Symbiotic Stars in the Era of Modern Ground- and Space-Based Surveys
Abstract
:1. Introduction
1.1. On the Symbiotic Definition
1.2. Symbiotic Zoo
2. Search for Symbiotic Stars
2.1. Emission-Line Candidates from the Narrow-Band Photometric Surveys
2.2. Alternative Photometric Candidate Selection Methods
2.3. Variability-Based Search
2.4. Searching in Spectroscopic Datasets
2.5. A Few Concluding Words for the Search of Symbiotic Stars
3. Understanding the Symbiotic Variability
3.1. Symbiotics in the Long-Term Photometric Surveys
3.2. Short Timescales from Space
3.3. Time-Series Radial Velocities
4. Beyond the Surveys
4.1. Contribution of Amateur Astronomers
4.2. Going Beyond the UV, Optical and Infrared
4.3. Theoretical Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Not to be confused with “composite spectra” stars, a term introduced by Annie Jump Cannon at Harvard Observatory to describe spectra composed of two nearly normal separate stars. |
2 | The existence of higher-mass counterparts to symbiotic binaries with black hole accretors has been theoretically predicted, e.g., [19], but none have been confirmed to date. |
3 | For current numbers, refer to the online database at https://sirrah.troja.mff.cuni.cz/~merc/nodsv/, accessed on 21 March 2025. |
4 | An effort to identify H emitters in these data is ongoing; see, e.g., Gutiérrez-Soto et al. [74]. |
References
- Moe, M.; Di Stefano, R. Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars. Astrophys. J. Suppl. Ser. 2017, 230, 15. [Google Scholar] [CrossRef]
- Offner, S.S.R.; Moe, M.; Kratter, K.M.; Sadavoy, S.I.; Jensen, E.L.N.; Tobin, J.J. The Origin and Evolution of Multiple Star Systems. In Proceedings of the Protostars and Planets VII, Kyoto, Japan, 10–15 April 2023; Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K., Tamura, M., Eds.; Astronomical Society of the Pacific Conference Series. Volume 534, p. 275. [Google Scholar] [CrossRef]
- Belloni, D.; Schreiber, M.R. Formation and Evolution of Accreting Compact Objects. In Handbook of X-Ray and Gamma-Ray Astrophysics; Springer Nature: Singapore, 2023; p. 129. [Google Scholar] [CrossRef]
- Mikołajewska, J. Symbiotic Stars: Observations Confront Theory. Balt. Astron. 2012, 21, 5–12. [Google Scholar] [CrossRef]
- Munari, U. The Symbiotic Stars. arXiv 2019, arXiv:1909.01389. [Google Scholar] [CrossRef]
- Munari, U.; Renzini, A. Are Symbiotic Stars the Precursors of Type IA Supernovae? Astrophys. J. Lett. 1992, 397, L87. [Google Scholar] [CrossRef]
- Hachisu, I.; Kato, M.; Nomoto, K. A Wide Symbiotic Channel to Type Ia Supernovae. Astrophys. J. 1999, 522, 487–503. [Google Scholar] [CrossRef]
- Mikołajewska, J. Symbiotic Stars as Possible Progenitors of SNe Ia: Binary Parameters and Overall Outlook. In Proceedings of the Binary Paths to Type Ia Supernovae Explosions, Padova, Italy, 4–8 July 2011; Di Stefano, R., Orio, M., Moe, M., Eds.; IAU Symposium. Volume 281, pp. 162–165. [Google Scholar] [CrossRef]
- Meng, X.; Han, Z. The X-ray/radio and UV luminosity expected from symbiotic systems as the progenitor of SNe Ia. Astron. Astrophys. 2016, 588, A88. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Belczyński, K.; Wiktorowicz, G.; Karczmarek, P. Wind Roche lobe overflow as a way to make Type Ia supernovae from the widest symbiotic systems. Mon. Not. R. Astron. Soc. 2019, 485, 5468–5473. [Google Scholar] [CrossRef]
- Liu, Z.W.; Röpke, F.K.; Han, Z. Type Ia Supernova Explosions in Binary Systems: A Review. Res. Astron. Astrophys. 2023, 23, 082001. [Google Scholar] [CrossRef]
- Ruiter, A.J.; Seitenzahl, I.R. Type Ia supernova progenitors: A contemporary view of a long-standing puzzle. Astron. Astrophys. Rev. 2025, 33, 1. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Wolf, M. First Release of the New Online Database of Symbiotic Variables. Res. Notes Am. Astron. Soc. 2019, 3, 28. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Wolf, M. New Online Database of Symbiotic Variables: Symbiotics in X-rays. Astron. Nachrichten 2019, 340, 598–606. [Google Scholar] [CrossRef]
- Akras, S.; Guzman-Ramirez, L.; Leal-Ferreira, M.L.; Ramos-Larios, G. A Census of Symbiotic Stars in the 2MASS, WISE, and Gaia Surveys. Astrophys. J. Suppl. Ser. 2019, 240, 21. [Google Scholar] [CrossRef]
- Merc, J.; Mikołajewska, J. Symbiotic stars, weird novae, and related embarrassing binaries. Nat. Astron. 2024, 8, 1504–1505. [Google Scholar] [CrossRef]
- Merrill, P.W. 51. Symbiosis in Astronomy: Introductory Report. In Proceedings of the Liege International Astrophysical Colloquia, Cointe-Sclessin, Belgium, 8–10 June 1957; Liege International Astrophysical Colloquia. Volume 8, pp. 436–448. [Google Scholar]
- Kenyon, S.J. The Symbiotic Stars; Springer Nature: Berlin, Germany, 1986. [Google Scholar]
- Deng, Z.L.; Li, X.D. Are There Black Hole Symbiotic X-Ray Binaries? Astrophys. J. 2024, 977, 95. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Sokoloski, J.L.; Mukai, K.; Nelson, T. Symbiotic stars in X-rays. Astron. Astrophys. 2013, 559, A6. [Google Scholar] [CrossRef]
- Mukai, K.; Luna, G.J.M.; Cusumano, G.; Segreto, A.; Munari, U.; Sokoloski, J.L.; Lucy, A.B.; Nelson, T.; Nuñez, N.E. SU Lyncis, a hard X-ray bright M giant: Clues point to a large hidden population of symbiotic stars. Mon. Not. R. Astron. Soc. 2016, 461, L1–L5. [Google Scholar] [CrossRef]
- Belczyński, K.; Mikołajewska, J.; Munari, U.; Ivison, R.J.; Friedjung, M. A catalogue of symbiotic stars. Astron. Astrophys. Suppl. 2000, 146, 407–435. [Google Scholar] [CrossRef]
- Miszalski, B.; Mikołajewska, J.; Udalski, A. Symbiotic stars and other Hα emission-line stars towards the Galactic bulge. Mon. Not. R. Astron. Soc. 2013, 432, 3186–3217. [Google Scholar] [CrossRef]
- Schmid, H.M. Identification of the emission bands at lambda lambda 6830, 7088. Astron. Astrophys. 1989, 211, L31–L34. [Google Scholar]
- Ivison, R.J.; Seaquist, E.R.; Schwarz, H.E.; Hughes, D.H.; Bode, M.F. Millimetre continuum emission from symbiotic stars—I. The measurements. Mon. Not. R. Astron. Soc. 1995, 273, 517–527. [Google Scholar] [CrossRef]
- Allen, D.A. Infrared studies of symbiotic stars. In Proceedings of the IAU Colloq. 70: The Nature of Symbiotic Stars, Observatoire De Haute Provence, France, 26–28 August 1981; Friedjung, M., Viotti, R., Eds.; Astrophysics and Space Science Library. Volume 95, pp. 27–42. [Google Scholar] [CrossRef]
- Angeloni, R.; Contini, M.; Ciroi, S.; Rafanelli, P. The spectral energy distribution of D-type symbiotic stars: The role of dust shells. Mon. Not. R. Astron. Soc. 2010, 402, 2075–2086. [Google Scholar] [CrossRef]
- Merc, J. Multi-Frequency Research of Symbiotic Binaries. Ph.D. Thesis, Charles University, Prague, Czech Republic; P. J. Šafárik University, Košice, Slovakia, 2022. [Google Scholar]
- Teyssier, F. Eruptive stars monitoring and the ARAS database. Contrib. Astron. Obs. Skaln. Pleso 2019, 49, 217–227. [Google Scholar]
- Wolf, W.M.; Bildsten, L.; Brooks, J.; Paxton, B. Hydrogen Burning on Accreting White Dwarfs: Stability, Recurrent Novae, and the Post-nova Supersoft Phase. Astrophys. J. 2013, 777, 136. [Google Scholar] [CrossRef]
- Muerset, U.; Wolff, B.; Jordan, S. X-ray properties of symbiotic stars. II. Systems with colliding winds. Astron. Astrophys. 1997, 319, 201–210. [Google Scholar]
- Allen, D.A. A catalogue of symbiotic stars. Publ. Astron. Soc. Aust. 1984, 5, 369–421. [Google Scholar] [CrossRef]
- Kenyon, S.J.; Livio, M.; Mikołajewska, J.; Tout, C.A. On Symbiotic Stars and Type IA Supernovae. Astrophys. J. Lett. 1993, 407, L81. [Google Scholar] [CrossRef]
- Magrini, L.; Corradi, R.L.M.; Munari, U. A Search for Symbiotic Stars in the Local Group. In Proceedings of the Symbiotic Stars Probing Stellar Evolution, La Palma, Spain, 27–31 May 2002; Corradi, R.L.M., Mikołajewska, J., Mahoney, T.J., Eds.; Astronomical Society of the Pacific Conference Series. Volume 303, p. 539. [Google Scholar] [CrossRef]
- Lü, G.; Yungelson, L.; Han, Z. Population synthesis for symbiotic stars with white dwarf accretors. Mon. Not. R. Astron. Soc. 2006, 372, 1389–1406. [Google Scholar] [CrossRef]
- Laversveiler, M.; Gonçalves, D.R.; Rocha-Pinto, H.J.; Merc, J. The Local Group Symbiotic Star Population and its Tenuous Link with Type Ia Supernovae. Astron. Astrophys. 2025. [Google Scholar] [CrossRef]
- Sanduleak, N.; Stephenson, C.B. Low-dispersion spectra and galactic distribution of various interesting strong-emission-line objects in the southern Milky Way. Astrophys. J. 1973, 185, 899–913. [Google Scholar] [CrossRef]
- Allen, D.A. Classification spectra of Sanduleak and Stephenson emission-line stars. Mon. Not. R. Astron. Soc. 1978, 184, 601–610. [Google Scholar] [CrossRef]
- Allen, D.A. Near infra-red magnitudes of 248 early-type emission-line stars and related objects. Mon. Not. R. Astron. Soc. 1973, 161, 145–166. [Google Scholar] [CrossRef]
- Allen, D.A. Infrared observations of northern emission-line stars. Mon. Not. R. Astron. Soc. 1974, 168, 1. [Google Scholar] [CrossRef]
- Allen, D.A.; Glass, I.S. Infrared photometry of southern emission-line stars. Mon. Not. R. Astron. Soc. 1974, 167, 337–350. [Google Scholar] [CrossRef]
- Webster, B.L.; Allen, D.A. Symbiotic stars and dust. Mon. Not. R. Astron. Soc. 1975, 171, 171. [Google Scholar] [CrossRef]
- Drew, J.E.; Greimel, R.; Irwin, M.J.; Aungwerojwit, A.; Barlow, M.J.; Corradi, R.L.M.; Drake, J.J.; Gänsicke, B.T.; Groot, P.; Hales, A.; et al. The INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS). Mon. Not. R. Astron. Soc. 2005, 362, 753–776. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; Rodríguez-Flores, E.R.; Mampaso, A.; Greimel, R.; Viironen, K.; Drew, J.E.; Lennon, D.J.; Mikołajewska, J.; Sabin, L.; Sokoloski, J.L. IPHAS and the symbiotic stars. I. Selection method and first discoveries. Astron. Astrophys. 2008, 480, 409–419. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; Valentini, M.; Munari, U.; Drew, J.E.; Rodríguez-Flores, E.R.; Viironen, K.; Greimel, R.; Santander-García, M.; Sabin, L.; Mampaso, A.; et al. IPHAS and the symbiotic stars. II. New discoveries and a sample of the most common mimics. Astron. Astrophys. 2010, 509, A41. [Google Scholar] [CrossRef]
- Rodríguez-Flores, E.R.; Corradi, R.L.M.; Mampaso, A.; García-Alvarez, D.; Munari, U.; Greimel, R.; Rubio-Díez, M.M.; Santander-García, M. IPHAS and the symbiotic stars. III. New discoveries and their IR spectral energy distributions. Astron. Astrophys. 2014, 567, A49. [Google Scholar] [CrossRef]
- Parker, Q.A.; Phillipps, S.; Pierce, M.J.; Hartley, M.; Hambly, N.C.; Read, M.A.; MacGillivray, H.T.; Tritton, S.B.; Cass, C.P.; Cannon, R.D.; et al. The AAO/UKST SuperCOSMOS Hα survey. Mon. Not. R. Astron. Soc. 2005, 362, 689–710. [Google Scholar] [CrossRef]
- Miszalski, B.; Mikołajewska, J. Identification of new Galactic symbiotic stars with SALT—I. Initial discoveries and other emission line objects. Mon. Not. R. Astron. Soc. 2014, 440, 1410–1419. [Google Scholar] [CrossRef]
- Akras, S.; Leal-Ferreira, M.L.; Guzman-Ramirez, L.; Ramos-Larios, G. A machine learning approach for identification and classification of symbiotic stars using 2MASS and WISE. Mon. Not. R. Astron. Soc. 2019, 483, 5077–5104. [Google Scholar] [CrossRef]
- Akras, S.; Gonçalves, D.R.; Alvarez-Candal, A.; Pereira, C.B. Discovery of five new Galactic symbiotic stars in the VPHAS+ survey. Mon. Not. R. Astron. Soc. 2021, 502, 2513–2517. [Google Scholar] [CrossRef]
- Drew, J.E.; Gonzalez-Solares, E.; Greimel, R.; Irwin, M.J.; Küpcü Yoldas, A.; Lewis, J.; Barentsen, G.; Eislöffel, J.; Farnhill, H.J.; Martin, W.E.; et al. The VST Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS+). Mon. Not. R. Astron. Soc. 2014, 440, 2036–2058. [Google Scholar] [CrossRef]
- Mikołajewska, J.; Caldwell, N.; Shara, M.M. First detection and characterization of symbiotic stars in M31. Mon. Not. R. Astron. Soc. 2014, 444, 586–599. [Google Scholar] [CrossRef]
- Mikołajewska, J.; Shara, M.M.; Caldwell, N.; Iłkiewicz, K.; Zurek, D. A survey of the Local Group of galaxies for symbiotic binary stars—I. First detection of symbiotic stars in M33. Mon. Not. R. Astron. Soc. 2017, 465, 1699–1710. [Google Scholar] [CrossRef]
- Ilkiewicz, K.; Mikołajewska, J.; Shara, M.M.; Udalski, A.; Drozd, K.; Faherty, J.K. A deep survey for symbiotic stars in the Magellanic Clouds—1. Methodology and first discoveries in the SMC. arXiv 2018, arXiv:1811.06696. [Google Scholar] [CrossRef]
- Gonçalves, D.R.; Magrini, L.; Munari, U.; Corradi, R.L.M.; Costa, R.D.D. Discovery in IC10 of the farthest known symbiotic star. Mon. Not. R. Astron. Soc. 2008, 391, L84–L87. [Google Scholar] [CrossRef]
- Kniazev, A.Y.; Väisänen, P.; Whitelock, P.A.; Menzies, J.W.; Feast, M.W.; Grebel, E.K.; Buckley, D.A.H.; Hashimoto, Y.; Loaring, N.; Romero-Colmenero, E.; et al. Discovery of the first symbiotic star in NGC6822. Mon. Not. R. Astron. Soc. 2009, 395, 1121–1126. [Google Scholar] [CrossRef]
- Sibbons, L.F.; Ryan, S.G.; Napiwotzki, R.; Thompson, G.P. Spectral classification of photometrically selected AGB candidates in NGC 6822. Astron. Astrophys. 2015, 574, A102. [Google Scholar] [CrossRef]
- Gonçalves, D.R.; Magrini, L.; Martins, L.P.; Teodorescu, A.M.; Quireza, C. Deep spectroscopy of the emission-line populations in NGC 185. Mon. Not. R. Astron. Soc. 2012, 419, 854–865. [Google Scholar] [CrossRef]
- Gonçalves, D.R.; Magrini, L.; de la Rosa, I.G.; Akras, S. Discovery of true, likely and possible symbiotic stars in the dwarf spheroidal NGC 205. Mon. Not. R. Astron. Soc. 2015, 447, 993–1000. [Google Scholar] [CrossRef]
- Magrini, L.; Gonçalves, D.R.; Vajgel, B. NGC 55: A disc galaxy with flat abundance gradients. Mon. Not. R. Astron. Soc. 2017, 464, 739–753. [Google Scholar] [CrossRef]
- Guerrero, M.A.; Vasquez-Torres, D.A.; Rodríguez-González, J.B.; Toalá, J.A.; Ortiz, R. Y Gem, a symbiotic star outshone by its asymptotic giant branch primary component. Astron. Astrophys. 2025, 693, A203. [Google Scholar] [CrossRef]
- Angeloni, R.; Gonçalves, D.R.; Akras, S.; Gimeno, G.; Diaz, R.; Scharwächter, J.; Nuñez, N.E.; Luna, G.J.M.; Lee, H.W.; Heo, J.E.; et al. RAMSES II: RAMan Search for Extragalactic Symbiotic Stars Project Concept, Commissioning, and Early Results from the Science Verification Phase. Astron. J. 2019, 157, 156. [Google Scholar] [CrossRef]
- Akras, S. Where are the missing symbiotic stars? Uncovering hidden symbiotic stars in public catalogues. Mon. Not. R. Astron. Soc. 2023, 519, 6044–6054. [Google Scholar] [CrossRef]
- Bianchi, L.; Shiao, B.; Thilker, D. Revised Catalog of GALEX Ultraviolet Sources. I. The All-Sky Survey: GUVcat_AIS. Astrophys. J. Suppl. Ser. 2017, 230, 24. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Shappee, B.J.; Prieto, J.L.; Grupe, D.; Kochanek, C.S.; Stanek, K.Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B.M.; Pogge, R.W.; et al. The Man behind the Curtain: X-Rays Drive the UV through NIR Variability in the 2013 Active Galactic Nucleus Outburst in NGC 2617. Astrophys. J. 2014, 788, 48. [Google Scholar] [CrossRef]
- Vallenari, A. et al. [Gaia Collaboration] Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar] [CrossRef]
- Xu, X.j.; Shao, Y.; Li, X.D. The Missing Symbiotic Stars: A Joint Analysis with Gaia, GALEX, and XMM-Newton Data. Astrophys. J. 2024, 962, 126. [Google Scholar] [CrossRef]
- Lucy, A.B.; Sokoloski, J.L.; Luna, G.J.M.; Mukai, K.; Nuñez, N.E.; Buckley, D.A.H.; Breytenbach, H.; Paul, B.; Potter, S.B.; Manick, R.; et al. A new way to find symbiotic stars: Accretion disc detection with optical survey photometry. arXiv 2024, arXiv:2412.00855. [Google Scholar] [CrossRef]
- Wolf, C.; Onken, C.A.; Luvaul, L.C.; Schmidt, B.P.; Bessell, M.S.; Chang, S.W.; Da Costa, G.S.; Mackey, D.; Martin-Jones, T.; Murphy, S.J.; et al. SkyMapper Southern Survey: First Data Release (DR1). Publ. Astron. Soc. Aust. 2018, 35, e010. [Google Scholar] [CrossRef]
- Onken, C.A.; Wolf, C.; Bessell, M.S.; Chang, S.W.; Da Costa, G.S.; Luvaul, L.C.; Mackey, D.; Schmidt, B.P.; Shao, L. SkyMapper Southern Survey: Second data release (DR2). Publ. Astron. Soc. Aust. 2019, 36, e033. [Google Scholar] [CrossRef]
- Cenarro, A.J.; Moles, M.; Cristóbal-Hornillos, D.; Marín-Franch, A.; Ederoclite, A.; Varela, J.; López-Sanjuan, C.; Hernández-Monteagudo, C.; Angulo, R.E.; Vázquez Ramió, H.; et al. J-PLUS: The Javalambre Photometric Local Universe Survey. Astron. Astrophys. 2019, 622, A176. [Google Scholar] [CrossRef]
- Gutiérrez-Soto, L.A.; Lopes de Oliveira, R.; Akras, S.; Gonçalves, D.R.; Lomelí-Núñez, L.F.; Mendes de Oliveira, C.; Telles, E.; Alvarez-Candal, A.; Borges Fernandes, M.; Daflon, S.; et al. Mapping Hα excess candidate point sources in the southern hemisphere using S-PLUS data. Astron. Astrophys. 2025, 695, A104. [Google Scholar] [CrossRef]
- Mendes de Oliveira, C.; Ribeiro, T.; Schoenell, W.; Kanaan, A.; Overzier, R.A.; Molino, A.; Sampedro, L.; Coelho, P.; Barbosa, C.E.; Cortesi, A.; et al. The Southern Photometric Local Universe Survey (S-PLUS): Improved SEDs, morphologies, and redshifts with 12 optical filters. Mon. Not. R. Astron. Soc. 2019, 489, 241–267. [Google Scholar] [CrossRef]
- Benitez, N.; Dupke, R.; Moles, M.; Sodre, L.; Cenarro, J.; Marin-Franch, A.; Taylor, K.; Cristobal, D.; Fernandez-Soto, A.; Mendes de Oliveira, C.; et al. J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey. arXiv 2014, arXiv:1403.5237. [Google Scholar] [CrossRef]
- Bianco, F.B.; Ivezić, Ž.; Jones, R.L.; Graham, M.L.; Marshall, P.; Saha, A.; Strauss, M.A.; Yoachim, P.; Ribeiro, T.; Anguita, T.; et al. Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. Astrophys. J. Suppl. Ser. 2022, 258, 1. [Google Scholar] [CrossRef]
- Hambleton, K.M.; Bianco, F.B.; Street, R.; Bell, K.; Buckley, D.; Graham, M.; Hernitschek, N.; Lund, M.B.; Mason, E.; Pepper, J.; et al. Rubin Observatory LSST Transients and Variable Stars Roadmap. Publ. Astron. Soc. Pac. 2023, 135, 105002. [Google Scholar] [CrossRef]
- Kulkarni, S.R.; Harrison, F.A.; Grefenstette, B.W.; Earnshaw, H.P.; Andreoni, I.; Berg, D.A.; Bloom, J.S.; Cenko, S.B.; Chornock, R.; Christiansen, J.L.; et al. Science with the Ultraviolet Explorer (UVEX). arXiv 2021, arXiv:2111.15608. [Google Scholar] [CrossRef]
- Shvartzvald, Y.; Waxman, E.; Gal-Yam, A.; Ofek, E.O.; Ben-Ami, S.; Berge, D.; Kowalski, M.; Bühler, R.; Worm, S.; Rhoads, J.E.; et al. ULTRASAT: A Wide-field Time-domain UV Space Telescope. Astrophys. J. 2024, 964, 74. [Google Scholar] [CrossRef]
- Werner, N.; Řípa, J.; Thöne, C.; Münz, F.; Kurfürst, P.; Jelínek, M.; Hroch, F.; Benáček, J.; Topinka, M.; Lukes-Gerakopoulos, G.; et al. Science with a Small Two-Band UV-Photometry Mission I: Mission Description and Follow-up Observations of Stellar Transients. Space Sci. Rev. 2024, 220, 11. [Google Scholar] [CrossRef]
- Krtička, J.; Benáček, J.; Budaj, J.; Korčáková, D.; Pál, A.; Piecka, M.; Zejda, M.; Bakış, V.; Brož, M.; Chang, H.K.; et al. Science with a Small Two-Band UV-Photometry Mission II: Observations of Stars and Stellar Systems. Space Sci. Rev. 2024, 220, 24. [Google Scholar] [CrossRef]
- Zajaček, M.; Czerny, B.; Jaiswal, V.K.; Štolc, M.; Karas, V.; Pandey, A.; Pasham, D.R.; Śniegowska, M.; Witzany, V.; Suková, P.; et al. Science with a Small Two-Band UV-Photometry Mission III: Active Galactic Nuclei and Nuclear Transients. Space Sci. Rev. 2024, 220, 29. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Wolf, M.; Velez, P.; Bohlsen, T.; Barlow, B.N. Hen 3-860: New southern eclipsing symbiotic star observed in the outburst. Mon. Not. R. Astron. Soc. 2022, 510, 1404–1412. [Google Scholar] [CrossRef]
- Merc, J.; Mikołajewska, J.; Gromadzki, M.; Gałan, C.; Iłkiewicz, K.; Skowron, J.; Wyrzykowski, Ł.; Hodgkin, S.T.; Rybicki, K.A.; Zieliński, P.; et al. Gaia18aen: First symbiotic star discovered by Gaia. Astron. Astrophys. 2020, 644, A49. [Google Scholar] [CrossRef]
- Merc, J.; Velez, P.; Charbonnel, S.; Garde, O.; Le Dû, P.; Mulato, L.; Petit, T.; Skowron, J. Gaia23ckh: Symbiotic outburst of the assumed Mira variable V390 Sco. Astron. Nachrichten 2024, 345, e20240017. [Google Scholar] [CrossRef]
- Hodgkin, S.T.; Harrison, D.L.; Breedt, E.; Wevers, T.; Rixon, G.; Delgado, A.; Yoldas, A.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.; van Leeuwen, M.; et al. Gaia Early Data Release 3. Gaia photometric science alerts. Astron. Astrophys. 2021, 652, A76. [Google Scholar] [CrossRef]
- Eyer, L.; Audard, M.; Holl, B.; Rimoldini, L.; Carnerero, M.I.; Clementini, G.; De Ridder, J.; Distefano, E.; Evans, D.W.; Gavras, P.; et al. Gaia Data Release 3. Summary of the variability processing and analysis. Astron. Astrophys. 2023, 674, A13. [Google Scholar] [CrossRef]
- Rimoldini, L.; Holl, B.; Gavras, P.; Audard, M.; De Ridder, J.; Mowlavi, N.; Nienartowicz, K.; Jevardat de Fombelle, G.; Lecoeur-Taïbi, I.; Karbevska, L.; et al. Gaia Data Release 3. All-sky classification of 12.4 million variable sources into 25 classes. Astron. Astrophys. 2023, 674, A14. [Google Scholar] [CrossRef]
- Cui, X.Q.; Zhao, Y.H.; Chu, Y.Q.; Li, G.P.; Li, Q.; Zhang, L.P.; Su, H.J.; Yao, Z.Q.; Wang, Y.N.; Xing, X.Z.; et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophys. 2012, 12, 1197–1242. [Google Scholar] [CrossRef]
- De Silva, G.M.; Freeman, K.C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E.W.; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D.B.; Zwitter, T.; et al. The GALAH survey: Scientific motivation. Mon. Not. R. Astron. Soc. 2015, 449, 2604–2617. [Google Scholar] [CrossRef]
- Buder, S.; Sharma, S.; Kos, J.; Amarsi, A.M.; Nordlander, T.; Lind, K.; Martell, S.L.; Asplund, M.; Bland-Hawthorn, J.; Casey, A.R.; et al. The GALAH+ survey: Third data release. Mon. Not. R. Astron. Soc. 2021, 506, 150–201. [Google Scholar] [CrossRef]
- Kollmeier, J.A.; Zasowski, G.; Rix, H.W.; Johns, M.; Anderson, S.F.; Drory, N.; Johnson, J.A.; Pogge, R.W.; Bird, J.C.; Blanc, G.A.; et al. SDSS-V: Pioneering Panoptic Spectroscopy. arXiv 2017, arXiv:1711.03234. [Google Scholar] [CrossRef]
- Aghamousa, A. et al. [DESI Collaboration] The DESI Experiment Part I: Science, Targeting, and Survey Design. arXiv 2016, arXiv:1611.00036. [Google Scholar] [CrossRef]
- de Jong, R.S.; Agertz, O.; Berbel, A.A.; Aird, J.; Alexander, D.A.; Amarsi, A.; Anders, F.; Andrae, R.; Ansarinejad, B.; Ansorge, W.; et al. 4MOST: Project overview and information for the First Call for Proposals. Messenger 2019, 175, 3–11. [Google Scholar] [CrossRef]
- Jin, S.; Trager, S.C.; Dalton, G.B.; Aguerri, J.A.L.; Drew, J.E.; Falcón-Barroso, J.; Gänsicke, B.T.; Hill, V.; Iovino, A.; Pieri, M.M.; et al. The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation. Mon. Not. R. Astron. Soc. 2024, 530, 2688–2730. [Google Scholar] [CrossRef]
- Mainieri, V.; Anderson, R.I.; Brinchmann, J.; Cimatti, A.; Ellis, R.S.; Hill, V.; Kneib, J.P.; McLeod, A.F.; Opitom, C.; Roth, M.M.; et al. The Wide-field Spectroscopic Telescope (WST) Science White Paper. arXiv 2024, arXiv:2403.05398. [Google Scholar] [CrossRef]
- Munari, U.; Traven, G.; Masetti, N.; Valisa, P.; Righetti, G.L.; Hambsch, F.J.; Frigo, A.; Čotar, K.; De Silva, G.M.; Freeman, K.C.; et al. The GALAH survey and symbiotic stars—I. Discovery and follow-up of 33 candidate accreting-only systems. Mon. Not. R. Astron. Soc. 2021, 505, 6121–6154. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, S.; Zhu, C.; Li, L.; Ma, M.; Lü, G. Identifying Symbiotic Stars with Machine Learning. Res. Astron. Astrophys. 2023, 23, 105012. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M. XMM-Newton study of X-ray sources in the field of Willman 1 dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 2020, 499, 3111–3129. [Google Scholar] [CrossRef]
- Saeedi, S.; Sasaki, M. XMM-Newton study of the Sculptor dwarf spheroidal galaxy. Mon. Not. R. Astron. Soc. 2022, 512, 5481–5503. [Google Scholar] [CrossRef]
- Pavlinsky, M.; Sazonov, S.; Burenin, R.; Filippova, E.; Krivonos, R.; Arefiev, V.; Buntov, M.; Chen, C.T.; Ehlert, S.; Lapshov, I.; et al. SRG/ART-XC all-sky X-ray survey: Catalog of sources detected during the first year. Astron. Astrophys. 2022, 661, A38. [Google Scholar] [CrossRef]
- Saeedi, S.; Liu, T.; Knies, J.; Sasaki, M.; Becker, W.; Bulbul, E.; Dennerl, K.; Freyberg, M.; Laktionov, R.; Merloni, A. eROSITA study of the globular cluster 47 Tucanae. Astron. Astrophys. 2022, 661, A35. [Google Scholar] [CrossRef]
- Belloni, D.; Mikołajewska, J.; Iłkiewicz, K.; Schreiber, M.R.; Giersz, M.; Rivera Sandoval, L.E.; Rodrigues, C.V. On the absence of symbiotic stars in globular clusters. Mon. Not. R. Astron. Soc. 2020, 496, 3436–3447. [Google Scholar] [CrossRef]
- Boggess, A.; Carr, F.A.; Evans, D.C.; Fischel, D.; Freeman, H.R.; Fuechsel, C.F.; Klinglesmith, D.A.; Krueger, V.L.; Longanecker, G.W.; Moore, J.V. The IUE spacecraft and instrumentation. Nature 1978, 275, 372–377. [Google Scholar] [CrossRef]
- Moos, H.W.; Cash, W.C.; Cowie, L.L.; Davidsen, A.F.; Dupree, A.K.; Feldman, P.D.; Friedman, S.D.; Green, J.C.; Green, R.F.; Gry, C.; et al. Overview of the Far Ultraviolet Spectroscopic Explorer Mission. Astrophys. J. Lett. 2000, 538, L1–L6. [Google Scholar] [CrossRef]
- Singh, K.P.; Tandon, S.N.; Agrawal, P.C.; Antia, H.M.; Manchanda, R.K.; Yadav, J.S.; Seetha, S.; Ramadevi, M.C.; Rao, A.R.; Bhattacharya, D.; et al. ASTROSAT mission. In Proceedings of the Space Telescopes and Instrumentation 2014, Montreal, QC, Canada, 22–26 June 2014; Ultraviolet to Gamma Ray. Takahashi, T., den Herder, J.W.A., Bautz, M., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 9144, p. 91441S. [Google Scholar] [CrossRef]
- Kumar, V.; Srivastava, M.K.; Banerjee, D.P.K.; Joshi, V. UV spectroscopy confirms SU Lyn to be a symbiotic star. Mon. Not. R. Astron. Soc. 2021, 500, L12–L16. [Google Scholar] [CrossRef]
- Li, J.; Mikołajewska, J.; Chen, X.F.; Luo, A.L.; Rebassa-Mansergas, A.; Hou, Y.H.; Wang, Y.F.; Wu, Y.; Yang, M.; Zhang, Y.; et al. The first symbiotic stars from the LAMOST survey. Res. Astron. Astrophys. 2015, 15, 1332. [Google Scholar] [CrossRef]
- Andreoli, V.; Munari, U. LAMOST J202629.80+423652.0 is not a symbiotic star. Contrib. Astron. Obs. Skaln. Pleso 2020, 50, 672–680. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Kára, J.; Wolf, M.; Vrašťák, M. The nature of the symbiotic candidate 2MASS J07363415+6538548 in the field of NGC 2403. Mon. Not. R. Astron. Soc. 2020, 499, 2116–2123. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Wolf, M.; Velez, P.; Buil, C.; Sims, F.; Bohlsen, T.; Vrašťák, M.; Boussin, C.; Boussier, H.; et al. Spectroscopic and photometric analysis of symbiotic candidates—I. Ten candidates on classical symbiotic stars. Mon. Not. R. Astron. Soc. 2021, 506, 4151–4162. [Google Scholar] [CrossRef]
- Gromadzki, M.; Mikołajewska, J.; Whitelock, P.; Marang, F. Light Curves of Symbiotic Stars in Massive Photometric Surveys I: D-Type Systems. Acta Astron. 2009, 59, 169–191. [Google Scholar] [CrossRef]
- Gromadzki, M.; Mikołajewska, J.; Soszyński, I. Light Curves of Symbiotic Stars in Massive Photometric Surveys II. S and D’-Type Systems. Acta Astron. 2013, 63, 405–428. [Google Scholar] [CrossRef]
- Woźniak, P.R.; Vestrand, W.T.; Akerlof, C.W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; et al. Northern Sky Variability Survey: Public Data Release. Astron. J. 2004, 127, 2436–2449. [Google Scholar] [CrossRef]
- Pojmanski, G. The All Sky Automated Survey. Acta Astron. 1997, 47, 467–481. [Google Scholar] [CrossRef]
- Butters, O.W.; West, R.G.; Anderson, D.R.; Collier Cameron, A.; Clarkson, W.I.; Enoch, B.; Haswell, C.A.; Hellier, C.; Horne, K.; Joshi, Y.; et al. The first WASP public data release. Astron. Astrophys. 2010, 520, L10. [Google Scholar] [CrossRef]
- Udalski, A.; Szymanski, M.K.; Soszynski, I.; Poleski, R. The Optical Gravitational Lensing Experiment. Final Reductions of the OGLE-III Data. Acta Astron. 2008, 58, 69–87. [Google Scholar] [CrossRef]
- Udalski, A.; Szymański, M.K.; Szymański, G. OGLE-IV: Fourth Phase of the Optical Gravitational Lensing Experiment. Acta Astron. 2015, 65, 1–38. [Google Scholar] [CrossRef]
- Tonry, J.L.; Denneau, L.; Heinze, A.N.; Stalder, B.; Smith, K.W.; Smartt, S.J.; Stubbs, C.W.; Weiland, H.J.; Rest, A. ATLAS: A High-cadence All-sky Survey System. Publ. Astron. Soc. Pac. 2018, 130, 064505. [Google Scholar] [CrossRef]
- Smith, K.W.; Smartt, S.J.; Young, D.R.; Tonry, J.L.; Denneau, L.; Flewelling, H.; Heinze, A.N.; Weiland, H.J.; Stalder, B.; Rest, A.; et al. Design and Operation of the ATLAS Transient Science Server. Publ. Astron. Soc. Pac. 2020, 132, 085002. [Google Scholar] [CrossRef]
- Masci, F.J.; Laher, R.R.; Rusholme, B.; Shupe, D.L.; Groom, S.; Surace, J.; Jackson, E.; Monkewitz, S.; Beck, R.; Flynn, D.; et al. The Zwicky Transient Facility: Data Processing, Products, and Archive. Publ. Astron. Soc. Pac. 2019, 131, 018003. [Google Scholar] [CrossRef]
- Skopal, A.; Shugarov, S.Y.; Munari, U.; Masetti, N.; Marchesini, E.; Komžík, R.M.; Kundra, E.; Shagatova, N.; Tarasova, T.N.; Buil, C.; et al. The path to Z And-type outbursts: The case of V426 Sagittae (HBHA 1704-05). Astron. Astrophys. 2020, 636, A77. [Google Scholar] [CrossRef]
- Sonith, L.S.; Kamath, U.S. TCP J18224935-2408280: A symbiotic star identified during outburst. Mon. Not. R. Astron. Soc. 2023, 526, 6381–6390. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Stoyanov, K.A. Symbiotic Star T CrB as an Extreme SU UMa-type Dwarf Nova. Astrophys. J. Lett. 2023, 953, L7. [Google Scholar] [CrossRef]
- Nagarajan, P.; El-Badry, K.; Lam, C.; Reggiani, H. The Symbiotic X-Ray Binary IGR J16194-2810: A Window on the Future Evolution of Wide Neutron Star Binaries From Gaia. Publ. Astron. Soc. Pac. 2024, 136, 074202. [Google Scholar] [CrossRef]
- Laycock, S.; Tang, S.; Grindlay, J.; Los, E.; Simcoe, R.; Mink, D. Digital Access to a Sky Century at Harvard: Initial Photometry and Astrometry. Astron. J. 2010, 140, 1062–1077. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Miszalski, B.; Gromadzki, M.; Whitelock, P.A. LMC S63: A historical reappraisal of the outburst behaviour of a deeply eclipsing Magellanic symbiotic star. Mon. Not. R. Astron. Soc. 2015, 451, 3909–3919. [Google Scholar] [CrossRef]
- Munari, U.; Graziani, M.; Jurdana-Sepic, R. Historical light curve and the 2016 outburst of the symbiotic star StHalpha 169. Inf. Bull. Var. Stars 2016, 6176, 1. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Miszalski, B.; Gromadzki, M.; Monard, B.; Amigo, P. LMC S154: The first Magellanic symbiotic recurrent nova. Astron. Astrophys. 2019, 624, A133. [Google Scholar] [CrossRef]
- Schaefer, B.E. Comprehensive Photometric Histories of All Known Galactic Recurrent Novae. Astrophys. J. Suppl. Ser. 2010, 187, 275–373. [Google Scholar] [CrossRef]
- Luna, G.J.M.; Sokoloski, J.L.; Mukai, K.; Kuin, M.N.P. Increasing Activity in T CrB Suggests Nova Eruption Is Impending. Astrophys. J. Lett. 2020, 902, L14. [Google Scholar] [CrossRef]
- Schaefer, B.E. The B & V light curves for recurrent nova T CrB from 1842-2022, the unique pre- and post-eruption high-states, the complex period changes, and the upcoming eruption in 2025.5 ± 1.3. Mon. Not. R. Astron. Soc. 2023, 524, 3146–3165. [Google Scholar] [CrossRef]
- Toalá, J.A.; González-Martín, O.; Sacchi, A.; Vasquez-Torres, D.A. The X-ray rise and fall of the symbiotic recurrent nova system T CrB. Mon. Not. R. Astron. Soc. 2024, 532, 1421–1433. [Google Scholar] [CrossRef]
- Schaefer, B.E. The Recurrent Nova V745 Sco had a Classical Nova Eruption in 1897 July. Res. Notes Am. Astron. Soc. 2024, 8, 93. [Google Scholar] [CrossRef]
- Dobrzycka, D.; Kenyon, S.J.; Milone, A.A.E. Rapid Light Variations in Symbiotic Binary Stars. Astron. J. 1996, 111, 414. [Google Scholar] [CrossRef]
- Sokoloski, J.L.; Bildsten, L.; Ho, W.C.G. A search for rapid photometric variability in symbiotic binaries. Mon. Not. R. Astron. Soc. 2001, 326, 553–577. [Google Scholar] [CrossRef]
- Gromadzki, M.; Mikołajewski, M.; Tomov, T.; Bellas-Velidis, I.; Dapergolas, A.; Galan, C. Searching for Flickering Variability in Several Symbiotic Stars and Related Objects: BX Mon, V471 Per, RS Oph, V627 Cas, CI Cam, V886 Her, Z And, T CrB, MWC 560, V407 Cyg. Acta Astron. 2006, 56, 97–125. [Google Scholar] [CrossRef]
- Sokoloski, J.L.; Bildsten, L. Discovery of a Magnetic White Dwarf in the Symbiotic Binary Z Andromedae. Astrophys. J. 1999, 517, 919–924. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977. [Google Scholar] [CrossRef] [PubMed]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instruments Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Rauer, H.; Aerts, C.; Cabrera, J.; Deleuil, M.; Erikson, A.; Gizon, L.; Goupil, M.; Heras, A.; Lorenzo-Alvarez, J.; Marliani, F.; et al. The PLATO Mission. arXiv 2024, arXiv:2406.05447. [Google Scholar] [CrossRef]
- Lancaster, L.; Greene, J.E.; Ting, Y.S.; Koposov, S.E.; Pope, B.J.S.; Beaton, R.L. A Mystery in Chamaeleon: Serendipitous Discovery of a Galactic Symbiotic Nova. Astron. J. 2020, 160, 125. [Google Scholar] [CrossRef]
- Pujol, A.; Luna, G.J.M.; Mukai, K.; Sokoloski, J.L.; Kuin, N.P.M.; Walter, F.M.; Angeloni, R.; Nikolov, Y.; Lopes de Oliveira, R.; Nuñez, N.E.; et al. Taking a break: Paused accretion in the symbiotic binary RT Cru. Astron. Astrophys. 2023, 670, A32. [Google Scholar] [CrossRef]
- Luna, G.J.M. K2 and TESS observations of symbiotic X-ray binaries: GX 1+4 and IGR J16194-2810. Astron. Astrophys. 2023, 676, L2. [Google Scholar] [CrossRef]
- Lima, I.J.; Luna, G.J.M.; Mukai, K.; Oliveira, A.S.; Sokoloski, J.L.; Walter, F.M.; Palivanas, N.; Nuñez, N.E.; Souza, R.R.; Araujo, R.A.N. Symbiotic stars in X-rays: IV. XMM-Newton, Swift, and TESS observations. Astron. Astrophys. 2024, 689, A86. [Google Scholar] [CrossRef]
- Merc, J.; Beck, P.G.; Mathur, S.; García, R.A. Accretion-induced flickering variability among symbiotic stars from space photometry with NASA TESS. Astron. Astrophys. 2024, 683, A84. [Google Scholar] [CrossRef]
- Mikołajewski, M.; Mikołajewska, J.; Tomov, T.; Kulesza, B.; Szczerba, R.; Wikierski, B. Symbiotic binaries: III. Flickering variability of CH Cygni: Magnetic rotator model. Acta Astron. 1990, 40, 129. [Google Scholar]
- Formiggini, L.; Leibowitz, E.M. Discovery of the 1.80 h spin period of the white dwarf of the symbiotic system BF Cyg. Mon. Not. R. Astron. Soc. 2009, 396, 1507–1512. [Google Scholar] [CrossRef]
- Toma, R.; Ramsay, G.; Macfarlane, S.; Groot, P.J.; Woudt, P.A.; Dhillon, V.; Jeffery, C.S.; Marsh, T.; Nelemans, G.; Steeghs, D. The OmegaWhite Survey for short period variable stars—II. An overview of results from the first four years. Mon. Not. R. Astron. Soc. 2016, 463, 1099–1116. [Google Scholar] [CrossRef]
- Magdolen, J.; Dobrotka, A.; Orio, M.; Mikołajewska, J.; Vanderburg, A.; Monard, B.; Aloisi, R.; Bezák, P. Recurrent mini-outbursts and a magnetic white dwarf in the symbiotic system FN Sgr. Astron. Astrophys. 2023, 675, A140. [Google Scholar] [CrossRef]
- Bagnulo, S.; Landstreet, J.D. New insight into the magnetism of degenerate stars from the analysis of a volume-limited sample of white dwarfs. Mon. Not. R. Astron. Soc. 2021, 507, 5902–5951. [Google Scholar] [CrossRef]
- Parsons, S.G.; Gänsicke, B.T.; Schreiber, M.R.; Marsh, T.R.; Ashley, R.P.; Breedt, E.; Littlefair, S.P.; Meusinger, H. Magnetic white dwarfs in post-common-envelope binaries. Mon. Not. R. Astron. Soc. 2021, 502, 4305–4327. [Google Scholar] [CrossRef]
- Schreiber, M.R.; Belloni, D.; Gänsicke, B.T.; Parsons, S.G.; Zorotovic, M. The origin and evolution of magnetic white dwarfs in close binary stars. Nat. Astron. 2021, 5, 648–654. [Google Scholar] [CrossRef]
- Belloni, D.; Mikołajewska, J.; Schreiber, M.R. The formation of the magnetic symbiotic star FN Sgr. Astron. Astrophys. 2024, 686, A226. [Google Scholar] [CrossRef]
- Steinmetz, M.; Zwitter, T.; Siebert, A.; Watson, F.G.; Freeman, K.C.; Munari, U.; Campbell, R.; Williams, M.; Seabroke, G.M.; Wyse, R.F.G.; et al. The Radial Velocity Experiment (RAVE): First Data Release. Astron. J. 2006, 132, 1645–1668. [Google Scholar] [CrossRef]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Allende Prieto, C.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Lewis, H.M.; Anguiano, B.; Stassun, K.G.; Majewski, S.R.; Arras, P.; Sarazin, C.L.; Li, Z.Y.; De Lee, N.; Troup, N.W.; Allende Prieto, C.; et al. Geometry of the Draco C1 Symbiotic Binary. Astrophys. J. Lett. 2020, 900, L43. [Google Scholar] [CrossRef]
- Arenou, F. et al. [Gaia Collaboration] Gaia Data Release 3. Stellar multiplicity, a teaser for the hidden treasure. Astron. Astrophys. 2023, 674, A34. [Google Scholar] [CrossRef]
- Beck, P.G.; Grossmann, D.H.; Steinwender, L.; Schimak, L.S.; Muntean, N.; Vrard, M.; Patton, R.A.; Merc, J.; Mathur, S.; Garcia, R.A.; et al. Constraining stellar and orbital co-evolution through ensemble seismology of solar-like oscillators in binary systems. A census of oscillating red giants and dwarf stars in Gaia DR3 binaries. Astron. Astrophys. 2024, 682, A7. [Google Scholar] [CrossRef]
- Trabucchi, M. et al. [Gaia Collaboration] Gaia Focused Product Release: Radial velocity time series of long-period variables. Astron. Astrophys. 2023, 680, A36. [Google Scholar] [CrossRef]
- Merc, J.; Boffin, H.M.J. Revisiting symbiotic binaries with interferometry: I. The PIONIER archival collection. Astron. Astrophys. 2025, 695, A61. [Google Scholar] [CrossRef]
- Fekel, F.C.; Hinkle, K.H.; Joyce, R.R.; Wood, P.R. Infrared Spectroscopy of Symbiotic Stars. XI. Orbits for Southern S-type Systems: Hen 3-461, SY Mus, Hen 3-828, AND AR Pav. Astron. J. 2017, 153, 35. [Google Scholar] [CrossRef]
- Hinkle, K.H.; Fekel, F.C.; Joyce, R.R.; Mikołajewska, J.; Gałan, C.; Lebzelter, T. Infrared Spectroscopy of Symbiotic Stars. XII. The Neutron Star SyXB System 4U 1700+24 = V934 Herculis. Astrophys. J. 2019, 872, 43. [Google Scholar] [CrossRef]
- Gałan, C.; Mikołajewska, J.; Hinkle, K.H.; Joyce, R.R. Chemical abundance analysis of symbiotic giants. Metallicity and CNO abundance patterns in 14 northern S-type systems. Mon. Not. R. Astron. Soc. 2023, 526, 918–930. [Google Scholar] [CrossRef]
- Gałan, C.; Mikołajewska, J.; Hinkle, K.H.; Joyce, R.R. Chemical abundance analysis of 13 southern symbiotic giants from high-resolution spectra at ∼1.56 μm. Mon. Not. R. Astron. Soc. 2017, 466, 2194–2201. [Google Scholar] [CrossRef]
- Boffin, H.M.J.; Hillen, M.; Berger, J.P.; Jorissen, A.; Blind, N.; Le Bouquin, J.B.; Mikołajewska, J.; Lazareff, B. Roche-lobe filling factor of mass-transferring red giants: The PIONIER view. Astron. Astrophys. 2014, 564, A1. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Shara, M.M.; Faherty, J.K.; Scaringi, S. Ancient Nova Shells of RX Pup Indicate Evolution of Mass Transfer Rate. Astrophys. J. Lett. 2024, 972, L14. [Google Scholar] [CrossRef]
- Shara, M.M.; Lanzetta, K.M.; Masegian, A.; Garland, J.T.; Gromoll, S.; Mikołajewska, J.; Misiura, M.; Valls-Gabaud, D.; Walter, F.M.; Webb, J.K. The Newly Discovered Nova Super-remnant Surrounding Recurrent Nova T Coronae Borealis: Will it Light Up during the Coming Eruption? Astrophys. J. Lett. 2024, 977, L48. [Google Scholar] [CrossRef]
- Healy-Kalesh, M.W.; Darnley, M.J.; Harvey, É.J.; Newsam, A.M. Discovery of a nova super-remnant cavity surrounding RS Ophiuchi. Mon. Not. R. Astron. Soc. 2024, 529, L175–L180. [Google Scholar] [CrossRef]
- Liimets, T.; Corradi, R.M.L.; Jones, D.; Kolka, I.; Santander-Garcia, M.; Sidonio, M.; Verro, K. Nebulosities of the Symbiotic Binary R Aquarii—A Short Review. In Proceedings of the Golden Age of Cataclysmic Variables and Related Objects V, Palermo, Italy, 2–7 September 2019; Volume 2–7, p. 41. [Google Scholar] [CrossRef]
- Merc, J.; Gális, R.; Vrašťák, M.; Teyssier, F.; Boyd, D.; Leedjärv, L.; Wolf, M. Symbiotic binaries as ideal targets for amateur observers. Open Eur. J. Var. Stars 2021, 220, 11–25. [Google Scholar] [CrossRef]
- Lucy, A.B.; Sokoloski, J.L.; Munari, U.; Roy, N.; Kuin, N.P.M.; Rupen, M.P.; Knigge, C.; Darnley, M.J.; Luna, G.J.M.; Somogyi, P.; et al. Regulation of accretion by its outflow in a symbiotic star: The 2016 outflow fast state of MWC 560. Mon. Not. R. Astron. Soc. 2020, 492, 3107–3127. [Google Scholar] [CrossRef]
- Pandey, R.; Habtie, G.R.; Bandyopadhyay, R.; Das, R.; Teyssier, F.; Guarro Fló, J. Study of 2021 outburst of the recurrent nova RS Ophiuchi: Photoionization and morphokinematic modelling. Mon. Not. R. Astron. Soc. 2022, 515, 4655–4668. [Google Scholar] [CrossRef]
- Iłkiewicz, K.; Mikołajewska, J.; Scaringi, S.; Teyssier, F.; Stoyanov, K.A.; Fratta, M. SU Lyn—A transient symbiotic star. Mon. Not. R. Astron. Soc. 2022, 510, 2707–2717. [Google Scholar] [CrossRef]
- Petit, T.; Merc, J.; Gális, R.; Charbonnel, S.; Demange, T.; Galli, R.; Garde, O.; Le Dû, P.; Mulato, L. DeGaPe 35: Amateur discovery of a new southern symbiotic star. New Astron. 2023, 98, 101943. [Google Scholar] [CrossRef]
- Merc, J.; Galis, R.; Charbonnel, S.; Garde, O.; Le Du, P.; Mulato, L.; Petit, T. TCP J18224935-2408280 is an outburst of a symbiotic star. Astron. Telegr. 2021, 14691, 1. [Google Scholar]
- Taguchi, K.; Maehara, H.; Fujii, M.; Kato, T. Spectroscopic Follow-up Observations of the symbiotic star TCP J18224935-2408280 = Gaia DR2 4089297564356878720. Astron. Telegr. 2021, 14699, 1. [Google Scholar]
- Aydi, E.; Sokolovsky, K.V.; Strader, J.; Chomiuk, L.; Kawash, A. SOAR spectroscopic follow up of TCP J18224935-2408280—A classical symbiotic outburst? Astron. Telegr. 2021, 14692, 1. [Google Scholar]
- De, K.; Mereminskiy, I.; Soria, R.; Conroy, C.; Kara, E.; Anand, S.; Ashley, M.C.B.; Boyer, M.L.; Chakrabarty, D.; Grefenstette, B.; et al. SRGA J181414.6-225604: A New Galactic Symbiotic X-Ray Binary Outburst Triggered by an Intense Mass-loss Episode of a Heavily Obscured Mira Variable. Astrophys. J. 2022, 935, 36. [Google Scholar] [CrossRef]
- Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 2021, 647, A1. [Google Scholar] [CrossRef]
- Merloni, A.; Lamer, G.; Liu, T.; Ramos-Ceja, M.E.; Brunner, H.; Bulbul, E.; Dennerl, K.; Doroshenko, V.; Freyberg, M.J.; Friedrich, S.; et al. The SRG/eROSITA all-sky survey. First X-ray catalogues and data release of the western Galactic hemisphere. Astron. Astrophys. 2024, 682, A34. [Google Scholar] [CrossRef]
- Weisskopf, M.C.; Tananbaum, H.D.; Van Speybroeck, L.P.; O’Dell, S.L. Chandra X-ray Observatory (CXO): Overview. In Proceedings of the X-Ray Optics, Instruments, and Missions III, Munich, Germany, 27–29 March 2000; Truemper, J.E., Aschenbach, B., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 4012, pp. 2–16. [Google Scholar] [CrossRef]
- Jansen, F.; Lumb, D.; Altieri, B.; Clavel, J.; Ehle, M.; Erd, C.; Gabriel, C.; Guainazzi, M.; Gondoin, P.; Much, R.; et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 2001, 365, L1–L6. [Google Scholar] [CrossRef]
- Harrison, F.A.; Craig, W.W.; Christensen, F.E.; Hailey, C.J.; Zhang, W.W.; Boggs, S.E.; Stern, D.; Cook, W.R.; Forster, K.; Giommi, P.; et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission. Astrophys. J. 2013, 770, 103. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Page, K.L.; Osborne, J.P.; Kuin, N.P.M.; Henze, M.; Walter, F.M.; Beardmore, A.P.; Bode, M.F.; Darnley, M.J.; Delgado, L.; Drake, J.J.; et al. Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014). Mon. Not. R. Astron. Soc. 2015, 454, 3108–3120. [Google Scholar] [CrossRef]
- Page, K.L.; Kuin, N.P.M.; Beardmore, A.P.; Walter, F.M.; Osborne, J.P.; Markwardt, C.B.; Ness, J.U.; Orio, M.; Sokolovsky, K.V. The 2019 eruption of recurrent nova V3890 Sgr: Observations by Swift, NICER, and SMARTS. Mon. Not. R. Astron. Soc. 2020, 499, 4814–4831. [Google Scholar] [CrossRef]
- Ness, J.U.; Beardmore, A.P.; Bezak, P.; Dobrotka, A.; Drake, J.J.; Vander Meulen, B.; Osborne, J.P.; Orio, M.; Page, K.L.; Pinto, C.; et al. The super-soft source phase of the recurrent nova V3890 Sgr. Astron. Astrophys. 2022, 658, A169. [Google Scholar] [CrossRef]
- Page, K.L.; Beardmore, A.P.; Osborne, J.P.; Munari, U.; Ness, J.U.; Evans, P.A.; Bode, M.F.; Darnley, M.J.; Drake, J.J.; Kuin, N.P.M.; et al. The 2021 outburst of the recurrent nova RS Ophiuchi observed in X-rays by the Neil Gehrels Swift Observatory: A comparative study. Mon. Not. R. Astron. Soc. 2022, 514, 1557–1574. [Google Scholar] [CrossRef]
- Ness, J.U.; Beardmore, A.P.; Bode, M.F.; Darnley, M.J.; Dobrotka, A.; Drake, J.J.; Magdolen, J.; Munari, U.; Osborne, J.P.; Orio, M.; et al. High-resolution X-ray spectra of RS Ophiuchi (2006 and 2021): Revealing the cause of SSS variability. Astron. Astrophys. 2023, 670, A131. [Google Scholar] [CrossRef]
- Orio, M.; Behar, E.; Luna, G.J.M.; Drake, J.J.; Gallagher, J.; Nichols, J.S.; Ness, J.U.; Dobrotka, A.; Mikołajewska, J.; Della Valle, M.; et al. Shocks in the Outflow of the RS Oph 2021 Eruption Observed with X-Ray Gratings. Astrophys. J. 2022, 938, 34. [Google Scholar] [CrossRef]
- Orio, M.; Gendreau, K.; Giese, M.; Luna, G.J.M.; Magdolen, J.; Strohmayer, T.E.; Zhang, A.E.; Altamirano, D.; Dobrotka, A.; Enoto, T.; et al. The RS Oph Outburst of 2021 Monitored in X-Rays with NICER. Astrophys. J. 2023, 955, 37. [Google Scholar] [CrossRef]
- Bozzo, E.; Romano, P.; Ferrigno, C.; Ducci, L. Swift, NuSTAR, and INTEGRAL observations of the symbiotic X-ray binary IGR J16194-2810. Mon. Not. R. Astron. Soc. 2024, 527, 3585–3591. [Google Scholar] [CrossRef]
- Toalá, J.A.; Botello, M.K.; Sabin, L. An XMM-Newton View of the Symbiotic Stars HM Sge, NQ Gem, and PU Vul. Astrophys. J. 2023, 948, 14. [Google Scholar] [CrossRef]
- Vasquez-Torres, D.A.; Toalá, J.A.; Sacchi, A.; Guerrero, M.A.; Tejeda, E.; Karovska, M.; Montez, R., Jr. The impact of periastron passage on the X-ray and optical properties of the Symbiotic System R Aquarii. Mon. Not. R. Astron. Soc. 2024, 535, 2724–2741. [Google Scholar] [CrossRef]
- Toalá, J.A.; Sabin, L.; Guerrero, M.A.; Ramos-Larios, G.; Chu, Y.H. An XMM-Newton EPIC X-Ray View of the Symbiotic Star R Aquarii. Astrophys. J. Lett. 2022, 927, L20. [Google Scholar] [CrossRef]
- Toalá, J.A.; González-Martín, O.; Karovska, M.; Montez, R.; Botello, M.K.; Sabin, L. Peering into the central region of a nano-quasar: XMM-Newton and Chandra views of the CH Cyg symbiotic system. Mon. Not. R. Astron. Soc. 2023, 522, 6102–6114. [Google Scholar] [CrossRef]
- Toalá, J.A. Reflection physics in X-ray-emitting symbiotic stars. Mon. Not. R. Astron. Soc. 2024, 528, 987–996. [Google Scholar] [CrossRef]
- Nyamai, M.M.; Linford, J.D.; Allison, J.R.; Chomiuk, L.; Woudt, P.A.; Ribeiro, V.A.R.M.; Sarbadhicary, S.K. Synchrotron emission from double-peaked radio light curves of the symbiotic recurrent nova V3890 Sagitarii. Mon. Not. R. Astron. Soc. 2023, 523, 1661–1675. [Google Scholar] [CrossRef]
- Lico, R.; Giroletti, M.; Munari, U.; O’Brien, T.J.; Marcote, B.; Williams, D.R.A.; Yang, J.; Veres, P.; Woudt, P. High-resolution imaging of the evolving bipolar outflows in symbiotic novae: The case of the RS Ophiuchi 2021 nova outburst. Astron. Astrophys. 2024, 692, A107. [Google Scholar] [CrossRef]
- Molina, I.; Chomiuk, L.; Linford, J.D.; Aydi, E.; Mioduszewski, A.J.; Mukai, K.; Sokolovsky, K.V.; Strader, J.; Craig, P.; Dong, D.; et al. The symbiotic recurrent nova V745 Sco at radio wavelengths. Mon. Not. R. Astron. Soc. 2024, 534, 1227–1246. [Google Scholar] [CrossRef]
- Nayana, A.J.; Anupama, G.C.; Roy, N.; Banerjee, D.P.K.; Singh, K.P.; Sonith, L.S.; Kamath, U.S. Shock-driven synchrotron radio emission from the 2021 outburst of RS Ophiuchi. Mon. Not. R. Astron. Soc. 2024, 528, 5528–5536. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni. Science 2010, 329, 817–821. [Google Scholar] [CrossRef]
- Cheung, C.C.; Johnson, T.J.; Jean, P.; Kerr, M.; Page, K.L.; Osborne, J.P.; Beardmore, A.P.; Sokolovsky, K.V.; Teyssier, F.; Ciprini, S.; et al. Fermi LAT Gamma-ray Detection of the Recurrent Nova RS Ophiuchi during its 2021 Outburst. Astrophys. J. 2022, 935, 44. [Google Scholar] [CrossRef]
- Buson, S.; Jean, P.; Cheung, C.C. Fermi-LAT Gamma-ray Detection of Symbiotic Recurrent Nova V3890 Sgr. Astron. Telegr. 2019, 13114, 1. [Google Scholar]
- Aharonian, F. et al. [H. E. S. S. Collaboration] Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi. Science 2022, 376, 77–80. [Google Scholar] [CrossRef]
- Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Artero, M.; Asano, K.; Baack, D.; Babić, A.; Baquero, A.; Barres de Almeida, U.; et al. Proton acceleration in thermonuclear nova explosions revealed by gamma rays. Nat. Astron. 2022, 6, 689–697. [Google Scholar] [CrossRef]
- Ivanova, N.; Kundu, S.; Pourmand, A. Unified Rapid Mass Transfer. Astrophys. J. 2024, 971, 64. [Google Scholar] [CrossRef]
- Tejeda, E.; Toalá, J.A. Geometric Correction for Wind Accretion in Binary Systems. Astrophys. J. 2025, 980, 226. [Google Scholar] [CrossRef]
- Maldonado, R.; Toalá, J.A.; Rodríguez-González, J.B.; Tejeda, E. The impact of wind accretion in Evolving Symbiotic Systems. arXiv 2025, arXiv:2502.11325. [Google Scholar] [CrossRef]
- Vathachira, I.B.; Hillman, Y.; Kashi, A. Exploring Mass Transfer Mechanisms in Symbiotic Systems. Astrophys. J. 2025, 980, 224. [Google Scholar] [CrossRef]
- Ablimit, I.; Podsiadlowski, P.; Di Stefano, R.; Rappaport, S.A.; Wicker, J. White Dwarf-Red Giant Star Binaries as Type Ia Supernova Progenitors: With and without Magnetic Confinement. Astrophys. J. Lett. 2022, 941, L33. [Google Scholar] [CrossRef]
- Li, L.H.; Liu, D.D.; Wang, B. The Progenitors of Type Ia Supernovae with Asymptotic Giant Branch Donors. Res. Astron. Astrophys. 2023, 23, 075010. [Google Scholar] [CrossRef]
- Wu, C.; Liu, D.; Wang, X.; Wang, B. The effect of aspherical stellar wind of giant stars on the symbiotic channel of Type Ia supernovae. Mon. Not. R. Astron. Soc. 2021, 503, 4061–4074. [Google Scholar] [CrossRef]
- Mikołajewska, J.; Shara, M.M. The Massive CO White Dwarf in the Symbiotic Recurrent Nova RS Ophiuchi. Astrophys. J. 2017, 847, 99. [Google Scholar] [CrossRef]
- Mikołajewska, J.; Iłkiewicz, K.; Gałan, C.; Monard, B.; Otulakowska-Hypka, M.; Shara, M.M.; Udalski, A. The symbiotic recurrent nova V3890 Sgr: Binary parameters and pre-outburst activity. Mon. Not. R. Astron. Soc. 2021, 504, 2122–2132. [Google Scholar] [CrossRef]
- Hinkle, K.H.; Nagarajan, P.; Fekel, F.C.; Mikołajewska, J.; Straniero, O.; Muterspaugh, M.W. Binary Parameters for the Recurrent Nova T Coronae Borealis. Astrophys. J. 2025, 983, 76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merc, J. Symbiotic Stars in the Era of Modern Ground- and Space-Based Surveys. Galaxies 2025, 13, 49. https://doi.org/10.3390/galaxies13030049
Merc J. Symbiotic Stars in the Era of Modern Ground- and Space-Based Surveys. Galaxies. 2025; 13(3):49. https://doi.org/10.3390/galaxies13030049
Chicago/Turabian StyleMerc, Jaroslav. 2025. "Symbiotic Stars in the Era of Modern Ground- and Space-Based Surveys" Galaxies 13, no. 3: 49. https://doi.org/10.3390/galaxies13030049
APA StyleMerc, J. (2025). Symbiotic Stars in the Era of Modern Ground- and Space-Based Surveys. Galaxies, 13(3), 49. https://doi.org/10.3390/galaxies13030049