Global Mean-Motion Resonances: Part I—An Exceptional Multiplanetary Resonant Chain in TOI-270 and an Exact Laplace-like Resonance in HD 110067
Abstract
:1. Introduction
1.1. A New Beginning: Gravitational Landau Damping
1.2. Global Mean-Motion Resonances
1.3. Outline
2. The TOI-270 Exoplanetary System
3. The Global 2:1 MMR Occupied by TOI-270 d
3.1. Possible Explanations
- (1)
- A Laplace resonant chain (:1:2) between planets b, c, and d, as in GJ 876 [12,42]. However, in this case, planet b would have to occupy instead the 1:2 MMR with an orbital period of about 2.83 d, i.e., shorter by 0.53 d than the current best-fit value. We explore this possibility in detail in Section 3.2 below.
- (2)
- On the other hand, a yet undetected outer planet could complete a 1:2:4 Laplace chain in conjunction with planets c and d (although no LR is presently known with the most massive body in radial position ; see Table 2 below). We searched for a planetary signal at a period of 22.6–22.8 d with no success, although we found two distinct peaks in the periodogram within the targeted range (Figure 2). Past searches traversing this range have also produced negative results [35,36].
- (3)
- (4)
- Another planet more massive than any of the three known planets (i.e., with mass ) would reset the location of the 1:1 MMR, resolving thus the issue. However, no other planet has been detected out to an orbital period of at least ∼ 30 days (Ref. [36], and this work). At such large distances, more doubts are raised by the expanded projected aperture of a large planet on to the star that would be expected to produce very deep eclipses during transits—on the contrary, no eclipses of any depth are seen in the TESS data out to d.
- (5)
- Against the odds, the empirical rule calling for vacant non-LR 2:1 orbits adjacent to the principal 1:1 orbit could be invalid. We do not think this is a satisfactory resolution of the problem because this rule appears to be justified in 75 exosystems and solar-system satellite systems that we have analyzed so far (see also the results from a sample of 34 systems of Steffen [43]). In many of these systems, a body near the vacant 2:1 MMR has been clearly displaced out to a nearby higher-order MMR; in particular, 9:4 (e.g., Kepler-20 d, HD 108236 d), or 7:3 (e.g., Callisto, Kepler-80 b), or 5:2 (e.g., Saturn, HIP 9618 c). On the other hand, the most well-known system with a vacant 2:1 MMR is the Plutonian satellites displaying a global MMR sequence of the form (1:1, 3:1, 4:1, 5:1, 6:1) [44,45].
- (6)
- A simple, yet surprising explanation would be that in TOI-270 we have encountered yet another stable triple chain of the type (3:5, 1:1, 2:1) in which the dominant planet c can stabilize the 3:5 MMR just as easily as the well-known Laplace 1:2 MMR. This novel hypothesis is also of theoretical interest (see Section 3.3 below), and it should be tested by numerical simulations.
Host | Orbiting | Configuration | |
---|---|---|---|
Body | Bodies | Mass Scheme | Refs. |
Radial Position n: | 1 2 3 | ||
Global MMRs of the form 1:4 1:2 1:1 | |||
Jupiter | I, E, G | (1) | |
HIP 41378 | b, c, g | (2) | |
Global MMRs of the form 1:2 1:1 2:1 | |||
GJ 876 | c, b, e | (3) | |
Kepler-176 ‡ | c, d, e ★ | (4) | |
HR 8799 | e, d, c | (5) | |
HR 8832 | f, d, g | (6) | |
Global MMR of the form 3:5 1:1 2:1 | |||
TOI-270 | b, c, d | (7) | |
Key: | |||
Mass scheme of the LR chain | |||
: Most massive body (‘big boy’); | |||
: Least massive body (‘little guy’); | |||
: Intermediate mass body (‘other one’). | |||
Jupiter’s moons | |||
I: Io; E: Europa; G: Ganymede. |
3.2. Case-1: Potential Laplace Resonance Scrutinized
- (a)
- The latest best-fit models [35,37] used narrow priors of width d, so they could have missed a best-fit value smaller by only 0.53 d falling within the error bars (case 1 in Section 3.1).
- (b)
- (c)
- The periodogram combining all five sectors of TESS observations shows several distinct peaks in the interval of interest d and a prominent peak at d (Figure 2).
3.3. Case-6: Laplace-like MMR Chains Explored in Conjunction with Classical LRs
3.3.1. Comparison with Known LRs and the Resonance in HD 110067
- (a)
- No system has the most massive orbiting body () in radial position .
- (b)
- There is no system with at and at .1
- (c)
- Only HIP 41378 has precisely the same arrangement of orbiting body masses as the famous Galilean LR with at and at .
- (d)
- Except for HIP 41378, the other five exosystems have at (including also TOI-270).
3.3.2. The Global Resonant Chain of TOI-270
3.4. The Long-Gone Tidal Field of TOI-270
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LR | Laplace Resonance |
MMR | Mean-Motion Resonance |
TESS | Transiting Exoplanet Survey Satellite |
TOI | TESS Object of Interest |
Appendix A. Even Multiples of the Angle λ 1 -2λ 2 +λ 3
Appendix B. Rational Arithmetic of Global Laplace-like Resonances in TOI-270
1 | Case (b) in Section 3.3.1: The adjacency of to in all cases brings to mind Hyperion’s proximity to Titan (see Ref. [56] for recent measurements). The unusual global MMR chain :1: of Saturn’s moons Rhea-Titan-Hyperion with a phase of has not received due attention yet. |
2 | Equation (12) in Section 3.4: Specifically, we use this simplified equation for the Hill radius in Ref. [9] to analyze the planetary orbits of HD 110067, Kepler-176, and Kepler-223. |
References
- Christodoulou, D.M.; Kazanas, D. Landau tidal damping and major-body clustering in solar and extrasolar subsystems. Astronomy 2024, 3, 139–166. [Google Scholar] [CrossRef]
- Landau, L. Oscillations of an electron plasma. J. Phys. 1946, 10, 25. (In English) [Google Scholar]
- Lynden-Bell, D. The stability and vibrations of a gas of stars. Mon. Not. R. Astron. Soc. 1962, 124, 279. [Google Scholar] [CrossRef]
- Goldreich, P. An explanation of the frequent occurrence of commensurable mean motions in the solar system. Mon. Not. R. Astron. Soc. 1965, 130, 159. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 1987; pp. 347, 412, 437–439, 677. [Google Scholar]
- Stix, T.H. Waves in Plasmas; Springer: New York, NY, USA, 1992; pp. 169–193. [Google Scholar]
- Trigger, S.A.; Ershkovich, A.I.; van Heijst, G.J.F.; Schram, P.P.J.M. Kinetic Theory of Jeans Instability. Phys. Rev. E 2004, 69, 066403. [Google Scholar] [CrossRef]
- Wesson, J. Landau damping. Phys. Plasmas 2015, 22, 022519. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Sorabella, N.M.; Bhattacharya, S.; Laycock, S.G.; Kazanas, D., II. Laplace-like phase angles to facilitate libration searches in multiplanetary N-body simulations. Galaxies, 2024; submitted. [Google Scholar]
- Ferraz-Mello, S. Problems on the Galilean satellites of Jupiter. Celestial Mech. 1975, 12, 27. [Google Scholar] [CrossRef]
- Murray, C.D.; Dermott, S.F. Solar System Dynamics; Cambridge University Press: Cambridge, UK, 1999; pp. 364–371, 396–399. [Google Scholar]
- Rivera, E.J.; Laughlin, G.; Butler, R.P.; Vogt, S.S.; Haghighipour, N.; Meschiari, S. The Lick-Carnegie exoplanet survey: A Uranus-mass fourth planet for GJ 876 in an extrasolar Laplace configuration. Astrophys. J. 2010, 719, 890. [Google Scholar] [CrossRef]
- Luque, R.; Osborn, H.P.; Leleu, A.; Pallé, E.; Bonfanti, A.; Barragán, O.; Wilson, T.G.; Broeg, C.; Cameron, A.C.; Lendl, M.; et al. A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067. Nature 2023, 623, 932. [Google Scholar] [CrossRef]
- Goździewski, K.; Migaszewski, C.; Panichi, F.; Szuszkiewicz, E. The Laplace resonance in the Kepler-60 planetary system. Mon. Not. R. Astron. Soc. Lett. 2016, 455, L104. [Google Scholar] [CrossRef]
- Jontof-Hutter, D.; Ford, E.B.; Rowe, J.F.; Lissauer, J.J.; Fabrycky, D.C.; Van Laerhoven, C.; Agol, E.; Deck, K.M.; Holczer, T.; Mazeh, T. Erratum: “Secure TTV mass measurements: Ten Kepler exoplanets between 3 and 8 M⊕ with diverse densities and incident fluxes. Astrophys. J. 2021, 911, 154. [Google Scholar] [CrossRef]
- MacDonald, M.G.; Dawson, R.I. Three pathways for observed resonant chains. Astron. J. 2018, 156, 228. [Google Scholar] [CrossRef]
- Christiansen, J.L.; Crossfield, I.J.; Barentsen, G.; Lintott, C.J.; Barclay, T.; Simmons, B.D.; Petigura, E.; Schlieder, J.E.; Dressing, C.D.; Vanderburg, A.; et al. The K2-138 System: A near-resonant chain of five sub-Neptune planets discovered by Citizen Scientists. Astron. J. 2018, 155, 57. [Google Scholar] [CrossRef]
- Lopez, T.A.; Barros, S.C.C.; Santerne, A.; Deleuil, M.; Adibekyan, V.; Almenara, J.M.; Armstrong, D.J.; Brugger, B.; Barrado, D.; Bayliss, D.; et al. Exoplanet characterisation in the longest known resonant chain: The K2-138 system seen by HARPS. Astron. Astrophys. 2019, 631, A90. [Google Scholar] [CrossRef]
- MacDonald, M.G.; Feil, L.; Quinn, T.; Rice, D. Confirming the 3:2 resonance chain of K2-138. Astron. J. 2022, 163, 162. [Google Scholar] [CrossRef]
- Luger, R.; Sestovic, M.; Kruse, E.; Grimm, S.L.; Demory, B.O.; Agol, E.; Bolmont, E.; Fabrycky, D.; Fernandes, C.S.; Van Grootel, V.; et al. A seven-planet resonant chain in TRAPPIST-1. Nat. Astron. 2017, 1, 0129. [Google Scholar] [CrossRef]
- Mah, J. Formation and Dynamics of the Resonant Chain in the TRAPPIST-1 Exoplanet System. Master’s Thesis, University of Hong Kong, Hong Kong, China, 2018; p. 26. [Google Scholar]
- Agol, E.; Dorn, C.; Grimm, S.L.; Turbet, M.; Ducrot, E.; Delrez, L.; Gillon, M.; Demory, B.O.; Burdanov, A.; Barkaoui, K.; et al. Refining the transit-timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides. Planet. Sci. J. 2021, 2, 1. [Google Scholar] [CrossRef]
- Lissauer, J.J.; Ragozzine, D.; Fabrycky, D.C.; Steffen, J.H.; Ford, E.B.; Jenkins, J.M.; Shporer, A.; Holman, M.J.; Rowe, J.F.; Quintana, E.V.; et al. Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 2011, 197, 8. [Google Scholar] [CrossRef]
- MacDonald, M.G.; Ragozzine, D.; Fabrycky, D.C.; Ford, E.B.; Holman, M.J.; Isaacson, H.T.; Lissauer, J.J.; Lopez, E.D.; Mazeh, T.; Rogers, L.; et al. A dyamical analysis of the Kepler-80 system of five transiting planets. Astron. J. 2016, 152, 105. [Google Scholar] [CrossRef]
- MacDonald, M.G.; Vivas, M.S.P.; D’Angiolillo, S.; Fernandez, A.N.; Quinn, T. exoMMR: A new python package to confirm and characterize mean motion resonances. Astron. J. 2023, 166, 94. [Google Scholar] [CrossRef]
- Quinn, T.; MacDonald, M.G. Confirming resonance in three transiting systems. Astron. J. 2023, 166, 58. [Google Scholar] [CrossRef]
- Celletti, A.; Karampotsiou, E.; Lhotka, C.; Pucacco, G.; Volpi, M. Laplace-like resonances with tidal effects. Astron. Astrophys. 2021, 655, A94. [Google Scholar] [CrossRef]
- Charalambous, C.; Marti, J.G.; Beauge, C.; Ramos, X.S. Resonance capture and dynamics of three-planet systems. Mon. Not. R. Astron. Soc. 2018, 477, 1414. [Google Scholar] [CrossRef]
- Morrison, S.J.; Dawson, R.I.; MacDonald, M. Chains of planets in mean motion resonances arising from oligarchic growth. Astrophys. J. 2020, 904, 157. [Google Scholar] [CrossRef]
- Siegel, J.C.; Fabrycky, D. Resonant chains of exoplanets: Libration centers for three-body angles. Astron. J. 2021, 161, 290. [Google Scholar] [CrossRef]
- Lari, G.; Saillenfest, M. The nature of the Laplace resonance between the Galilean moons. Cel. Mech. Dyn. Astr. 2024, 136, 19. [Google Scholar] [CrossRef]
- Henrard, J.; Lemaitre, A. A second fundamental model for resonance. Cel. Mech. 1983, 30, 197. [Google Scholar] [CrossRef]
- Delisle, J.-B.; Laskar, J.; Correia, A.C.M.; Boué, G. Dissipation in planar resonant planetary systems. Astron. Astrophys. 2012, 546, A71. [Google Scholar] [CrossRef]
- Batygin, K.; Morbidelli, A. Analytical treatment of planetary resonances. Astron. Astrophys. 2013, 556, A28. [Google Scholar] [CrossRef]
- Kaye, L.; Vissapragada, S.; Günther, M.N.; Aigrain, S.; Mikal-Evans, T.; Jensen, E.L.; Parviainen, H.; Pozuelos, F.J.; Abe, L.; Acton, J.S.; et al. Transit timings variations in the three-planet system: TOI-270. Mon. Not. R. Astron. Soc. 2022, 510, 5464. [Google Scholar] [CrossRef]
- Günther, M.N.; Pozuelos, F.J.; Dittmann, J.A.; Dragomir, D.; Kane, S.R.; Daylan, T.; Feinstein, A.D.; Huang, C.X.; Morton, T.D.; Bonfanti, A.; et al. A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270. Nat. Astron. 2019, 3, 1099. [Google Scholar] [CrossRef]
- Van Eylen, V.; Astudillo-Defru, N.; Bonfils, X.; Livingston, J.; Hirano, T.; Luque, R.; Lam, K.W.F.; Justesen, A.B.; Winn, J.N.; Gandolfi, D.; et al. Masses and compositions of three small planets orbiting the nearby M dwarf L231-32 (TOI-270) and the M dwarf radius valley. Mon. Not. R. Astron. Soc. 2021, 507, 2154. [Google Scholar] [CrossRef]
- Benneke, B.; Roy, P.A.; Coulombe, L.P.; Radica, M.; Piaulet, C.; Ahrer, E.M.; Pierrehumbert, R.; Krissansen-Totton, J.; Schlichting, H.E.; Hu, R.; et al. JWST reveals CH4, CO2, and H2O in a metal-rich miscible atmosphere on a two-Earth-radius exoplanet. arXiv 2024, arXiv:2403.03325. [Google Scholar]
- Holmberg, M.; Madhusudhan, N. Possible hycean conditions in the sub-Neptune TOI-270 d. Astron. Astrophys. 2024, 683, L2. [Google Scholar] [CrossRef]
- Mikal-Evans, T.; Madhusudhan, N.; Dittmann, J.; Günther, M.N.; Welbanks, L.; Van Eylen, V.; Crossfield, I.J.; Daylan, T.; Kreidberg, L. Hubble Space Telescope transmission spectroscopy for the temperate sub-Neptune TOI-270 d: A possible hydrogen-rich atmosphere containing water vapor. Astron. J. 2023, 165, 84. [Google Scholar] [CrossRef]
- Christodoulou, D.M.; Laycock, S.G.T.; Kazanas, D. The global 2:1 mean-motion resonance in HD 110067 is not vacant! Res. Notes AAS 2023, 7, 275. [Google Scholar] [CrossRef]
- Millholl, S.; Laughlin, G.; Teske, J.; Butler, R.P.; Burt, J.; Holden, B.; Vogt, S.; Crane, J.; Shectman, S.; Thompson, I. New constraints on Gliese 876—Exemplar of mean-motion resonance. Astron. J. 2018, 155, 106. [Google Scholar] [CrossRef]
- Steffen, J.H. Kepler’ s missing planets. Mon. Not. R. Astron. Soc. 2013, 433, 3246. [Google Scholar] [CrossRef]
- Showalter, M.R.; Hamilton, D.P. Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 2015, 522, 45. [Google Scholar] [CrossRef]
- Stern, S.A.; Grundy, W.M.; McKinnon, W.B.; Weaver, H.A.; Young, L.A. The Pluto system after New Horizons. Annu. Rev. Astron. Astrophys. 2018, 56, 357. [Google Scholar] [CrossRef]
- Konacki, M.; Wolszczan, A. Masses and orbital inclinations of planets in the PSR B1257+12 system. Astrophys. J. 2003, 591, L147. [Google Scholar] [CrossRef]
- Santerne, A.; Malavolta, L.; Kosiarek, M.R.; Dai, F.; Dressing, C.D.; Dumusque, X.; Hara, N.C.; Lopez, T.A.; Mortier, A.; Vanderburg, A.; et al. An extremely low-density and temperate giant exoplanet. arXiv 2019, arXiv:1911.07355. [Google Scholar]
- Vanderburg, A.; Becker, J.C.; Kristiansen, M.H.; Bieryla, A.; Duev, D.A.; Jensen-Clem, R.; Morton, T.D.; Latham, D.W.; Adams, F.C.; Baranec, C.; et al. Five planets transiting a ninth magnitude star. Astrophys. J. Lett. 2016, 827, L10. [Google Scholar] [CrossRef]
- Judkovsky, Y.; Ofir, A.; Aharonson, O. Kepler multitransiting system physical properties and impact parameter variations. Astron. J. 2024, 167, 103. [Google Scholar] [CrossRef]
- Goździewski, K.; Migaszewski, C. An exact, generalized Laplace resonance in the HR 8799 planetary system. Astrophys. J. Lett. 2020, 902, L40. [Google Scholar] [CrossRef]
- Gillon, M.; Demory, B.O.; Van Grootel, V.; Motalebi, F.; Lovis, C.; Cameron, A.C.; Charbonneau, D.; Latham, D.; Molinari, E.; Pepe, F.A.; et al. Two massive rocky planets transiting a K-dwarf 6.5 parsecs away. Nat. Astron. 2017, 1, 0056. [Google Scholar] [CrossRef]
- Bonfanti, A.; Gillon, M. MCMCI: A code to fully characterise an exoplanetary system. Astron. Astrophys. 2020, 635, A6. [Google Scholar] [CrossRef]
- Vogt, S.S.; Burt, J.; Meschiari, S.; Butler, R.P.; Henry, G.W.; Wang, S.; Holden, B.; Gapp, C.; Hanson, R.; Arriagada, P.; et al. Six planets orbiting HD 219134. Astrophys. J. 2015, 814, 12. [Google Scholar] [CrossRef]
- Rosenthal, L.J.; Fulton, B.J.; Hirsch, L.A.; Isaacson, H.T.; Howard, A.W.; Dedrick, C.M.; Sherstyuk, I.A.; Blunt, S.C.; Petigura, E.A.; Knutson, H.A.; et al. The California Legacy Survey. I. A catalog of 178 planets from precision radial velocity monitoring of 719 nearby stars over three decades. Astrophys. J. Suppl. Ser. 2021, 255, 8. [Google Scholar] [CrossRef]
- Seager, S.; Knapp, M.; Demory, B.O.; Krishnamurthy, A.; Huang, C.X.; Agusti, M.B.; Shporer, A.; Weisserman, D.; Becker, J.; Vanderburg, A.; et al. HD 219134 Revisited: Planet d transit upper limit and planet f transit nondetection with ASTERIA and TESS. Astron. J. 2021, 161, 117. [Google Scholar] [CrossRef]
- Jacobson, R.A. The orbits of the main Saturnian satellites, the Saturnian system gravity field, and the orientation of Saturn’s pole. Astron. J. 2022, 164, 199. [Google Scholar] [CrossRef]
- Forgács-Dajka, E.; Sándor, Z.; Érdi, B. A fast method to identify mean motion resonances. Mon. Not. R. Astron. Soc. 2018, 477, 3383. [Google Scholar] [CrossRef]
- Rowe, J.F.; Coughlin, J.L.; Antoci, V.; Barclay, T.; Batalha, N.M.; Borucki, W.J.; Burke, C.J.; Bryson, S.T.; Caldwell, D.A.; Campbell, J.R.; et al. Planetary candidates observed by Kepler. V. Planet sample from Q1-Q12 (36 months). Astrophys. J. Suppl. Ser. 2015, 217, 16. [Google Scholar] [CrossRef]
- Fitzpatrick, R. Plasma Physics; CRC Press: Boca Raton, FL, USA, 2015; pp. 229–241. [Google Scholar]
- Kandrup, H.E. Violent relaxation, phase mixing, and gravitational Landau damping. Astrophys. J. 1998, 500, 120. [Google Scholar] [CrossRef]
- Vandervoort, P.O. On stationary oscillations of galaxies. Mon. Not. R. Astron. Soc. 2003, 339, 537. [Google Scholar] [CrossRef]
- Hamilton, D.P.; Burns, J.A. Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation. Icarus 1992, 96, 43. [Google Scholar] [CrossRef]
- de Pater, I.; Lissauer, J.J. Planetary Sciences, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015; p. 29. [Google Scholar]
- Baluev, R.V. Distinguishing between a true period and its alias, and other tasks of model discrimination. Mon. Not. R. Astron. Soc. 2012, 422, 2372. [Google Scholar] [CrossRef]
- Dawson, R.I.; Fabrycky, D.C. Radial velocity planets de-aliased: A new, short period for super-Earth 55 Cnc e. Astrophys. J. 2010, 722, 937. [Google Scholar] [CrossRef]
- Tuomi, M. Evidence for nine planets in the HD10180 system. Astron. Astrophys. 2012, 543, A52. [Google Scholar] [CrossRef]
- Udry, S.; Dumusque, X.; Lovis, C.; Ségransan, D.; Diaz, R.F.; Benz, W.; Bouchy, F.; Coffinet, A.; Curto, G.L.; Mayor, M.; et al. The HARPS search for southern extra-solar planets. XLIV. Eight HARPS multi-planet systems hosting 20 super-Earth and Neptune-mass companions. Astron. Astrophys. 2019, 622, A37. [Google Scholar] [CrossRef]
- Weiss, L.M.; Isaacson, H.; Howard, A.W.; Fulton, B.J.; Petigura, E.A.; Fabrycky, D.; Jontof-Hutter, D.; Steffen, J.H.; Schlichting, H.E.; Wright, J.T.; et al. The Kepler Giant Planet Search. I. A decade of Kepler planet-host radial velocities from W. M. Keck Observatory. Astrophys. J. Suppl. Ser. 2024, 270, 8. [Google Scholar] [CrossRef]
- Papaloizou, J.C.B. Three body resonances in close orbiting planetary systems: Tidal dissipation and orbital evolution. Int. J. Astrobiol. 2015, 14, 291. [Google Scholar] [CrossRef]
n | Planet | P | a | e | M | R | Global |
---|---|---|---|---|---|---|---|
Name | (d) | (au) | () | () | MMR | ||
1 | b | 3.3599 | 0.0303 | 0.0167 | 1.48 | 1.28 | 3:5 |
+0.0062 −0.0033 |
+0.0084 −0.0089 |
+0.05 −0.04 | |||||
2 | c | 5.6605 | 0.0452 | 0.0044 | 6.20 | 2.33 | 1:1 |
+0.0005 −0.0006 | |||||||
3 | d | 11.382 | 0.0738 | 0.0066 | 4.20 | 2.00 | 2:1 |
Host | Orbiting | Global | Local | |
---|---|---|---|---|
Body | Bodies | Chain a | MMRs b | Refs. |
Radial Position n: | 1 2 3 | |||
Confirmed Laplace Resonances | ||||
Jupiter | I, E, G | ::1 | 2:1 and 2:1 | (1) |
GJ 876 | c, b, e | :1: | 2:1 and 2:1 | (2) |
Kepler-176 | c, d, e | :1: | 2:1 and 2:1 | (3) |
HR 8799 | e, d, c | :1:2 | 2:1 and 2:1 | (4) |
Laplace-like Resonant Chains | ||||
HD 110067 | d, e, f | 1::2 | 3:2 and 4:3 | (5) |
TOI-270 | b, c, d | :1:2 | 5:3 and 2:1 | (6) |
Key: I: Io; E: Europa; G: Ganymede; . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, D.M.; Sorabella, N.M.; Bhattacharya, S.; Laycock, S.G.T.; Kazanas, D. Global Mean-Motion Resonances: Part I—An Exceptional Multiplanetary Resonant Chain in TOI-270 and an Exact Laplace-like Resonance in HD 110067. Galaxies 2025, 13, 42. https://doi.org/10.3390/galaxies13020042
Christodoulou DM, Sorabella NM, Bhattacharya S, Laycock SGT, Kazanas D. Global Mean-Motion Resonances: Part I—An Exceptional Multiplanetary Resonant Chain in TOI-270 and an Exact Laplace-like Resonance in HD 110067. Galaxies. 2025; 13(2):42. https://doi.org/10.3390/galaxies13020042
Chicago/Turabian StyleChristodoulou, Dimitris M., Nicholas M. Sorabella, Sayantan Bhattacharya, Silas G. T. Laycock, and Demosthenes Kazanas. 2025. "Global Mean-Motion Resonances: Part I—An Exceptional Multiplanetary Resonant Chain in TOI-270 and an Exact Laplace-like Resonance in HD 110067" Galaxies 13, no. 2: 42. https://doi.org/10.3390/galaxies13020042
APA StyleChristodoulou, D. M., Sorabella, N. M., Bhattacharya, S., Laycock, S. G. T., & Kazanas, D. (2025). Global Mean-Motion Resonances: Part I—An Exceptional Multiplanetary Resonant Chain in TOI-270 and an Exact Laplace-like Resonance in HD 110067. Galaxies, 13(2), 42. https://doi.org/10.3390/galaxies13020042