The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability
Abstract
:1. Introduction
2. Tribology and Environmental Sustainability
2.1. Friction
2.1.1. Energy Costs of Friction
2.1.2. Reducing Friction
2.2. CO2 from Resource Consumption and Its Relationship to Wear Protection
Primary Metal or Material | CO2 Equivalent in Tons per ton of Metal or Material | Global Production 2018/2019 [103 tons] | Calculated CO2eq Emissions of Primary Metal or Material [103 tons] |
---|---|---|---|
Specialty metals | |||
Neodymium | 12–60 | 35 | 420–2100 |
Lithium | 5–16 | 80 | 400–1280 |
Tungsten | 33.6 | 146 | 4905 |
Molybdenum | 3.4–14.8 | 259 | 881–3788 |
Manganese # | 1.9 | 16,630 | 31,597 |
Titanium | 45 | 7200 | 324,000 |
Nickel | 42 | 2330 | 97,860 |
Chromium | 25 | 12,300 | 307,500 |
Magnesium | 20–26 | 1100 | >22,000 |
Lead | 3.2 | 11,640 | 37,248 |
Zinc | 9.8 | 13,400 | 131,320 |
Subtotal | — | 65,120 | >958,131 |
Major engineering metals | |||
Copper * | 5.5–9.5 | 23,600 | 129,800–224,200 |
Aluminum | 16.6 | 64,800 | 1,075,680 |
Steel (Iron) | >1.8 | 1,808,000 | >3,254,400 |
Subtotal | — | 1,908,299 | 4,459,880 |
Non-metallic, engineering materials | |||
Bitumen | 0.30–0.75 | 90,000 | 27,000–67,500 |
Plastics + | ~3.4 | 360,000 | ~1,224,000 |
Cement | 0.6–1.3 | 4,200,000 | 2,520,000–5,460,000 |
Total | 6,623,419 | 9,189,011–12,269,378 | |
For comparison | |||
Global direct or energy related CO2-Emissions 2019 | — | — | 37,900,000 |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Review on World Energy, 69th ed.; BP p.l.c: London, UK, 2020.
- Kober, T.; Schiffer, H.-W.; Densing, M.; Panos, E. Global energy perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strat. Rev. 2020, 31, 100523. [Google Scholar] [CrossRef]
- EIA Projects Nearly 50% Increase in World Energy Usage by 2050, Led by Growth in Asia—Today in Energy—U.S. Energy Information Administration (EIA). U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: www.eia.gov/todayinenergy/detail.php?id=41433 (accessed on 24 September 2019).
- U.S. Energy-Related Carbon Dioxide Fell by 2.8% in 2019, Slightly below 2017 Levels—Today in Energy—U.S. Energy Information Administration (EIA). U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: www.eia.gov/todayinenergy/detail.php?id=43615 (accessed on 5 May 2020).
- Energy and the Environment Explained—Where Greenhouse Gases Come From. U.S. Energy Information Administration—EIA—Independent Statistics and Analysis. Available online: www.eia.gov/energyexplained/energy-and-the-environment/where-greenhouse-gases-come-from.php (accessed on 21 May 2021).
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Impacts, Adaptation and Vulnerability. Summary for policy makers. In 5th Assessment Report of the Intergovernmental Panel on Climate Change; WMO, UNEP: Geneva, Switzerland, 2014. [Google Scholar]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.M.; Carpick, R. (Eds.) Tribological opportunities for enhancing America’s energy efficiency. In A report to the Advanced Research Projects Agency-Energy (ARPA-E) at the U.S. Department of Energy; STLE: Park Ridge, IL, USA, 2017. [Google Scholar]
- Schmidt, C.; van Begin, G.; van Houten, F.; Close, C.; McGinty, D.; Arora, R.; Potočnik, J.; Ishii, N.; Bakker, P.; Kituyi, M.; et al. The Circularity Gap Report 2020, Circular Economy, Mauritskade 63, 1092 AD Amsterdam, Netherlands. Available online: https://www.circularity-gap.world/2020 (accessed on 16 November 2021).
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Krausmann, F.; Wiedenhofer, D.; Haberl, H. Growing stocks of buildings, infrastructures and machinery as key challenge for compliance with climate targets. Glob. Environ. Chang. 2020, 61, 102034. [Google Scholar] [CrossRef]
- Woydt, M.; Gradt, T.; Hosenfeldt, T.; Luther, R.; Rienäcker, A.; Wetzel, F.; Wincierz, C. Interdisciplinary Technology for the Reduction of CO2-Emissions and the Conservation of Resources; German Society for Tribology: Jülich, Germany, September 2019; Available online: https://www.gft-ev.de/wp-content/uploads/GfT-Study-Tribology-in-Germany.pdf (accessed on 8 May 2021).
- Woydt, M. The importance of tribology for reducing CO2 emissions and for sustainability. Wear 2021, 474–475, 203768. [Google Scholar] [CrossRef]
- Erdemir, A.; Holmberg, K. Energy Consumption Due to Friction in Motored Vehicles and Low-Friction Coatings to Reduce It. In Coating Technology for Vehicle Applications; Cha, S.C., Erdemir, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–23. [Google Scholar]
- Chp. 8, Transportation Sector Energy Consumption, 2016, International Energy Outlook, EIA. Available online: https://www.eia.gov/outlooks/ieo/pdf/transportation.pdf (accessed on 18 November 2021).
- 2020 IEA International Shipping Report. Available online: https://www.iea.org/reports/international-shipping (accessed on 18 November 2021).
- Lawrence Livermore National Laboratory LLNL Flow Charts. Available online: https://flowcharts.llnl.gov/ (accessed on 12 November 2021).
- Sims, R.; Schaeffer, F.R. Chapter 8: Transport. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1–30. [Google Scholar] [CrossRef]
- Fenske, G.; Ajayi, L.; Demas, N.; Erck, R.; Lorenzo-Martin, C.; Erdemir, A.; Eryilmaz, O. Presentation “Engine Friction Reduction Technologies”, by June 19, 2014, Available from Department of Energy under. Available online: https://www.energy.gov/sites/prod/files/2014/07/f17/ft012_fenske_2014_p.pdf (accessed on 15 May 2021).
- Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribol. Int. 2017, 115, 116–139. [Google Scholar] [CrossRef]
- Holmberg, K.; Andersson, P.; Nylund, N.-O.; Mäkelä, K.; Erdemir, A. Global energy consumption due to friction in trucks and buses. Tribol. Int. 2014, 78, 94–114. [Google Scholar] [CrossRef]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The scope for improving the efficiency and environmental impact of internal combustion engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Wong, V.W.; Tung, S.C. Overview of automotive engine friction and reduction trends–Effects of surface, material, and lubricant-additive technologies. Friction 2016, 4, 1–28. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment. Global Resource Outlook 2019. A Report of the International Resource Panel, ISBN: 978-92-807-3741-7. Available online: https://unstats.un.org/sdgs/report/2019/Overview/ (accessed on 10 May 2021).
- Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequence; OECD Publishing: Paris, France, 2019. [CrossRef]
- Woydt, M. Material efficiency through wear protection—The contribution of tribology for reducing CO2 emissions. Wear 2021, 488–489, 204134. [Google Scholar] [CrossRef]
- Juhrich, K. CO2 Emission Factors for Fossil Fuels, Report 28/2016, German Environment Agency (UBA) June 2016. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1968/publikationen/co2_emission_factors_for_fossil_fuels_correction.pdf (accessed on 10 November 2021).
- Woydt, M.; Bäse, M.; Hosenfeldt, T.; Luther, R.; Scholz, C.; Schulz, J.; Wincierz, C. Wear Protection and Sustainability as Cross-Sectional Challenges; German Society for Tribology: Jülich, Germany, January 2021; Available online: https://www.gft-ev.de/en/tribology-in-germany-wear-protection-and-sustainability-as-cross-sectional-challenges/ (accessed on 21 May 2021).
Unit | Total Primary Energy Supplies [EJ] | Share of Global TPES [%] | Energy Savings [PJ/a] | Cost Savings [Million €/a] | CO2 Emission Reduction [Megatons/a] |
---|---|---|---|---|---|
World | 573.6 | 100 | 46,000 | 973,000 | 3140 |
Industrialized countries | 344.1 | 60 | 27,600 | 583,800 | 1884 |
Industrially developing countries | 201.0 | 35 | 16,100 | 340,550 | 1099 |
Agricultural countries | 28.7 | 5 | 2300 | 48,650 | 157 |
China | 128.4 | 22.4 | 10,304 | 217,952 | 703 |
USA | 92.8 | 16.2 | 7452 | 157,626 | 509 |
EU-28 | 67.2 | 11.7 | 5382 | 113,841 | 367 |
India | 34.5 | 6.0 | 2760 | 58,380 | 188 |
Russia | 29.7 | 5.2 | 2392 | 50,596 | 163 |
Japan | 18.5 | 3.2 | 1472 | 31,136 | 100 |
Brazil | 12.7 | 2.2 | 1012 | 21,406 | 69 |
Canada | 11.7 | 2.0 | 920 | 19,460 | 63 |
Finland | 1.4 | 0.25 | 115 | 2433 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, R.; Chen, R.; Woydt, M. The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability. Lubricants 2021, 9, 117. https://doi.org/10.3390/lubricants9120117
Shah R, Chen R, Woydt M. The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability. Lubricants. 2021; 9(12):117. https://doi.org/10.3390/lubricants9120117
Chicago/Turabian StyleShah, Raj, Rui Chen, and Mathias Woydt. 2021. "The Effects of Energy Efficiency and Resource Consumption on Environmental Sustainability" Lubricants 9, no. 12: 117. https://doi.org/10.3390/lubricants9120117