper, L. Smartphone Use and Effects on Tear Film, Blinking and Binocular Vision. Curr. Eye Res. 2020, 45, 428–434. [Google Scholar] [CrossRef]
- Yammouni, R.; Evans, B.J. An investigation of low power convex lenses (adds) for eyestrain in the digital age (CLEDA). J. Optom. 2020, 13, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Brau, M.; García González, G. Prevalencia del síndrome visual informático (SVI) en trabajadores présbitas. Arch. Prev. Riesgos Laborales 2021, 24, 200–203. [Google Scholar] [CrossRef]
- Auffret, E.; Mielcarek, M.; Bourcier, T.; Delhommais, A.; Speeg-Schatz, C.; Sauer, A. Stress oculaire induit par les écrans. Analyses des symptômes fonctionnels et de l ’ équilibre binoculaire chez des utilisateurs intensifs. J. Fr. D’ophtalmol. 2022, 45, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zeng, P.; Deng, X.-W.; Liang, J.-Q.; Liao, Y.-R.; Fan, S.-X.; Xiao, J.-H. Eye Habits Affect the Prevalence of Asthenopia in Patients with Myopia. J. Ophthalmol. 2022, 2022, 8669217. [Google Scholar] [CrossRef]
- Sánchez-Brau, M.; Domenech-Amigot, B.; Brocal-Fernández, F.; Seguí-Crespo, M. Computer vision syndrome in presbyopic digital device workers and progressive lens design. Ophthalmic Physiol. Opt. 2021, 41, 922–931. [Google Scholar] [CrossRef]
- Cantó-Sancho, N.; Sánchez-Brau, M.; Ivorra-Soler, B.; Seguí-Crespo, M. Computer vision syndrome prevalence according to individual and video display terminal exposure characteristics in Spanish university students. Int. J. Clin. Pract. 2021, 75, e13681. [Google Scholar] [CrossRef]
- Lwanga, S.K.; Lemeshow, S. Sample Size Determination in Health Studies: A Practical Manual; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Rodrigues, M.A.; Mateus, C. Adaptação cultural e confiabilidade da versão portuguesa do Computer Vision Syndrome Questionnaire (CVS-Q). Resumos Ciênc. Visão 2020, 261. [Google Scholar]
- Alves, M.; Brardo, F. Tradução e validação para a Língua Portuguesa do Questionário Dry Eye Questionnaire. Universidade da Beira Interior, Covilhã, Portugal, 2012. [Google Scholar]
- Gross, L.G.; Pozzebon, M.E.; Favarato, A.P.; Ayub, G.; Alves, M. Translation and validation of the 5-Item Dry Eye Questionnaire into Portuguese. Arq. Bras. Oftalmol. 2024, 87, e2022-0197. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.; Nunes, A.M.M.F.; Nunes, A.J.S.; Pato, M.V.; Monteiro, P.M.L. Translation and validation of Convergence Insufficiency Symptom Survey (CISS) to Portuguese-psychometric results. Arq. Bras. Oftalmol. 2014, 77, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Rouse, M.W.; Borsting, E.J.; Mitchell, G.L.; Scheiman, M.; Cotter, S.A.; Cooper, J.; Kulp, M.T.; London, R.; Wensveen, J.; Convergence Insufficiency Treatment Trial Group. Validity and reliability of the revised convergence insufficiency symptom survey in adults. Ophthalmic Physiol. Opt. 2004, 24, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Darko-Takyia, C.; Owusu-Ansaha, A.; Boampongb, F.; Morny, E.K.; Hammond, F.; Ocansey, S. Convergence insufficiency symptom survey (CISS) scores are predictive of severity and number of clinical signs of convergence insufficiency in young adult Africans. J. Optom. 2022, 15, 228–237. [Google Scholar] [CrossRef]
- Boccardo, L.; Di Vizio, A.; Galli, G.; Naroo, S.A.; Fratini, A.; Tavazzi, S.; Gurioli, M.; Zeri, F. Translation and validation of convergence insufficiency symptom survey to Italian: Psychometric results. J. Optom. 2023, 16, 189–198. [Google Scholar] [CrossRef]
- Marran, L.F. Validity and reliability of the revised Convergence Insufficiency Symptom Survey in children aged 9 to 18 years (multiple letters). Optom. Vis. Sci. 2004, 81, 489–490. [Google Scholar] [CrossRef]
- Wolffsohn, J.S.; Arita, R.; Chalmers, R.; Djalilian, A.; Dogru, M.; Dumbleton, K.; Gupta, P.K.; Karpecki, P.; Lazreg, S.; Pult, H.; et al. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 2017, 15, 539–574. [Google Scholar]
- Chalmers, R.L.; Begley, C.G.; Caffery, B. Validation of the 5-Item Dry Eye Questionnaire (DEQ-5): Discrimination across self-assessed severity and aqueous tear deficient dry eye diagnoses. Contact Lens Anterior Eye 2010, 33, 55–60. [Google Scholar] [CrossRef]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
- Ilechie, A.; Mensah, T.; Abraham, C.H.; Addo, N.A.; Ntodie, M.; Ocansey, S.; Boadi-Kusi, S.B.; Owusu-Ansah, A.; Ezinne, N. Assessment of four validated questionnaires for screening of dry eye disease in an African cohort. Contact Lens Anterior Eye 2022, 45, 101468. [Google Scholar] [CrossRef]
- von Noorden, G.K.; Campos, E.C. Binocular Vision and Ocular Motility: Theory and Management of Strabismus, 6th ed.; Mosby: St. Louis, MO, USA, 2002. [Google Scholar]
- Bicas, H.E.A. Fisiologia da visão binocular. Arq. Bras. Oftalmol. 2004, 67, 172–180. [Google Scholar] [CrossRef]
- Daiber, H.F.; Gnugnoli, D.M. Visual Acuity; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Hussaindeen, J.R.; Murali, A. Accommodative insufficiency: Prevalence, impact and treatment options. Clin. Optom. 2020, 12, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Franco, S.; Moreira, A.; Fernandes, A.; Baptista, A. Accommodative and binocular vision dysfunctions in a Portuguese clinical population. J. Optom. 2022, 15, 271–277. [Google Scholar] [CrossRef]
- Nunes, A.F.; Monteiro, P.M.L.; Ferreira, F.B.P.; Nunes, A.S. Convergence insufficiency and accommodative insufficiency in children. BMC Ophthalmol. 2019, 19, 58. [Google Scholar] [CrossRef]
- García-Muñoz, Á.; Carbonell-Bonete, S.; Cantó-Cerdán, M.; Cacho-Martínez, P. Accommodative and binocular dysfunctions: Prevalence in a randomised sample of university students. Clin. Exp. Optom. 2016, 99, 313–321. [Google Scholar] [CrossRef]
- Abelson, M.B.; Ousler, G.W.; Nally, L.A.; Welch, D.; Krenzer, K. Alternative reference values for tear film break up time in normal and dry eye populations. Adv. Exp. Med. Biol. 2002, 506, 1121–1125. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Streiner, D.L. Statistical Developments and Applications Being Inconsistent About Consistency: When Coefficient Alpha Does and Doesn’t Matter Streiner Scales And Indexes. J. Personal. Assess. 2003, 80, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Vaz, F.T.; Henriques, S.P.; Silva, D.S.; Roque, J.; Lopes, A.S.; Mota, M. Digital asthenopia: Portuguese group of ergophthalmology survey. Acta. Med. Port. 2019, 32, 260–265. [Google Scholar] [CrossRef]
- Pina, A. Síndrome Visual de Computador: Influência de Fatores Individuais e da Ergonomia do Posto de Trabalho nas Alterações Visuais. Dissertação, Instituto Politécnico do Porto, Porto, Portugal, 2018. [Google Scholar]
- González-Pérez, M.; Pérez-Garmendia, C.; Barrio, A.R.; García-Montero, M.; Antona, B. Spanish cross-cultural adaptation and rasch analysis of the convergence insufficiency symptom survey (Ciss). Transl. Vis. Sci. Technol. 2020, 9, 23. [Google Scholar] [CrossRef]
- García-Muñoz, Á.; Carbonell-Bonete, S.; Cacho-Martínez, P. Symptomatology associated with accommodative and binocular vision anomalies. J. Optom. 2014, 7, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Cantó-Cerdán, M.; Cacho-Martínez, P.; Lara-Lacárcel, F.; García-Muñoz, Á. Rasch analysis for development and reduction of Symptom Questionnaire for Visual Dysfunctions (SQVD). Sci. Rep. 2021, 11, 14855. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Horwood, A.M.; Toor, S.; Riddell, P.M. Screening for convergence insuf fi ciency using the CISS is not indicated in young adults. Br. J. Ophthalmol. 2014, 98, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Clark, T.Y.; Clark, R.A. Convergence Insufficiency Symptom Survey Scores for Reading Versus Other Near Visual Activities in School-Age Children. Am. J. Ophthalmol. 2015, 160, 905–912.e2. [Google Scholar] [CrossRef]
Questionnaires | ||||||
---|---|---|---|---|---|---|
CVS-Q | CISS | DEQ-5 | ||||
Purpose | Determine the visual health of computer users | Identifying individuals with convergence insufficiency | Determine the presence of dry eye disease | |||
Items | 16 × 2 | 15 | 5 | |||
Frequency Response Type and Points | “Never” | 0 | “Never” | 0 | “Never” | 0 |
“Occasionally” | 1 | “Infrequently” | 1 | “Rarely” | 1 | |
“Often/Always” | 2 | “Sometimes” | 2 | “Sometimes” | 2 | |
“Very often” | 3 | “Often” | 3 | |||
“Always” | 4 | “Constantly” | 4 | |||
Intensity Response Type and Points | “Moderate” | 1 | Non-applicable | “Never felt” | 0 | |
“Intense” | 2 | “Not intense” | 1 | |||
2 | ||||||
3 | ||||||
4 | ||||||
“Very intense” | 5 | |||||
Score Value and Interpretation | <6 | Asymptomatic CVS | <21 | Absence of CI | ≤6 | Normal |
≥6 | Symptomatic CVS | ≥21 | CI | >6 | DED | |
>12 | Suspect SS |
Instrument | Normative Values [54,55,56,57,58,59,60] |
---|---|
Binocular Vision Assessment | |
Cover test | ExophoriaEsophoria |
Visual acuity (LogMAR) | ≤0.0 |
Near stereopsis | ≤40” |
Near point of convergence | <6 cm |
Near point of accommodation | Hofstetter’s formula = 15 − (0.25 × age) |
Binocular accommodative facility | ≥3 cpm |
PFV for far | 20/25 PD |
PFV for near | 30/40 PD |
NFV for far | 4/8 PD |
NFV for near | 12/16 PD |
Mean ± SD | |
---|---|
Age (y) | 21.40 ± 0.84 |
Spherical equivalent (D) | |
RE | −1.39 ± 1.38 |
LE | −1.06 ± 1.27 |
Sleep hours (h/d) | 6.94 ± 0.58 |
Desktop hours (h/d) | 1.56 ± 1.33 |
Laptop hours (h/d) | 2.06 ± 1.78 |
Tablet hours (h/d) | 0.44 ± 1.33 |
Smartphone hours (h/d) | 5.33 ± 2.40 |
Objective smartphone screen time (h/d) | 4.88 ± 1.91 |
VA (LogMAR) | |
RE | 0.13 ± 0.14 |
LE | 0.06 ± 0.07 |
Near stereopsis (second of arc) | 44.44 ± 7.27 |
NPC (cm) | 7.56 ± 3.25 |
NPA (D) | 11.67 ± 2.83 |
Accommodative facility (cpm) | 6.11 ± 4.60 |
Vergences (PD) | |
PFV for far | 21.00 ± 10.42 |
PFV for near | 31.33 ± 10.94 |
NFV for near | 12.56 ± 6.23 |
NFV for far | 8.50 ± 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barata, M.J.; Aguiar, P.; Grzybowski, A.; Lança, C.; Moreira-Rosário, A. Validation of Binocular Vision and Ocular Surface Assessment Tools in Digital Eye Strain Syndrome: The DESIROUS Study. J. Pers. Med. 2025, 15, 168. https://doi.org/10.3390/jpm15050168
Barata MJ, Aguiar P, Grzybowski A, Lança C, Moreira-Rosário A. Validation of Binocular Vision and Ocular Surface Assessment Tools in Digital Eye Strain Syndrome: The DESIROUS Study. Journal of Personalized Medicine. 2025; 15(5):168. https://doi.org/10.3390/jpm15050168
Chicago/Turabian StyleBarata, Maria João, Pedro Aguiar, Andrzej Grzybowski, Carla Lança, and André Moreira-Rosário. 2025. "Validation of Binocular Vision and Ocular Surface Assessment Tools in Digital Eye Strain Syndrome: The DESIROUS Study" Journal of Personalized Medicine 15, no. 5: 168. https://doi.org/10.3390/jpm15050168
APA StyleBarata, M. J., Aguiar, P., Grzybowski, A., Lança, C., & Moreira-Rosário, A. (2025). Validation of Binocular Vision and Ocular Surface Assessment Tools in Digital Eye Strain Syndrome: The DESIROUS Study. Journal of Personalized Medicine, 15(5), 168. https://doi.org/10.3390/jpm15050168