The High Energy View of FR0 Radio Galaxies
Abstract
:1. Introduction
2. Broadband Properties: From Radio to X-rays
2.1. X-ray Properties of FR 0s
- 1.
- The X-ray spectra of FR 0s are generally well represented by a power-law absorbed by a Galactic column density. An additional intrinsic absorber is not required by the data suggesting that, in these sources, the circum-nuclear environment is depleted of cold matter (e.g., the dusty torus is missing). In some cases, the addition of a thermal component is required by the data: this soft X-ray emission could be related to extended intergalactic medium or to the hot corona typical of ETGs [36]. The spectral slope of the power-law is generally steep, = 1.9 ± 0.3. Only in two cases, which includes Tol 1326-379, is the photon index flatter, ∼1.2;
- 2.
- FR 0s span a range in X-ray luminosity L = 10–10 erg s, similar to FR Is. When the X-ray luminosity is compared to the radio core one, a clear correlation is attested. This points towards a non-thermal origin (i.e., the jet) of the X-ray emission in FR 0s as commonly believed in FR Is (e.g., [32,37,38]) (Figure 3);
- 3.
- The central engine of FR 0s is probably powered by radiatively-inefficient accretion disc (i.e., Advection Dominated Accretion Flow [ADAF] model, [39]), as suggested by the small values of the Eddington-scaled luminosities, = L/L∼10-.
2.2. The Uniqueness of the FR 0 Class
3. What Causes the Deficit of Extended Radio Emission in FR 0s?
4. High Energy (Gev-Tev) View of FR 0s
4.1. Perspectives with Upcoming MeV–TeV Observatories
5. Are FR 0s VHE Candidate Sources?
6. Summary, Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rogstad, D.H.; Ekers, R.D. Radio sources and elliptical galaxies. Astrophys. J. 1969, 157, 481. [Google Scholar] [CrossRef]
- Heeschen, D.S. Radio observations of E and SO galaxies. Astron. J. 1970, 75, 523–529. [Google Scholar] [CrossRef]
- Ekers, R.D.; Ekers, J.A. A survey of elliptical galaxies at 6 cm. Astron. Astrophys. 1973, 24, 247. [Google Scholar]
- Sadler, E.M. Radio and optical observations of a complete sample of E and SO galaxies. III. A radio continuum survey at 2.7 and 5.0 GHz. Astron. J. 1984, 89, 53. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Pauliny-Toth, I.I.K. Compact radio sources. Annu. Rev. Astron. Astrophys. 1981, 19, 373–410. [Google Scholar] [CrossRef]
- Slee, O.B.; Sadler, E.M.; Reynolds, J.E.; Ekers, R.D. Parsec-scale radio cores in early-type galaxies. Mon. Not. R. Astron. Soc. 1994, 269, 928–946. [Google Scholar] [CrossRef] [Green Version]
- Wrobel, J.M.; Heeschen, D.S. Radio continuum sources in nearby and bright E/S0 galaxies: Active nuclei versus star formation. Astron. J. 1991, 101, 148–169. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 1974, 167, 31–36. [Google Scholar] [CrossRef]
- Nyland, K.; Harwood, J.J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G.V.; Davis, T.A.; Greene, J.E.; et al. Revolutionizing our understanding of AGN feedback and its importance to galaxy evolution in the era of the next generation very large array. Astrophys. J. 2018, 859, 23. [Google Scholar] [CrossRef]
- Abazajian, K.N.; Adelman-McCarthy, J.K.; Agüeros, M.A.; Allam, S.S.; Allende Prieto, C.; An, D.; Anderson, K.S.J.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 2009, 182, 543. [Google Scholar] [CrossRef]
- Becker, R.H.; White, R.L.; Helfand, D.J. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters. Astrophys. J. 1995, 450, 559. [Google Scholar] [CrossRef]
- Condon, J.J.; Cotton, W.D.; Greisen, E.W.; Yin, Q.F.; Perley, R.A.; Taylor, G.B.; Broderick, J.J. The NRAO VLA Sky Survey. Astrophys. J. 1998, 115, 1693. [Google Scholar] [CrossRef]
- Best, P.N.; Kauffmann, G.; Heckman, T.M.; Ivezić, Ž. A sample of radio-loud active galactic nuclei in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2005, 362, 9–24. [Google Scholar] [CrossRef] [Green Version]
- Best, P.N.; Heckman, T.M. On the fundamental dichotomy in the local radio-AGN population: Accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 2012, 421, 1569–1582. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A. Radio and spectroscopic properties of miniature radio galaxies: Revealing the bulk of the radio-loud AGN population. Astron. Astrophys. 2009, 508, 603–614. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A. Spectro-photometric properties of the bulk of the radio-loud AGN population. Astron. Astrophys. 2010, 519, A48. [Google Scholar] [CrossRef]
- Sadler, E.M.; Ekers, R.D.; Mahony, E.K.; Mauch, T.; Murphy, T. The local radio-galaxy population at 20 GHz. Mon. Not. R. Astron. Soc. 2014, 438, 796–824. [Google Scholar] [CrossRef]
- Whittam, I.H.; Riley, J.M.; Green, D.A.; Jarvis, M.J. The faint source population at 15.7 GHz—III. A high-frequency study of HERGs and LERGs. Mon. Not. R. Astron. Soc. 2016, 462, 2122–2137. [Google Scholar] [CrossRef]
- Miraghaei, H.; Best, P.N. The nuclear properties and extended morphologies of powerful radio galaxies: The roles of host galaxy and environment. Mon. Not. R. Astron. Soc. 2017, 466, 4346–4363. [Google Scholar] [CrossRef]
- Ghisellini, G. Extragalactic relativistic jets. Am. Inst. Phys. Conf. Ser. 2011, 1381, 180–198. [Google Scholar] [Green Version]
- Baldi, R.D.; Capetti, A.; Giovannini, G. Pilot study of the radio-emitting AGN population: The emerging new class of FR 0 radio-galaxies. Astron. Astrophys. 2015, 576, A38. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A.; Giovannini, G. The new class of FR 0 radio galaxies. Astron. Nachr. 2016, 337, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Spinrad, H.; Djorgovski, S.; Marr, J.; Aguilar, L. A third update of the status of the 3 CR sources: Further new redshifts and new identifications of distant galaxies. Publ. Astron. Soc. Pac. 1985, 97, 932. [Google Scholar] [CrossRef]
- Burns, J.O.; Feigelson, E.D.; Schreier, E.J. The inner radio structure of Centaurus A: Clues to the origin of thejet X-ray emission. Astrophys. J. 1983, 273, 128–153. [Google Scholar] [CrossRef]
- Alexander, P.; Leahy, J.P. Ageing and speeds in a representative sample of 21 classical double radio sources. Mon. Not. R. Astron. Soc. 1987, 225, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Baldi, R.D.; Capetti, A.; Giovannini, G. High-resolution VLA observations of FR0 radio galaxies: The properties and nature of compact radio sources. Mon. Not. R. Astron. Soc. 2019, 482, 2294–2304. [Google Scholar] [CrossRef]
- Cheng, X.-P.; An, T. Parsec-scale Radio Structure of 14 Fanaroff–Riley Type 0 Radio Galaxies. Astrophys. J. 2018, 863, 155. [Google Scholar] [CrossRef]
- Grandi, P.; Capetti, A.; Baldi, R.D. Discovery of a Fanaroff-Riley type 0 radio galaxy emitting at γ-ray energies. Mon. Not. R. Astron. Soc. 2016, 457, 2–8. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A.; Massaro, F. FR0CAT: A FIRST catalog of FR 0 radio galaxies. Astron. Astrophys. 2018, 609, A1. [Google Scholar] [CrossRef]
- Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R.D.; Giovannini, G. X-ray study of a sample of FR0 radio galaxies: Unveiling the nature of the central engine. Mon. Not. R. Astron. Soc. 2018, 476, 5535–5547. [Google Scholar] [CrossRef]
- Balmaverde, B.; Capetti, A. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every “core” galaxy? Astron. Astrophys. 2006, 447, 97–112. [Google Scholar] [CrossRef]
- Balmaverde, B.; Capetti, A.; Grandi, P. The Chandra view of the 3C/FR I sample of low luminosity radio-galaxies. Astron. Astrophys. 2006, 451, 35–44. [Google Scholar] [CrossRef]
- Balmaverde, B.; Baldi, R.D.; Capetti, A. The accretion mechanism in low-power radio galaxies. Astron. Astrophys. 2008, 486, 119–130. [Google Scholar] [CrossRef]
- Capetti, A.; Baldi, R.D.; Brienza, M.; Morganti, R.; Giovannini, G. The low-frequency properties of FR 0 radio galaxies. Astron. Astrophys. submitted.
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195–1207. [Google Scholar] [CrossRef]
- Fabbiano, G.; Kim, D.-W.; Trinchieri, G. An X-ray Catalog and Atlas of Galaxies. Astrophys. J. Suppl. Ser. 1992, 80, 531–644. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Worrall, D.M. Radio, optical and X-ray nuclei in nearby 3CRR radio galaxies. Mon. Not. R. Astron. Soc. 2000, 314, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Hardcastle, M.J.; Evans, D.A.; Croston, J.H. The active nuclei of z < 1.0 3CRR radio sources. Mon. Not. R. Astron. Soc. 2009, 396, 1929–1952. [Google Scholar]
- Narayan, R.; Yi, I. Advection-dominated Accretion: Self-Similarity and Bipolar Outflows. Astrophys. J. 1995, 444, 231. [Google Scholar] [CrossRef]
- Shimwell, T.W.; Tasse, C.; Hardcastle, M.J.; Mechev, A.P.; Williams, W.L.; Best, P.N.; Röttgering, H.J.A.; Callingham, J.R.; Dijkema, T.J.; de Gasperin, F.; et al. The LOFAR Two-metre Sky Survey. II. First, data release. Astron. Astrophys. 2019, 622, A1. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.J.; Röttgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Tasse, C.; Callingham, J.R.; et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 2019, 622, A12. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef]
- Mingo, B.; Croston, J.H.; Hardcastle, M.J.; Best, P.N.; Duncan, K.J.; Morganti, R.; Rottgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Williams, W.L.; et al. Revisiting the Fanaroff-Riley dichotomy and radio-galaxy morphology with the LOFAR Two-Metre Sky Survey (LoTSS). Mon. Not. R. Astron. Soc. 2019, 488, 2701–2721. [Google Scholar] [CrossRef]
- Buttiglione, S.; Capetti, A.; Celotti, A.; Axon, D.J.; Chiaberge, M.; Macchetto, F.D.; Sparks, W.B. An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3. II. Spectroscopic classes and accretion modes in radio-loud AGN. Astron. Astrophys. 2010, 509, A6. [Google Scholar]
- Capetti, A.; Raiteri, C.M. Looking for the least luminous BL Lacertae objects. Astron. Astrophys. 2015, 580, A73. [Google Scholar] [CrossRef] [Green Version]
- Venturi, T.; Castaldini, C.; Cotton, W.D.; Feretti, L.; Giovannini, G.; Lara, L.; Marcaide, J.M.; Wehrle, A.E. VLBI Observations of a Complete Sample of Radio Galaxies. VI. The Two FR I Radio Galaxies B2 0836 + 29 and 3C 465. Astrophys. J. 1995, 454, 735. [Google Scholar] [CrossRef]
- Giovannini, G.; Cotton, W.D.; Feretti, L.; Lara, L.; Venturi, T. VLBI Observations of a Complete Sample of Radio Galaxies: 10 Years Later. Astrophys. J. 2010, 552, 508. [Google Scholar] [CrossRef]
- Kharb, P.; O’Dea, C.P.; Tilak, A.; Baum, S.A.; Haynes, E.; Noel-Storr, J.; Fallon, C.; Christiansen, K. VLBA and Chandra Observations of Jets in FR I Radio Galaxies: Constraints on Jet Evolution. Astrophys. J. 2012, 754, 1. [Google Scholar] [CrossRef]
- O’Dea, C.P.; Baum, S.A.; Stanghellini, C. What Are the Gigahertz Peaked-Spectrum Radio Sources? Astrophys. J. 1991, 380, 66–77. [Google Scholar]
- O’Dea, C.P. The Compact Steep-Spectrum and Gigahertz Peaked-Spectrum Radio Sources. Publ. Astron. Soc. Pac. 1998, 110, 493. [Google Scholar] [CrossRef]
- Guainazzi, M.; Siemiginowska, A.; Stanghellini, C.; Grandi, P.; Piconcelli, E.; Azubike Ugwoke, C. A hard X-ray view of giga-hertz peaked spectrum radio galaxies. Astron. Astrophys. 2006, 446, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Labiano, A. Tracing jet-ISM interaction in young AGN: Correlations between [O III] λ 5007 Å, and 5-GHz emission. Astron. Astrophys. 2008, 488, L59–L62. [Google Scholar] [CrossRef]
- Migliori, G.; Siemiginowska, A.; Kelly, B.C.; Stawarz, Ł.; Celotti, A.; Begelman, M.C. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View. Astrophys. J. 2014, 780, 165. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Sobolewska, M.; Guainazzi, M.; Hardcastle, M.; Migliori, G.; Ostorero, L.; Stawarz, L. X-ray Properties of the Gigahertz Peaked and Compact Steep Spectrum Sources. Astrophys. J. 2008, 684, 811. [Google Scholar] [CrossRef]
- Tengstrand, O.; Guainazzi, M.; Siemiginowska, A.; Fonseca Bonilla, N.; Labiano, A.; Worrall, D.M.; Grandi, P.; Piconcelli, E. The X-ray view of giga-hertz peaked spectrum radio galaxies. Astron. Astrophys. 2009, 501, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.; Snellen, I.; Mack, K.-H.; Schilizzi, R. The X-ray properties of young radio-loud AGN. Mon. Not. R. Astron. Soc. 2006, 367, 928–936. [Google Scholar] [CrossRef] [Green Version]
- Morganti, R.; Oosterloo, T. The interstellar and circumnuclear medium of active nuclei traced by H I 21 cm absorption. Astron. Astrophys. Rev. 2018, 26, 4. [Google Scholar] [CrossRef]
- Urry, C.M.; Padovani, P. Unified schemes for radio-loud active galactic nuclei. Publ. Astron. Soc. Pac. 1995, 107, 803–845. [Google Scholar] [CrossRef]
- Garofalo, D.; Singh, C.B. FR 0 Radio Galaxies and Their Place in the Radio Morphology Classification. Astrophys. J. 2019, 871, 259. [Google Scholar] [CrossRef]
- Kunert-Bajraszewska, M.; Thomasson, P. A survey of Low Luminosity Compact sources. Astron. Nachr. 2009, 330, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Kunert-Bajraszewska, M.; Gawroński, M.P.; Labiano, A.; Siemiginowska, A. A survey of low-luminosity compact sources and its implication for the evolution of radio-loud active galactic nuclei—I. Radio data. Mon. Not. R. Astron. Soc. 2010, 408, 2261–2278. [Google Scholar] [CrossRef]
- Kunert-Bajraszewska, M.; Labiano, A.; Siemiginowska, A.; Guainazzi, M. First, X-ray observations of low-power compact steep spectrum sources. Mon. Not. R. Astron. Soc. 2014, 437, 3063–3071. [Google Scholar] [CrossRef]
- Baldi, R.D.; Capetti, A.; Giovannini, G. The eMERLIN view of FR 0 radio galaxies. In preparation.
- Ghisellini, G.; Tavecchio, F.; Chiaberge, M. Structured jets in TeV BL Lac objects and radiogalaxies. Implications for the observed properties. Astron. Astrophys. 2005, 432, 401–410. [Google Scholar] [CrossRef]
- Ledlow, M.J.; Owen, F.N. 20 cm VLA Survey of Abell Clusters of Galaxies. VI. Radio/Optical Luminosity Functions. Astrophys. J. 1996, 112, 9. [Google Scholar] [CrossRef]
- Kaiser, C.R.; Best, P.N. Luminosity function, sizes and FR dichotomy of radio-loud AGN. Mon. Not. R. Astron. Soc. 2007, 381, 1548–1560. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50. [Google Scholar] [CrossRef]
- Maraschi, L.; Colpi, M.; Ghisellini, G.; Perego, A.; Tavecchio, F. On the role of black hole spin and accretion in powering relativistic jets in AGN. J. Phys. Conf. Ser. 2012, 355, 012016. [Google Scholar] [CrossRef] [Green Version]
- Capetti, A.; Massaro, F.; Baldi, R.D. The large-scale environment of FR 0 radio galaxies. Astron. Astrophys. 2019. submitted. [Google Scholar]
- Dubois, Y.; Volonteri, M.; Silk, J. Black hole evolution—III. Statistical properties of mass growth and spin evolution using large-scale hydrodynamical cosmological simulations. Mon. Not. R. Astron. Soc. 2014, 440, 1590–1606. [Google Scholar] [CrossRef]
- Steinle, H.; Bennett, K.; Bloemen, H.; Collmar, W.; Diehl, R.; Hermsen, W.; Lichti, G.G.; Morris, D.; Schonfelder, V.; Strong, A.W.; et al. COMPTEL observations of Centaurus A at MeV energies in the years 1991 to 1995. Astron. Astrophys. 1998, 330, 97. [Google Scholar]
- Mukherjee, R.; Halpern, J.; Mirabal, N.; Gotthelf, E.V. Is the EGRET Source 3EG J1621+8203 the Radio Galaxy NGC 6251? Astrophys. J. 2002, 574, 693. [Google Scholar] [CrossRef]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Fermi Large Area Telescope Observations of Misaligned Active Galactic Nuclei. Astrophys. J. 2010, 720, 912. [Google Scholar] [CrossRef]
- Sahakyan, N.; Baghmanyan, V.; Zargaryan, D. Fermi-LAT observation of nonblazar AGNs. Astron. Astrophys. 2018, 614, A6. [Google Scholar] [CrossRef] [Green Version]
- The Fermi-LAT collaboration. Fermi Large Area Telescope Fourth Source Catalog. arXiv 2019, arXiv:1902.10045. [Google Scholar]
- Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; et al. The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
- Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Third Source Catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Kneiske, T.M.; Kataoka, J. Kiloparsec-Scale Jets in FR I Radio Galaxies and the γ-Ray Background. Astrophys. J. 2006, 637, 693. [Google Scholar] [CrossRef]
- Di Mauro, M.; Manconi, S.; Zechlin, H.-S.; Ajello, M.; Charles, E.; Donato, F. Deriving the Contribution of Blazars to the Fermi-LAT Extragalactic γ-ray Background at E > 10 GeV with Efficiency Corrections and Photon Statistics. Astrophys. J. 2018, 856, 106. [Google Scholar] [CrossRef]
- Eichmann, B.; Rachen, J.P.; Merten, L.; van Vliet, A.; Becker Tjus, J. Ultra-high-energy cosmic rays from radio galaxies. J. Cosmol. Astropart. Phys. 2018, 2018, 036. [Google Scholar] [CrossRef]
- Mannheim, K. High-energy neutrinos from extragalactic jets. Astropart. Phys. 1995, 3, 295–302. [Google Scholar] [CrossRef]
- Tavecchio, F.; Righi, C.; Capetti, A.; Grandi, P.; Ghisellini, G. High-energy neutrinos from FR 0 radio galaxies? Mon. Not. R. Astron. Soc. 2018, 475, 5529–5534. [Google Scholar] [CrossRef]
- Stecker, F.W.; Shrader, C.R.; Malkan, M.A. The Extragalactic Gamma-Ray Background from Core Dominated Radio Galaxies. Astropart. Phys. 2019, 879, 68. [Google Scholar] [CrossRef]
- Migliori, G.; Siemiginowska, A.; Sobolewska, M.; Loh, A.; Corbel, S.; Ostorero, L.; Stawarz, Ł. First, Detection in Gamma-Rays of a Young Radio Galaxy: Fermi-LAT Observations of the Compact Symmetric Object PKS 1718-649. Astrophys. J. Lett. 2016, 821, L31. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bhat, P.N.; et al. Fermi LAT Stacking Analysis of Swift Localized GRBs. Astrophys. J. 2016, 822, 68. [Google Scholar] [CrossRef]
- Best, S.; Bazo, J. Search for gamma-ray counterparts of newly discovered radio astrophysical sources. arXiv 2019, arXiv:1906.01664. [Google Scholar]
- Moiseev, A.; Amego Team. All-Sky Medium Energy Gamma-ray Observatory (AMEGO). In Proceedings of the 35th International Cosmic Ray Conference (ICRC2017), Busan, Korea, 10–20 July 2017; p. 798. [Google Scholar]
- De Angelis, A.; Tatischeff, V.; Tavani, M.; Oberlack, U.; Grenier, I.; Hanlon, L.; Walter, R.; Argan, A.; von Ballmoos, P.; Bulgarelli, A.; et al. The e-ASTROGAM mission. Exploring the extreme Universe with gamma rays in the MeV - GeV range. Exp. Astron. 2017, 44, 25–82. [Google Scholar] [CrossRef]
- Petropoulou, M.; Dimitrakoudis, S.; Padovani, P.; Mastichiadis, A.; Resconi, E. Photohadronic origin of γ-ray BL Lac emission: Implications for IceCube neutrinos. Mon. Not. R. Astron. Soc. 2015, 448, 2412–2429. [Google Scholar] [CrossRef]
- Sitarek, J.; Carmona, E.; Colin, P.; Mazin, D.; Tescaro, D. Performance of the MAGIC telescopes after the major upgrade. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 981. [Google Scholar]
- Park, N.; VERITAS Collaboration. Performance of the VERITAS experiment. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 771. [Google Scholar]
- Holler, M.; de Naurois, M.; Zaborov, D.; Balzer, A.; Chalmé-Calvet, R. Photon Reconstruction for H.E.S.S. Using a Semi-Analytical Model. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands, 30 July–6 August 2015; p. 980. [Google Scholar]
- Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L.A.; et al. Design concepts for the Cherenkov Telescope Array CTA: An advanced facility for ground-based high-energy gamma-ray astronomy. Exp. Astron. 2011, 32, 193–316. [Google Scholar] [CrossRef]
- Angioni, R.; Grandi, P.; Torresi, E.; Vignali, C.; Knödlseder, J. Radio galaxies with the Cherenkov Telescope Array. Astropart. Phys. 2017, 92, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Rieger, F.; Levinson, A. Radio Galaxies at VHE Energies. Galaxies 2018, 6, 116. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.G.; Anton, G.; de Almeida, U.B.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Boisson, C.; et al. Discovery of Very High Energy γ-Ray Emission from Centaurus a with H.E.S.S. Astrophys. J. 2009, 695, L40. [Google Scholar] [CrossRef]
- Sahakyan, N.; Yang, R.; Aharonian, F.A.; Rieger, F.M. Evidence for a Second Component in the High-energy Core Emission from Centaurus A? Astrophys. J. Lett. 2013, 770, L6. [Google Scholar] [CrossRef]
- H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E.O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; et al. The γ-ray spectrum of the core of Centaurus A as observed with H.E.S.S. and Fermi-LAT. Astron. Astrophys. 2018, 619, A71. [Google Scholar]
- Maraschi, L.; Ghisellini, G.; Celotti, A. A Jet Model for the Gamma-Ray–emitting Blazar 3C 279. Astrophys. J. Lett. 1992, 397, L5–L9. [Google Scholar] [CrossRef]
- Dermer, C.D. On the Beaming Statistics of Gamma-Ray Sources. Astrophys. J. 1995, 446, L63. [Google Scholar] [CrossRef]
- Ghisellini, G.; Madau, P. On the origin of the gamma-ray emission in blazars. Mon. Not. R. Astron. Soc. 1996, 280, 67. [Google Scholar] [CrossRef]
- Böttcher, M. Modeling the emission processes in blazars. Astrophys. Space Sci. 2007, 309, 95–104. [Google Scholar]
- Rani, B.; Petropoulou, M.; Zhang, H.; D’Ammando, F.; Finke, J.; Baring, M.; Boettcher, M.; Dimitrakoudis, S.; Gan, Z.; Giannios, D.; et al. Multi-Physics of AGN Jets in the Multi-Messenger Era. Bull. Am. Astron. Soc. 2019, 51, 92. [Google Scholar]
- Jacobsen, I.B.; Wu, K.; On, A.Y.L.; Saxton, C.J. High-energy neutrino fluxes from AGN populations inferred from X-ray surveys. Mon. Not. R. Astron. Soc. 2015, 451, 3649–3663. [Google Scholar] [CrossRef] [Green Version]
- Ruderman, M.A.; Sutherland, P.G. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. Astrophys. J. 1975, 196, 51. [Google Scholar] [CrossRef]
- Gil, J.; Melikidze, G.I.; Geppert, U. Drifting subpulses and inner acceleration regions in radio pulsars. Astron. Astrophys. 2003, 407, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Narayan, R. On the Nature of X-ray-Bright, Optically Normal Galaxies. Astrophys. J. 2004, 612, 724. [Google Scholar] [CrossRef]
- Katsoulakos, G.; Rieger, F.M. Magnetospheric Gamma-Ray Emission in Active Galactic Nuclei. Astrophys. J. 2018, 852, 112. [Google Scholar] [CrossRef] [Green Version]
- Albert, J.; Aliu, E.; Anderhub, H.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Baixeras, C.; Barrio, J.A.; Bartko, H.; Bastieri, D.; et al. Very High Energy Gamma-Ray Observations of Strong Flaring Activity in M 87 in 2008 February. Astrophys. J. Lett. 2008, 685, L23. [Google Scholar] [CrossRef]
- Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.-G.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. Is the giant radio galaxy M 87 a TeV gamma-ray emitter? Astron. Astrophys. 2003, 403, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Nalewajko, K.; Giannios, D.; Begelman, M.C.; Uzdensky, D.A.; Sikora, M. Radiative properties of reconnection-powered minijets in blazars. Mon. Not. R. Astron. Soc. 2011, 413, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.-D.; Yuan, Y.-F.; Li, Y.-R.; Wang, J.-M. A General Relativistic External Compton-Scattering Model for TeV Emission from M 87. Astrophys. J. 2012, 746, 177. [Google Scholar] [CrossRef]
- Kadowaki, L.H.S.; de Gouveia Dal Pino, E.M.; Singh, C.B. The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs. Astrophys. J. 2015, 802, 113. [Google Scholar] [CrossRef]
- De Gouveia Dal Pino, E.M.; Piovezan, P.P.; Kadowaki, L.H.S. The role of magnetic reconnection on jet/accretion disk systems. Astron. Astrophys. 2010, 518, A5. [Google Scholar] [CrossRef]
- Bednarek, W. GeV–TeV γ-rays produced by electrons in the kpc-scale jet as a result of Comptonization of the inner jet emission. Mon. Not. R. Astron. Soc. 2019, 483, 1003–1007. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B.M.; Bechtol, K.; et al. Fermi Gamma-Ray Imaging of a Radio Galaxy. Science 2010, 328, 725–729. [Google Scholar] [PubMed] [Green Version]
- Hardcastle, M.J.; Croston, J.H. Modelling TeV γ-ray emission from the kiloparsec-scale jets of Centaurus A and M87. Mon. Not. R. Astron. Soc. 2011, 415, 133–142. [Google Scholar] [CrossRef]
- Liu, R.-Y.; Rieger, F.M.; Aharonian, F.A. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets. Astrophys. J. 2017, 842, 39. [Google Scholar] [CrossRef] [Green Version]
- Balmaverde, B.; Caccianiga, A.; Della Ceca, R.; Wolter, A.; Belfiore, A.; Ballo, L.; Berton, M.; Gioia, I.; Maccacaro, T.; Sbarufatti, B. Te-REX: A sample of extragalactic TeV-emitting candidates. Astron. Astrophys. submitted.
- Nagar, N.M.; Falcke, H.; Wilson, A.S.; Ho, L.C. Radio Sources in Low-Luminosity Active Galactic Nuclei. I. VLA Detections of Compact, Flat-Spectrum Cores. Astrophys. J. 2000, 542, 186. [Google Scholar] [CrossRef]
- Falcke, H.; Nagar, N.M.; Wilson, A.S.; Ulvestad, J.S. Radio Sources in Low-Luminosity Active Galactic Nuclei. II. Very Long Baseline Interferometry Detections of Compact Radio Cores and Jets in a Sample of LINERs. Astrophys. J. 2000, 542, 197. [Google Scholar] [CrossRef]
- Filho, M.E.; Barthel, P.D.; Ho, L.C. The Radio Properties of Composite LINER/H II Galaxies. Astrophys. J. Suppl. Ser. 2003, 142, 223. [Google Scholar] [CrossRef]
- Nyland, K.; Young, L.M.; Wrobel, J.M.; Sarzi, M.; Morganti, R.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; et al. The ATLAS3D Project—XXXI. Nuclear radio emission in nearby early-type galaxies. Mon. Not. R. Astron. Soc. 2016, 458, 2221–2268. [Google Scholar] [CrossRef]
- Baldi, R.D.; Williams, D.R.A.; McHardy, I.M.; Beswick, R.J.; Argo, M.K.; Dullo, B.T.; Knapen, J.H.; Brinks, E.; Muxlow, T.W.B.; Aalto, S.; et al. LeMMINGs—I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores. Mon. Not. R. Astron. Soc. 2018, 476, 3478–3522. [Google Scholar] [CrossRef]
- Taylor, M.B. TOPCAT & STIL: Starlink Table/VOTable Processing Software. Astronomical Data Analysis Software and Systems XIV. Publ. Astron. Soc. Pac. Conf. Ser. 2005, 347, 29. [Google Scholar]
1. | The 3C catalogue selects radio sources with flux densities higher than 9 Jy at 178 MHz. |
2. | The core dominance is the ratio between the emission from the unresolved radio core and the total radio emission of the RG. |
3. | Radio loudness, R, is defined as ratio between the flux densities in the radio (6 cm, 5 GHz) and in the optical band (4400 Å) [35]; where radio-loud AGN have 10. Assuming the optical galaxy emission as an upper limit on the optical nuclear component and 5 mJy as minimum radio flux, the radio loudness of FR 0s is at least >11. |
4. | The Lorentz factor for jets is where v is the jet speed. |
5. | In addition to M 87 and CenA, there are other four radio galaxies detected at TeV energies, i.e., NGC 1275 (d ∼ 76.7 Mpc), IC 310 (d ∼ 82.8 Mpc), PKS 0625-35 (d ∼ 245 Mpc) and 3C 264 (d ∼ 95.1 Mpc). |
6. | TevCat (http://tevcat.uchicago.edu/) and TGeVCat (https://www.ssdc.asi.it/tgevcat/) are online catalogues for TeV astronomy. |
7. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, R.D.; Torresi, E.; Migliori, G.; Balmaverde, B. The High Energy View of FR0 Radio Galaxies. Galaxies 2019, 7, 76. https://doi.org/10.3390/galaxies7030076
Baldi RD, Torresi E, Migliori G, Balmaverde B. The High Energy View of FR0 Radio Galaxies. Galaxies. 2019; 7(3):76. https://doi.org/10.3390/galaxies7030076
Chicago/Turabian StyleBaldi, Ranieri Diego, Eleonora Torresi, Giulia Migliori, and Barbara Balmaverde. 2019. "The High Energy View of FR0 Radio Galaxies" Galaxies 7, no. 3: 76. https://doi.org/10.3390/galaxies7030076
APA StyleBaldi, R. D., Torresi, E., Migliori, G., & Balmaverde, B. (2019). The High Energy View of FR0 Radio Galaxies. Galaxies, 7(3), 76. https://doi.org/10.3390/galaxies7030076