Harsh Sliding Wear of a Zirconia Ball against a-C:H Coated CoCrMo Disc in Hyaluronic Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. a-C:H Deposition
2.2. Tribological Tests
- Wv,ball: volumetric wear of the ball
- Wv,disc: volumetric wear of the disc
- Wq,disc: cross-sectional area of the wear trace of the disc perpendicular to the sliding direction (measured in the middle of the wear trace)
- s: stroke
- d1: diameter of the wear trace in the ball parallel to the sliding direction
- d2: diameter of the wear trace in the ball perpendicular to the sliding direction
- d3: diameter of the wear trace in the disc parallel to the sliding direction
- d4: diameter of the wear trace in the disc perpendicular to the sliding direction
- R: radius of the ball in mm
- r: average radius of the wear trace of the ball after the test (can be calculated according Equation (3))
2.3. Raman Spectroscopy
2.4. Scanning Electron Microscopy (SEM)
2.5. Digital Microscopy
3. Results
3.1. Coefficient of Friction COF
3.2. Wear Rates
3.3. Microscopic Observations
3.4. Raman Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kung, M.S.; Markantonis, J.; Nelson, S.D.; Campbell, P. The synovial lining and synovial fluid properties after joint arthroplasty. Lubricants 2015, 3, 394–412. [Google Scholar] [CrossRef] [Green Version]
- Posada, O.M.; Tate, R.J.; Meek, D.; Grant, M.H. In vitro analysis of toxicity, immunological, and gene expression effects of cobalt-chromium-alloy wear debries and Co ions derived from metal-on-metal hip implants. Lubricants 2015, 3, 539–568. [Google Scholar] [CrossRef] [Green Version]
- Fuhrer, E.; Bäcker, A.; Kraft, S.; Gruhl, F.J.; Kirsch, M.; MacKinnin, N.; Korvik, J.G.; Sharma, S. 3D Carbon Scaffolds for Neural Stem cell culture and magnetic resonance imaging. Adv. Healthc. Mater. 2018, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Mukundan, S.; Wenhu, W.; Karumuri, A.; Sant, V.; Mukhopadhyay, S.M.; Sant, S. Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment. Acta Biomater. 2016, 32, 77–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eivazzadeh-Keihan, R.; Maleki, A.; de la Guardia, M.; Bani, M.S.; Chenab, K.K.; Pashazadeh-Panahi, P.; Baradaran, B.; Mokhtarzadeh, A.; Hamblin, M.R. Carbon based nanomaterials for tissue engineering of bone: Buidling new bone on small black scaffolds: A review. J. Adv. Res. 2019, 18, 185–201. [Google Scholar] [CrossRef] [PubMed]
- Stankova, L.; Musilkova, J.; Broz, A.; Potocky, S.; Kromka, A.; Kozak, H.; Izak, T.; Artemenko, A.; Stransa, D.; Barcakova, L. Alteration to the adhesion, growth and osteogenetic differentiation of human osteoblast-like cells on nanofibrous polylactide scaffolds with diamond nanoparticles. Diam. Relat. Mater. 2019, 97, 107421–107426. [Google Scholar] [CrossRef]
- Ngu-Schwemlein, M.; Chin, S.F.; Hileman, R.; Drozdowski, C.; Upchurch, C.; Hargrove, A. Carbon nanodots as molecular scaffolds for development of antimicrobial agents. Bioorg. Med. Chem. Lett. 2016, 26, 1745–1749. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.L.; Wu, B.J.; Zhang, T.F.; Leng, Y.X.; Huang, N. Tribocorrosion behaviour of DLC-coated CoCrMo alloy in simulated biological environment. Vacuum 2013, 92, 39–42. [Google Scholar] [CrossRef]
- Xiang, D.D.; Sui, X.D.; Ran, X.P.; Hao, J.Y.; Wang, Z.W.; Liao, Z.H.; Liu, W.Q.; Tor, S.B. Improving biotribological properties and corrosion resistance of CoCrMo alloy via a Cr-GLC nanocomposistes film in simulated body fluids. Surf. Coat. Technol. 2019, 378, 124840. [Google Scholar] [CrossRef]
- Dorner-Reisel, A.; Schuerer, C.; Müller, E. The wear resistance of diamond-like carbon coated and uncoated Co28Cr6Mo knee prostheses. Diam. Relat. Mater. 2004, 13, 823–827. [Google Scholar] [CrossRef]
- Dorner-Reisel, A.; Gärtner, G.; Reisel, G.; Irmer, G. Diamond-like carbon films for polyethylene femoral parts: Raman and FT-IR spectroscopy before and after incubation in simulated body liquid. Anal. Bioanal. Chem. 2008, 390, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Nakamura, S.; Kuriyamma, S.; Nishitani, K.; Ito, H.; Fufu, M.; Watanabe, M.; Matsuda, S. Medical tilting of the joint line in posterior stabilized total knee arthroplasty increases contact force and stress. Clin. Biomech. 2019, 53, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela, K.A.; Zhang, S.; Schroeder, L.E.; Weinhardt, J.-T.; Cates, H.E. Increased knee loading in stair ambulation in patients dissatisfied with their total knee replacement. Clin. Biomech. 2019, 67, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Erceg, M. The influence of femoral head shift on hip biomechanics: Additional parameters accounted. Intern. Orthop. 2009, 33, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Classification of Diamond-like Carbon. In Tribology of Diamond-Like Carbon Films, 1st ed.; Donnet, C., Erdemir, A., Eds.; Springer Science: New York, NY, USA, 2008; pp. 13–24. [Google Scholar]
- Scharf, T.W.; Singer, I.L. Third Bodies and Tribochemistry of DLC Coatings. In Tribology of Diamond-Like Carbon Films, 1st ed.; Donnet, C., Erdemir, A., Eds.; Springer Science: New York, NY, USA, 2008; pp. 201–236. [Google Scholar]
- Wäsche, R.; Klaffke, D. Tribology of DLC Films Under Fretting Conditions, 1st ed.; Donnet, C., Erdemir, A., Eds.; Springer Science: New York, NY, USA, 2008; pp. 362–382. [Google Scholar]
- Sugimoto, I.; Miyake, S. Oriented hydrocarbons transferred from a high performance lubricative amorphous C:H:Si films during sliding in a vacuum. Appl. Phys. Lett. 1990, 56, 1868–1870. [Google Scholar] [CrossRef]
- Fontaine, J.; Donnet, C.; Grill, A.; Le Mogne, T. Tribochemistry between hydrogen and diamond-like carbon films. Surf. Coat. Technol. 2001, 146, 286–291. [Google Scholar] [CrossRef]
- Kwiecinski, J.J.; Dorosz, S.G.; Ludwig, T.E. The effect of molecular weight on hyaluronan’s cartilage boundary lubricating ability-alone nd in combination with proteoglycan. Ostheoarthritis Cartil. 2011, 19, 1356–1362. [Google Scholar] [CrossRef] [Green Version]
- Crowman, M.K.; Schmidt, T.A.; Raghavan, P.; Stecco, A. Viscoelastic properties of hyaluronan in physiological conditions. F1000Research 2015, 4, 622–635. [Google Scholar] [CrossRef] [Green Version]
- Bonnevie, E.D.; Galesso, D.; Secchieri, C.; Bonassar, L.J. Frictional characterization of injectable hyalurinc acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS ONE 2019, 14, e02216702. [Google Scholar] [CrossRef]
- Schürer, C.; Semmler, U. Advanced Applications of Diamond-like Carbon Coatings, Lecture at EUROMAT 1999 on Sept 28th 1999 in Munich, GERMANY.
- Wu, Y.M.; Liu, J.Q.; Cao, h.T.; Wu, Z.Y.; Wang, Q.; Ma, Y.P.; Jiang, H.; Wen, F.; Pei, Y.T. On the adhesion of DLC films deposited on nitrile butadiene rubber: A Ti-C interlayer. Diam. Relat. Mater. 2020, 101, 107563. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, C.; Xu, H.; Lv, H.; Wang, Z.; Wang, X. Effect of SiNx interlayer thickness on adhesion and friction properties of diamond-like carbon films. Diam. Relat. Mater. 2019, 94, 186–193. [Google Scholar] [CrossRef]
- Kang, S.; Lim, H.-P.; Lee, K. Effects of TiCN interlayer on bonding characteristics and mechanical properties of DLC-coated Ti-6Al-4V ELI alloy. Intern. J. Refract. Met. Hard Mat. 2015, 53A, 13–16. [Google Scholar] [CrossRef]
Electric Parameters | |
---|---|
Hot cathode heating current UH | 30–80 A |
Discharge current | 0.1–1 A |
Current through substrate holder | 10–400 mA |
Voltage between cathode and anode grid | 30–300 V |
Bias voltage | 0–3.5 kV |
Disc | Ball | Intermediate Medium | Normal Force Fn (N) | Frequency (Hz) | Time (s) |
---|---|---|---|---|---|
CoCrMo | ZrO2 | dry | 100 | 1 | 1800 |
CoCrMo(a-C:H) | ZrO2 | dry | 100 | 1 | 1800 |
CoCrMo | ZrO2 | hyaluronic gel | 100 | 1 | 1800 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 100 | 1 | 1800 |
CoCrMo | ZrO2 | dry | 100 | 50 | 1800 |
CoCrMo(a-C:H) | ZrO2 | dry | 100 | 50 | 1800 |
CoCrMo | ZrO2 | hyaluronic gel | 100 | 50 | 1800 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 100 | 50 | 1800 |
Disc | Ball | Intermediate Medium | f (Hz) | COFmax | COF15 | COF30 |
---|---|---|---|---|---|---|
CoCrMo | ZrO2 | dry | 1 | 0.482 | 0.438 | 0.394 |
CoCrMo(a-C:H) | ZrO2 | dry | 1 | 0.369 | 0.113 | 0.105 |
CoCrMo | ZrO2 | hyaluronic gel | 1 | 0.401 | 0.308 | 0.204 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 1 | 0.137 | 0.096 | 0.105 |
CoCrMo | ZrO2 | dry | 50 | 0.751 | 0.637 | 0.724 |
CoCrMo(a-C:H) | ZrO2 | dry | 50 | 0.678 | 0.466 | 0.552 |
CoCrMo | ZrO2 | hyaluronic gel | 50 | 0.733 | 0.310 | 0.277 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 50 | 0.549 | 0.433 | 0.445 |
Disc | Ball | Intermediate Medium | f (Hz) | Wq,disc (µm2) | Wear Rate Disc (mm3/Nm) | Wear Rate Ball (mm3/Nm) |
---|---|---|---|---|---|---|
CoCrMo | ZrO2 | dry | 1 | 9422.93 | 67.01 × 10−6 | 39.13 × 10−6 |
CoCrMo(a-C:H) | ZrO2 | dry | 1 | 1231.11 | 21.09 × 10−6 | 18.37 × 10−6 |
CoCrMo | ZrO2 | hyaluronic gel | 1 | 2921.09 | 26.07 × 10−6 | 0.893 × 10−6 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 1 | 27.09 | 0.16 × 10−6 | - |
CoCrMo | ZrO2 | dry | 50 | 260,716.36 | 77.37 × 10−6 | 13.19 × 10−6 |
CoCrMo(a-C:H) | ZrO2 | dry | 50 | 183,843.32 | 27.23 × 10−6 | 0.015 × 10−6 |
CoCrMo | ZrO2 | hyaluronic gel | 50 | 23,361.03 | 2.979 × 10−6 | 0.000762 × 10−6 |
CoCrMo(a-C:H) | ZrO2 | hyaluronic gel | 50 | 4313.19 | 0.57 × 10−6 | 1.87 × 10−6 |
a-C:H, as Deposited | D Peak Position/cm−1 | G Peak Position/cm−1 | ID/IG Ratio |
---|---|---|---|
a-C:H, as deposited position (1) | 1362.30 | 1541.29 | 0.48 |
a-C:H, as deposited position (2) | 1384.07 | 1542.12 | 0.33 |
a-C:H, as deposited position (3) | 1396.56 | 1542.56 | 0.20 |
CoCrMo(a-C:H) after ZrO2 Sliding (100 N; 1 Hz; Dry) | D Peak Position/cm−1 | G Peak Position/cm−1 | ID/IG Ratio |
---|---|---|---|
| 1408.81 | 1549.54 | 0.39 |
| 1412.01 | 1547.33 | 0.39 |
| 1396.01 | 1545.22 | 0.22 |
| - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorner-Reisel, A.; Schürer, C.; Svoboda, S. Harsh Sliding Wear of a Zirconia Ball against a-C:H Coated CoCrMo Disc in Hyaluronic Gel. Lubricants 2020, 8, 35. https://doi.org/10.3390/lubricants8030035
Dorner-Reisel A, Schürer C, Svoboda S. Harsh Sliding Wear of a Zirconia Ball against a-C:H Coated CoCrMo Disc in Hyaluronic Gel. Lubricants. 2020; 8(3):35. https://doi.org/10.3390/lubricants8030035
Chicago/Turabian StyleDorner-Reisel, Annett, Christian Schürer, and Stefan Svoboda. 2020. "Harsh Sliding Wear of a Zirconia Ball against a-C:H Coated CoCrMo Disc in Hyaluronic Gel" Lubricants 8, no. 3: 35. https://doi.org/10.3390/lubricants8030035
APA StyleDorner-Reisel, A., Schürer, C., & Svoboda, S. (2020). Harsh Sliding Wear of a Zirconia Ball against a-C:H Coated CoCrMo Disc in Hyaluronic Gel. Lubricants, 8(3), 35. https://doi.org/10.3390/lubricants8030035