Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future
Abstract
:1. Introduction
2. Why We Need Aerosol Devices for MD Programs
3. History of Aerosol Devices for MD
4. Competitive and Non-Competitive Mechanisms
5. Effectiveness of Aerosol Devices for MD on Various Crops
5.1. Fruit and Nut Trees (Apples, Pears, Peaches, Oranges, Plums, Figs, Almonds, Pistachios, Walnuts)
5.2. Grapes and Soft Fruits
5.3. Field Crops (Artichokes and Tomatoes)
5.4. Stored Products (Dried Beans and Corn)
5.5. Cereals, Forage and Fiber Crops
6. Optimization of Aerosol Point Sources, Emission Rates and Deployment
7. Conclusions and Challenges for Future Research
- Compared to the deployment of passive dispensers, aerosol delivery systems have the advantage of being faster and cheaper to apply.
- Aerosol devices offer a better protection of the pheromone active ingredient from environmental degradation.
- Targeting multiple pest species is easier with aerosol devices compared to passive dispensers, pending comparable daily activity of the targeted pests.
- MD aerosol devices can be programmed to release pheromone for short durations when the target pest is active (e.g., L. botrana) [69].
- Aerosol delivery systems can help to finely tune pheromone release rates over time; this could be important for pests characterized by a low population density during the early season, then growing over time (e.g., the honeydew moth, Cryptoblabes gnidiella (Millière) (Pyralidae) [76].
- Modern digital electronic and information technologies will support the improvement of efficacy by helping the deployment, failure control, and optimization of pheromone release.
- Borders of aerosol-treated blocks sometimes need to be reinforced either by applying passive pheromone products or additional insecticide treatments.
- Aerosol pheromone delivery systems are most efficacious when large areas are treated [9].
- Aerosol field deployment requires a considerable preparatory work to define the installation points, especially in case MD is applied to a set of small properties of irregular geometrical shape; a high degree of coordination between users, technicians, and companies using information technology and modern georeferencing tools is needed to select the best installation site according to the topography and wind direction.
- Efficacy of aerosol devices can be reduced due to the lack of foliage in the early season [42].
- MD aerosols are a system with mechanical–electronic technologies so device failure remains a point of weakness.
- Wind can strongly affect the efficacy of aerosols: sites characterized by strong prevailing winds that vary in intensity will require site-specific deployment strategies to account for this variability.
- Some MD aerosol devices are still using commercial formulations containing diluents and propellants that are not organic certified.
- Finally, in some cases, the aerosol devices are also more susceptible to vandalism compared to the passive dispensers.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Hicks, S.D.; Wang, M.; Fry, K.; Doraiswamy, V.; Wohlford, E.M. Neurodevelopmental delay diagnosis rates are increased in a region with aerial pesticide application. Front. Pediatr. 2017, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Silver, M.K.; Shao, J.; Zhu, B.; Chen, M.; Xia, Y.; Kaciroti, N.; Lozoff, B.; Meeker, J.D. Prenatal naled and chlorpyrifos exposure is associated with deficits in infant motor function in a cohort of Chinese infants. Environ. Int. 2017, 106, 248–256. [Google Scholar] [CrossRef]
- Lucchi, A.; Benelli, G. Towards pesticide-free farming? Sharing needs and knowledge promotes Integrated Pest Management. Environ. Sci. Pollut. Res. 2018, 25, 13439–13445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welter, S.; Pickel, C.; Millar, J.; Cave, F.; Van Steenwyk, R.; Dunley, J. Pheromone mating disruption offers selective management options for key pests. Calif. Agric. 2005, 59, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex Pheromones and Their Impact on Pest Management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef] [PubMed]
- Ioriatti, C.; Lucchi, A.; Varela, L.G. Grape berry moths in western European vineyards and their recent movement into the New World. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 339–359. [Google Scholar]
- Ioriatti, C.; Lucchi, A. Semiochemical Strategies for Tortricid Moth Control in Apple Orchards and Vineyards in Italy. J. Chem. Ecol. 2016, 42, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Brunner, J.F. Aerosol delivery of pheromones in IFP: A mature technology for plant protection. IOBC-WPRS Bull. 2017, 123, 1–13. [Google Scholar]
- Carde, R.T. Principles of Mating Disruption; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- Cardé, R.T.; Minks, A.K. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 1995, 40, 559–585. [Google Scholar] [CrossRef]
- Suckling, D.M. Issues affecting the use of pheromones and other semiochemicals in orchards. Crop Prot. 2000, 19, 677–683. [Google Scholar] [CrossRef]
- Millar, J.G. Insect pheromones for integrated pest management: promise versus reality. Redia 2007, 90, 51–55. [Google Scholar]
- Cardé, R.T. Using Pheromones to Disrupt Mating of Moth Pests. In Perspectives in Ecological Theory and Integrated Pest Management; Kogan, M., Jepson, P., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 122–169. [Google Scholar]
- Miller, J.R.; Gut, L.J. Mating disruption for the 21st century: Matching technology with mechanism. Environ. Entomol. 2015, 44, 427–453. [Google Scholar] [CrossRef] [PubMed]
- Brockerhoff, E.G.; Suckling, D.M.; Kimberley, M.; Richardson, B.; Coker, G.; Gous, S.; Kerr, J.L.; Cowan, D.M.; Lance, D.R.; Strand, T.; et al. Aerial application of pheromones for mating disruption of an invasive moth as a potential eradication tool. PLoS ONE 2012, 7, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, A.; Ladurner, E.; Iodice, A.; Savino, F.; Ricciardi, R.; Cosci, F.; Conte, G.; Benelli, G. Eco-friendly pheromone dispensers—a green route to manage the European grapevine moth? Environ. Sci. Pollut. Res. 2018, 25, 9426–9442. [Google Scholar] [CrossRef] [PubMed]
- Witzgall, P.; Bäckman, A.C.; Svensson, M.; Koch, U.; Rama, F.; El-Sayed, A.; Brauchli, J.; Arn, H.; Bengtsson, M.; Löfqvist, J. Behavioral observations of codling moth, Cydia pomonella, in orchards permeated with synthetic pheromone. BioControl 1999, 44, 211–237. [Google Scholar] [CrossRef]
- Casado, D.; Cave, F.; Welter, S. Puffer®-CM Dispensers for mating disruption of codling moth: Area of influence and impacts on trap finding success by males. IOBC-WPRS Bull. 2014, 99, 25–31. [Google Scholar]
- Vacas, S.; Navarro, I.; Primo, J.; Navarro-Llopis, V. Mating disruption to control the striped rice stem borer: Pheromone blend, dispensing technology and number of releasing points. J. Asia Pac. Entomol. 2016, 19, 253–259. [Google Scholar] [CrossRef]
- Farkas, S.R.; Shorey, H.H.; Gaston, L.K. Sex Pheromones of Lepidoptera. The Use of Widely Separated Evaporators of Looplore for the Disruption of Pheromone Communication in Trichoplusia ni. Environ. Entomol. 1974, 3, 876–877. [Google Scholar] [CrossRef]
- Berger, R.S. Isolation, Identification, and Synthesis of the Sex Attractant of the Cabbage Looper, Trichoplusia ni. Ann. Entomol. Soc. Am. 1966, 59, 767–771. [Google Scholar] [CrossRef]
- Shorey, H.H.; Sisk, C.B.; Gerber, R.G. Disruption of pheromone communication in Platynota stultana (Lepidoptera: Tortricidae) in grape vineyards. Environ. Entomol. 1995, 24, 1270–1274. [Google Scholar] [CrossRef]
- Thomas, H.A.; White, J.D.; Speers, C.F.; Conrad, H. Dispensing pressurized aerosols of southern pine beetle pheromone under field conditions. J. Georg. Entomol. Soc. 1975, 10, 265–271. [Google Scholar]
- Shorey, H.H.; Sisk, C.B.; Gerber, R.G. Widely separated pheromone release sites for disruption of sex pheromone communication in two species of lepidoptera. Environ. Entomol. 1996, 25, 446–451. [Google Scholar] [CrossRef]
- Shorey, H.H.; Gerber, R.G. Use of puffers for disruption of sex pheromone communication among navel orangeworm moths (Lepidoptera: Pyralidae) in almonds, pistachios, and walnuts. Environ. Entomol. 1996, 25, 1154–1157. [Google Scholar] [CrossRef]
- Shorey, H.H.; Gerber, R.G. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards. Environ. Entomol. 1996, 25, 1398–1400. [Google Scholar] [CrossRef]
- Elkins, R.B.; Shorey, H.H. Mating disruption of codling moth (Cydia pomonella) using “puffers”. In Proceedings of the VII International Symposium on Pear Growing; Retamales, J.B., Moggia, C.L., Bañados, M.P., Torres, C., Zoffol, J.P., Eds.; ISHS: Talca, Chile, 1997; Volume 475, pp. 503–512. [Google Scholar]
- Shorey, H.H.; Gerber, R.G. Disruption of Pheromone Communication through the Use of Puffers for Control of Beet Armyworm (Lepidoptera: Noctuidae) in Tomatoes. Environ. Entomol. 1996, 25, 1401–1405. [Google Scholar] [CrossRef]
- Mafra-Neto, A.; Baker, T.C. Timed, metered sprays of pheromone disrupt mating of Cadra cautella (Lepidoptera: Pyralidae). J. Agric. Entomol. 1996, 13, 149–168. [Google Scholar]
- Baker, T.C.; Dittl, T.; Mafra-net, A. Disruption of Sex Pheromone Communication in the Blackheaded Fireworm in Wisconsin Cranberry Marshes by Using MSTRS devices. J. Agric. Entomol. 1997, 14, 449–457. [Google Scholar]
- Isaacs, R.; Ulczynski, M.; Wright, B.; Gut, L.J.; Miller, J.R. Performance of the microsprayer, with application for pheromone-mediated control of insect pests. J. Econ. Entomol. 1999, 92, 1157–1164. [Google Scholar] [CrossRef]
- Elkins, R.B.; Klonsky, K.M.; DeMoura, R.L. Cost of production for transitioning from conventional codling moth control to aerosol-released mating disruption (“puffers”) in pears. In Proceedings of the IX International Pear Symposium; Theron, K.I., Ed.; ISHS: Stellenbosch, South Africa, 2005; Volume 671, pp. 559–563. [Google Scholar]
- Casado, D. Aerosol technology for mating disruption: The perspective of the pioneer and leading company. IOBC-WPRS Bull. 2017, 123, 14–16. [Google Scholar]
- Burks, C.S.; Brandl, D.G. Seasonal abundance of navel orangeworm (Lepidoptera: Pyralidae) in figs and effect of peripheral aerosol dispensers on sexual communication. J. Insect Sci. 2004, 4, 40. [Google Scholar] [CrossRef]
- Martí, S.; Zaragoza, A.; Larsen, T. Mating disruption of codling moth, Cydia pomonella (L.), using Puffer® CM, on apple orchards. IOBC-WPRS Bull. 2007, 30, 101–105. [Google Scholar]
- Pacific Biocontrol Corporation. Available online: www.pacificbiocontrol.com (accessed on 2 September 2019).
- Suterra Europe. Available online: www.suterra.com (accessed on 2 September 2019).
- SemiosBio Technologies Inc. Available online: www.semios.com (accessed on 2 September 2019).
- Scentry Biologicals. Available online: www.scentry.com (accessed on 2 September 2019).
- CBC (Europe) S.r.l. Available online: www.cbceurope.it (accessed on 2 September 2019).
- Lucchi, A.; Sambado, P.; Royo, A.B.J.; Bagnoli, B.; Conte, G.; Benelli, G. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. Environ. Sci. Pollut. Res. 2018, 25, 22196–22204. [Google Scholar] [CrossRef] [PubMed]
- Fadamiro, H.Y.; Cosse, A.A.; Dittl, T.; Baker, T.C. Suppression of Mating by Blackheaded Fireworm (Lepidoptera: Tortricidae) in Wisconsin Cranberry Marshes by Using MSTRS Devices. J. Agric. Entomol. 1998, 15, 377–386. [Google Scholar]
- Fadamiro, H.Y.; Cosset, A.A.; Baker-, T.C. Mating Disruption of European Corn Borer, Ostrinia nubilalis by Using Two Types of Sex Pheromone Dispensers Deployed in Grassy Aggregation Sites in Iowa Cornfields. J. Asia-Pac. Entomol. 1999, 2, 121–132. [Google Scholar] [CrossRef]
- Baker, T.C.; Myrick, A.J.; Park, K.C. Optimizing the Point-Source Emission Rates and Geometries of Pheromone Mating Disruption Mega-Dispensers. J. Chem. Ecol. 2016, 42, 896–907. [Google Scholar] [CrossRef]
- Burks, C.S.; McLaughlin, J.R.; Miller, J.R.; Brandl, D.G. Mating disruption for control of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) in dried beans. J. Stored Prod. Res. 2011, 47, 216–221. [Google Scholar] [CrossRef]
- Miller, J.R.; Gut, L.J.; De Lame, F.M.; Stelinski, L.L. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part I): Theory. J. Chem. Ecol. 2006, 32, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.R.; Gut, L.J.; De Lame, F.M.; Stelinski, L.L. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): case studies. J. Chem. Ecol. 2006, 32, 2115–2143. [Google Scholar] [CrossRef]
- Miller, J.R.; McGhee, P.S.; Siegert, P.Y.; Adams, C.G.; Huang, J.; Grieshop, M.J.; Gut, L.J. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. Proc. Natl. Acad. Sci. USA 2010, 107, 22–27. [Google Scholar] [CrossRef]
- Mcghee, P.S.; Gut, L.J.; Miller, J.R. Aerosol emitters disrupt codling moth, Cydia pomonella, competitively. Pest Manag. Sci. 2014, 70, 1859–1862. [Google Scholar] [CrossRef]
- Knight, A.L. Managing Codling Moth (Lepidoptera: Tortricidae) with an Internal Grid of Either Aerosol Puffers or Dispenser Clusters Plus Border Applications of Individual Dispensers. J. Entomol. Soc. Br. Columbia 2004, 101, 69–78. [Google Scholar]
- Stelinski, L.L.; Gut, L.J.; Haas, M.; McGhee, P.; Epstein, D. Evaluation of aerosol devices for simultaneous disruption of sex pheromone communication in Cydia pomonella and Grapholita molesta (Lepidoptera: Tortricidae). J. Pest Sci. 2007, 80, 225–233. [Google Scholar] [CrossRef]
- Mcghee, P.S.; Miller, J.R.; Thomson, D.R.; Gut, L.J. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L. J. Chem. Ecol. 2016, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Burks, C.S.; Thomson, D.R. Optimizing Efficiency of Aerosol Mating Disruption for Navel Orangeworm (Lepidoptera: Pyralidae). J. Econ. Entomol. 2019, 112, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Suckling, D.M.; Daly, J.M.; Chen, X.; Karg, G. Field electroantennogram and trap assessments of aerosol pheromone dispensers for disrupting mating in Epiphyas postvittana. Pest Manag. Sci. 2007, 63, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Girling, R.D.; Higbee, B.S.; Cardé, R.T. The Plume Also Rises: Trajectories of Pheromone Plumes Issuing from Point Sources in an Orchard Canopy at Night. J. Chem. Ecol. 2013, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Angeli, G.; Rizzi, C.; Baldessari, M.; Dalpiaz, M. Difesa dalla carpocapsa del melo con Checkmate® Puffer CM. Inf. Agrar. 2013, 42, 51–54. [Google Scholar]
- Baldessari, M.; Ioriatti, C.; Angeli, G. Evaluation of Puffer ® CM, a release device of pheromone to control codling moth on apple in Italy. IOBC-WPRS Bull. 2013, 91, 199–204. [Google Scholar]
- Baldessari, M.; Rizzi, C.; Tolotti, G.; Angeli, G. Evaluation of an aerosol emitter for mating disruption of Cydia pomonella in Italy. Commun. Agric. Appl. Biol. Sci. 2013, 78, 267–271. [Google Scholar]
- Casado, D.; Cave, F.; Welter, S. Studies on aerosol Puffer for mating disruption of codling moth: pheromone load and male upwind attraction. In Proceedings of the 86th Annual Orchard Pest and Disease Management Conference, Portland, OR, USA, 11–13 January 2012. [Google Scholar]
- Giroux, P.Y.; Miller, J.R. Phytotoxicity of pheromonal chemicals to fruit tree foliage: chemical and physiological characterization. J. Econ. Entomol. 2001, 94, 1170–1176. [Google Scholar] [CrossRef]
- Knight, A.L. Development of aerosol devices for management of codling moth and leafrollers. IOBC-WPRS Bull. 2002, 25, 101–110. [Google Scholar]
- Varela, L.G.; Elkins, R.B. Conversion from use of organophosphate insecticides to codling moth mating disruption in California pear orchards. In Proceedings of the X International Pear Symposium; ISHS: Korbeek-Lo, Belgium, 2007; Volume 800, pp. 955–960. [Google Scholar]
- Kovanci, O.B.; Walgenbach, J.F.; Kennedy, G.G. Evaluation of extended-season mating disruption of the Oriental fruit moth Grapholita molesta (Busck)(Lep., Tortricidae) in apples. J. Appl. Entomol. 2004, 128, 664–669. [Google Scholar] [CrossRef]
- Myers, C.T.; Hull, L.A.; Krawczyk, G. Effects of orchard host plants (apple and peach) on development of oriental fruit moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 2014, 100, 421–430. [Google Scholar] [CrossRef]
- Higbee, B.S.; Burks, C.S. Effects of Mating Disruption Treatments on Navel Orangeworm (Lepidoptera: Pyralidae) Sexual Communication and Damage in Almonds and Pistachios. J. Econ. Entomol. 2008, 101, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Higbee, B.S.; Burks, C.S.; Cardé, R.T. Mating Disruption of the Navel Orangeworm (Lepidoptera: Pyralidae) Using Widely Spaced, Aerosol Dispensers: Is the Pheromone Blend the Most Efficacious Disruptant? J. Econ. Entomol. 2017, 110, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- de Alfonso, I.; Roy, C.C. CheckMate® Puffer® LB, la tecnología aerosol de emisión activa para el control de Lobesia botrana. Phytoma España La Rev. Prof. Sanid. Veg. 2015, 274, 6. [Google Scholar]
- Lucchi, A.; Sambado, P.; Juan Royo, A.B.; Bagnoli, B.; Benelli, G. Lobesia botrana males mainly fly at dusk: video camera-assisted pheromone traps and implications for mating disruption. J. Pest Sci. 2018, 91, 1327–1334. [Google Scholar] [CrossRef]
- Bari, M.A. Development of pheromone mating disruption strategies for the suppression of the artichoke plume moth in artichokes grown on the central coast of California. Acta Hortic. 2004, 660, 523–527. [Google Scholar] [CrossRef]
- Bari, M.A. Field evaluation of integrated mating disruption technique using “Suterra Puffers® APM” for the suppression of the primary pest of artichokes, the artichoke plume moth, Platyptilia carduidactyla (Riley). Acta Hortic. 2007, 730, 419–425. [Google Scholar] [CrossRef]
- Fadamiro, H.Y.; Baker, T.C. Pheromone puffs suppress mating by Plodia interpunctella and Sitotroga cerealella in an infested corn store. Entomol. Exp. Appl. 2002, 102, 239–251. [Google Scholar] [CrossRef]
- Mori, B.A.; Evenden, M.L. Challenges of mating disruption using aerosol-emitting pheromone puffers in red clover seed production fields to control Coleophora deauratella (Lepidoptera: Coleophoridae). Environ. Entomol. 2015, 44, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kehat, M.; Dunkelblum, E. Sex pheromones: achievements in monitoring and mating disruption of cotton pests in Israel. Arch. Insect Biochem. Physiol. 1993, 22, 425–431. [Google Scholar] [CrossRef]
- Kshetri, N. The economics of the Internet of Things in the Global South. Third World Q. 2017, 38, 311–339. [Google Scholar] [CrossRef]
- Lucchi, A.; Ricciardi, R.; Benelli, G.; Bagnoli, B. What do we really know on the harmfulness of Cryptoblabes gnidiella (Millière) to grapevine? From ecology to pest management. Phytoparasitica 2019, 47, 1–15. [Google Scholar] [CrossRef]
Aerosol Device | University or Company | Development Level (Experimental/Commercial) | Target Pest | References |
---|---|---|---|---|
Isomate® Mist | Pacific Biocontrol Corporation-USA | commercial | C. pomonella, G. molesta, A. transitella | [37] |
CheckMate Puffer® | Suterra LLC USA | commercial | C. pomonella, G. molesta, L. botrana, Anarsia lineatella, A. transitella | [38] |
Semios | Semios Technologies Inc. CA | commercial | Choristoneura rosaceana, Pandemis pyrusana, C. pomonella, G. molesta; A. transitella, A. aurantii | [39] |
NoMate® CM Smart Release | SCENTRY BIOLOGICALS, INC., USA | commercial | C. pomonella | [40] |
Isomate® CM Mister 1.0 | CBC Europe Srl - Italy | commercial | C. pomonella, Adoxophyes orana; leafroller species | [41] |
MISTER PRO | CBC Europe Srl - Italy | experimental | L. botrana | [42] |
MSTRS™ | Penn State University, USA | experimental | C. cautella, R. naevana, A. transitella, O. nubilalis | [30,31,43,44,45] |
Neburel® | Ecología y Protección Agrícola SL (Valencia, Spain) | experimental | C. suppressalis | [20] |
Michigan State Microsprayer | Michigan State University, USA | experimental | P. interpunctella | [32,46] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benelli, G.; Lucchi, A.; Thomson, D.; Ioriatti, C. Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects 2019, 10, 308. https://doi.org/10.3390/insects10100308
Benelli G, Lucchi A, Thomson D, Ioriatti C. Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects. 2019; 10(10):308. https://doi.org/10.3390/insects10100308
Chicago/Turabian StyleBenelli, Giovanni, Andrea Lucchi, Donald Thomson, and Claudio Ioriatti. 2019. "Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future" Insects 10, no. 10: 308. https://doi.org/10.3390/insects10100308
APA StyleBenelli, G., Lucchi, A., Thomson, D., & Ioriatti, C. (2019). Sex Pheromone Aerosol Devices for Mating Disruption: Challenges for a Brighter Future. Insects, 10(10), 308. https://doi.org/10.3390/insects10100308