Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples
Abstract
:1. Introduction
2. Background
3. Evolutionary Trends: The Thrust of Ecological Diversification
4. Aphids
5. Parasitoid Wasps (Hymenoptera)
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Darwin, C.R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed.; John Murray: London, UK, 1859; p. 502, (2nd edition, 1860). [Google Scholar]
- Richards, R.J. The Tragic Sense of Life: Ernst Haeckel and the Struggle over Evolutionary Thought; Chicago University Press: Chicago, IL, USA, 2008; Volume 512, p. 144. [Google Scholar]
- Elton, C.S. Animal Ecology, 1st ed.; Macmillan Co.: New York, NY, USA, 1927; p. 260. [Google Scholar]
- Slobodkin, L. An Appreciation: George Evelyn Hutchinson. J. Anim. Ecol. 1993, 62, 390. [Google Scholar] [CrossRef]
- Colwell, R.K.; Rangel, T.F. Hutchinson’s duality: The once and future niche. Proc. Natl. Acad. Sci. USA 2009, 106, 19651–19658. [Google Scholar] [CrossRef] [PubMed]
- Bálint, J.; Benedek, K.; Loxdale, H.D.; Kovács, E.; Ábrahám, B.; Balog, A. How host plants and predators influence pea aphid (Acyrthosiphon pisum Harris) populations in a complex habitat. N. West. J. Zool. 2018, 14, 149–158. [Google Scholar]
- Loxdale, H.D.; Lushai, G.; Harvey, J.A. The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol. J. Linn. Soc. 2011, 103, 1–18. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Harvey, J.A. The ‘generalism’ debate: Misinterpreting the term in the empirical literature focusing on dietary breadth in insects. Biol. J. Linn. Soc. 2016, 119, 265–282. [Google Scholar] [CrossRef]
- Tatchell, G.M.; Parker, S.J.; Woiwod, I.P. Synoptic Monitoring of Migrant Insect Pests in Great Britain and western Europe IV. In Host Plants and their Distribution for Pest Aphids in Great Britain, Part 2; Annual Report of Rothamsted Experimental Station: Harpenden, UK, 1982; pp. 45–159. [Google Scholar]
- Eastop, V.F. Aphid-Plant Associations. In Coevolution and Systematics; Stone, A.R., Hawksworth, D.L., Eds.; Clarendon Press: Oxford, UK, 1986; Systematics Association Special Volume No. 32, Chapter 3; pp. 35–54. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide, 2nd ed.; John Wiley & Sons: Chichester, UK, 2000; p. 987. [Google Scholar]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Herbaceous Plants and Shrubs; John Wiley & Sons: Chichester, UK, 2006; Volume 2, p. 1456. [Google Scholar]
- Mathers, T.C.; Chen, Y.; Kaithakottil, G.; Legeai, F.; Mugford, S.T.; Baa-Puyoulet, P.; Bretaudeau, A.; Clavijo, B.; Colella, S.; Collin, O.; et al. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol. 2017, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.C.; Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Curr. Opin. Insect Sci. 2018, 26, 17–24. [Google Scholar] [CrossRef]
- Roßbach, A.; Löhr, B.; Vidal, S. Generalism Versus Specialism: Responses of Diadegma mollipla (Holmgren) and Diadegma semiclausum (Hellen), to the Host Shift of the Diamondback Moth (Plutella xylostella L.) to Peas. J. Insect Behav. 2005, 18, 491–503. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Dapporto, L.; Fattorini, S.; Cook, L.M. The generalism-specialism debate: The role of generalists in the life and death of species. Biol. J. Linn. Soc. 2011, 104, 725–737. [Google Scholar] [CrossRef]
- Dapporto, L.; Dennis, R.L. The generalist–specialist continuum: Testing predictions for distribution and trends in British butterflies. Biol. Conserv. 2013, 157, 229–236. [Google Scholar] [CrossRef]
- Leggett, H.C.; Buckling, A.; Long, G.H.; Boots, M. Generalism and the evolution of parasite virulence. Trends Ecol. Evol. 2013, 28, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Peers, M.J.L.; Thornton, D.H.; Murray, D.L. Reconsidering the Specialist-Generalist Paradigm in Niche Breadth Dynamics: Resource Gradient Selection by Canada Lynx and Bobcat. PLoS ONE 2012, 7, e51488. [Google Scholar] [CrossRef] [PubMed]
- Bartonova, A.; Benes, J.; Konvicka, M. Generalist-specialist continuum and life history traits of Central European butterflies (Lepidoptera)—Are we missing a part of the picture? Eur. J. Entomol. 2014, 111, 543–553. [Google Scholar] [CrossRef]
- Raymond, L.; Plantegenest, M.; Gagic, V.; Navasse, Y.; Lavandero, B. Aphid parasitoid generalism: Development, assessment, and implications for biocontrol. J. Pest Sci. 2016, 89, 7–20. [Google Scholar] [CrossRef]
- Clarke, A.R. Why so many polyphagous fruit flies (Diptera: Tephritidae)? A further contribution to the ‘generalism’ debate. Biol. J. Linn. Soc. 2017, 120, 245–257. [Google Scholar] [CrossRef]
- Farache, F.; Cruaud, A.; Rasplus, J.-Y.; Cerezini, M.; Rattis, L.; Kjellberg, F.; Pereira, R. Insights into the structure of plant-insect communities: Specialism and generalism in a regional set of non-pollinating fig wasp communities. Acta Oecol. 2018, 90, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Park, A.W.; Farrell, M.J.; Schmidt, J.P.; Huang, S.; Dallas, T.A.; Pappalardo, P.; Drake, J.M.; Stephens, P.R.; Poulin, R.; Nunn, C.L.; et al. Characterizing the phylogenetic specialism–generalism spectrum of mammal parasites. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172613. [Google Scholar] [CrossRef]
- Finlay-Doney, M.; Walter, G.H. The conceptual and practical implications of interpreting diet breadth mechanistically in generalist predatory insects. Biol. J. Linn. Soc. 2012, 107, 737–763. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.A.; Packham, J.R. Ecology of Woodlands and Forests: Description, Dynamics and Diversity; Cambridge University Press: Cambridge, UK, 2007; p. 544. [Google Scholar]
- Storeck, A.; Poppy, G.; Emden, H.; Powell, W. The role of plant chemical cues in determining host preference in the generalist aphid parasitoid Aphidius colemani. Entomol. Exp. Appl. 2000, 97, 41–46. [Google Scholar] [CrossRef]
- Roy, H.E.; Brown, P.M.J.; Adriaens, T.; Berkvens, N.; Borges, I.; Clusella-Trullas, S.; Comont, R.F.; De Clercq, P.; Eschen, R.; Estoup, A.; et al. The harlequin ladybird, Harmonia axyridis: Global perspectives on invasion history and ecology. Biol. Invasions 2016, 18, 997–1044. [Google Scholar] [CrossRef]
- Thompson, J.N. The Coevolutionary Process, 2nd ed.; University of Chicago Press: Chicago, IL, USA; London, UK, 1994; p. 388. [Google Scholar]
- Loxdale, H.D.; Balog, A. Aphid specialism as an example of ecological-evolutionary divergence. Biol. Rev. 2018, 93, 642–657. [Google Scholar] [CrossRef] [PubMed]
- van Emden, H.F. Host-Plant Resistance. In Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R.H., Eds.; CAB International: Oxford, UK, 2017; Chapter 22; pp. 515–532. [Google Scholar]
- Breeds, K.; Burger, N.F.V.; Botha, A.-M. New Insights into the methylation status of virulent Diuraphis noxia (Hemiptera: Aphididae) biotypes. J. Econ. Entomol. 2018, 111, 1395–1403. [Google Scholar] [CrossRef] [PubMed]
- Malka, O.; Santos-Garcia, D.; Feldmesser, E.; Sharon, E.; Krause-Sakate, R.; Delatte, H.; van Brunschot, S.; Patel, M.; Visendi, P.; Mugerwa, H.; et al. Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses. Mol. Ecol. 2018, 27, 4241–4256. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, M.J.; Lawton, J.H. Enemy-free space and the structure of biological communities. Biol. J. Linn. Soc. 1984, 23, 269–286. [Google Scholar] [CrossRef]
- Ohsaki, N.; Sato, Y. Food plant choice of Pieris butterflies as a trade-off between parasitoid avoidance and quality of plants. Ecology 1994, 75, 59–68. [Google Scholar] [CrossRef]
- O’Neal, M.E.; Varenhorst, A.J.; Kaiser, M.C.; Varenhorst, A. Rapid evolution to host plant resistance by an invasive herbivore: Soybean aphid (Aphis glycines) virulence in North America to aphid resistant cultivars. Curr. Opin. Insect Sci. 2018, 26, 1–7. [Google Scholar] [CrossRef]
- Jervis, M.A. Insects as Natural Enemies: A Practical Perspective; Springer: Dordrecht, The Netherlands, 2007; p. 748. [Google Scholar]
- Hance, T.; Kohandani-Tafresh, F.; Munaut, F. Biological Control. Aphids as Crop Pests, 2nd ed.; van Emden, H.F., Harrington, R.H., Eds.; CAB International: Oxford, UK, 2017; Chapter 20; pp. 448–493. [Google Scholar]
- Dermauw, W.; Pym, A.; Bass, C.; Van Leeuwen, T.; Feyereisen, R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? Curr. Opin. Insect Sci. 2018, 26, 25–33. [Google Scholar] [CrossRef]
- Koul, O. Phytochemicals and Insect Control: An Antifeedant Approach. Crit. Rev. Plant Sci. 2008, 27, 1–24. [Google Scholar] [CrossRef]
- Thaler, J.S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 1999, 399, 686–688. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Pickett, J.A.; Khan, Z.R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges. New Phytol. 2016, 212, 856–870. [Google Scholar] [CrossRef]
- Romeis, J.; Meissle, M.; Bigler, F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 2006, 24, 63–71. [Google Scholar] [CrossRef]
- Ayala, F.J. Molecular Evolution; Sinauer Associates, Inc.: Sunderland, MA, USA, 1976; p. 277. [Google Scholar]
- Coyne, J.A.; Orr, H.A. Speciation; Oxford University Press: New York, NY, USA, 2004; p. 545. [Google Scholar]
- White, M.J.D. Modes of Speciation; W.H. Freeman Company: San Francisco, CA, USA, 1978; p. 455. [Google Scholar]
- Vane-Wright, R.I.; Vane-Wright, R.I. What is life? And what might be said of the role of behaviour in its evolution? Biol. J. Linn. Soc. 2014, 112, 219–241. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Voyer, A.; Padial, J.M.; Castroviejo-Fisher, S.; De La Riva, I.; Vilà, C. Correlates of species richness in the largest Neotropical amphibian radiation. J. Evol. Biol. 2011, 24, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Losos, J.B.; Glor, R.E.; Kolbe, J.J.; Nicholson, K. Adaptation, speciation, and convergence: A hierarchical analysis of adaptive radiation in Caribbean Anolis lizards1. Ann. Mo. Bot. Gard. 2006, 93, 24–33. [Google Scholar] [CrossRef]
- Fortey, R. Trilobite! Eyewitness to Evolution; Flamingo: Hammersmith, London, UK, 2001; p. 256. [Google Scholar]
- Brusatte, S.L. The Rise and Fall of the Dinosaurs: A New History of a Lost World; William Morrow & Company: New York, NY, USA, 2018; p. 416. [Google Scholar]
- Attenborough, D. Life on Earth: The Greatest Story Ever Told; William Collins: London, UK, 2018; p. 352. [Google Scholar]
- Harrington, R. The Rothamsted Insect Survey strikes gold. Antenna (Bull. R. Entomol. Soc.) 2014, 38, 159–166. [Google Scholar]
- Blackman, R.L. Aphids—Aphidinae (Macrosiphini). In RES Handbooks for the Identification of British Insects; Part 7; Field Studies Council: Shrewsbury, UK, 2010; Volume 2, p. 420. [Google Scholar]
- Dixon, A.F.G. Aphid Ecology, 2nd ed.; Chapman & Hall: London, UK, 1998; p. 300. [Google Scholar]
- Popkin, M.; Piffaretti, J.; Clamens, A.-L.; Qiao, G.-X.; Chen, J.; Vitalis, R.; Vanlerberghe-Masutti, F.; Gupta, R.K.; Lamaari, M.; Langella, O.; et al. Large-scale phylogeographic study of the cosmopolitan aphid pest Brachycaudus helichrysi reveals host plant associated lineages that evolved in allopatry. Biol. J. Linn. Soc. 2017, 120, 102–114. [Google Scholar]
- Fenton, B.; Woodford, J.A.T.; Malloch, G. Analysis of clonal diversity of the peach–potato aphid, Myzus persicae (Sulzer), in Scotland, UK and evidence for the existence of a predominant clone. Mol. Ecol. 1998, 7, 1475–1487. [Google Scholar] [CrossRef]
- Poulios, K.D.; Margaritopoulos, J.T.; Tsitsipis, J.A. Morphological separation of host adapted taxa within the Hyalopterus pruni complex (Hemiptera: Aphididae). Eur. J. Entomol. 2007, 104, 235–242. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S. A molecular phylogeny of the tribe Aphidini (Insecta: Hemiptera: Aphididae) based on the mitochondrial tRNA/ COII, 12S/16S and the nuclear EF1a genes. Syst. Entomol. 2008, 33, 711–721. [Google Scholar] [CrossRef]
- Helden, A.J.; Dixon, A.F.G. Life-cycle variation in the aphid Sitobion avenae: Costs and benefits of male production. Ecol. Entomol. 2002, 27, 692–701. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Brookes, C.P. Prevalence of Sitobion fragariae (Walker) over S. avenae (Fabricius) (Hemiptera: Aphididae) on wild cocksfoot grass (Dactylis glomerata) in south-east England. Bull. Entomol. Res. 1990, 80, 27–29. [Google Scholar] [CrossRef]
- Sunnucks, P.; De Barro, P.J.; Lushai, G.; Maclean, N.; Hales, D. Genetic structure of an aphid studied using microsatellites: Cyclic parthenogenesis, differentiated lineages, and host specialisation. Mol. Ecol. 1997, 6, 1059–1073. [Google Scholar] [CrossRef]
- Cuevas, L.; Niemeyer, H.M.; Perez, F.J. Reaction of DIMBOA, a resistance factor from cereals, with α-chymotrypsin. Phytochemistry 1990, 29, 1429–1432. [Google Scholar] [CrossRef]
- Figueroa, C.C.; Koenig, C.; Araya, C.; Santos, M.J.; Niemeyer, H.M. Effect of DIMBOA, a hydroxamic acid from cereals, on peroxisomal and mitochondrial enzymes from aphids: Evidence for the presence of peroxisomes in aphids. J. Chem. Ecol. 1999, 25, 2465–2475. [Google Scholar] [CrossRef]
- Mukanganyama, S.; Figueroa, C.; Hasler, J.; Niemeyer, H.; Niemeyer, H. Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae). J. Insect Physiol. 2003, 49, 223–229. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Bi, J.-L.; Yang, X.-Q.; Huang, Y.; Zhao, X.; Hu, Y.; Cai, Q.-N. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. J. Chem. Ecol. 2009, 35, 176–182. [Google Scholar] [CrossRef]
- Dogimont, C.; Bendahmane, A.; Chovelon, V.; Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus Biol. 2010, 333, 566–573. [Google Scholar] [CrossRef]
- Jaouannet, M.; Rodriguez, P.A.; Thorpe, P.; Lenoir, C.J.G.; MacLeod, R.; Escudero-Martinez, C.; Bos, J.I. Plant immunity in plant–aphid interactions. Front. Plant Sci. 2014, 5, 663. [Google Scholar] [CrossRef]
- De Barro, P.J.; Sherratt, T.N.; Brookes, C.P.; David, O.; MacLean, N.; Barro, P.J.D. Spatial and temporal genetic variation in British field populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae) studied using RAPD-PCR. Proc. R. Soc. B Biol. Sci. 1995, 262, 321–327. [Google Scholar]
- Lushai, G.; Markovitch, O.; Loxdale, H. Host-based genotype variation in insects revisited. Bull. Entomol. Res. 2002, 92, 159–164. [Google Scholar] [CrossRef]
- Lowe, H.J.B. Development and practice of a glasshouse screening technique for resistance of wheat to the aphid Sitobion avenae. Ann. Appl. Biol. 1984, 104, 297–305. [Google Scholar] [CrossRef]
- Hille Ris Lambers, D. Contribution to a monograph of the Aphididae of Europe. Temminckia 1939, 4, 1–134. [Google Scholar]
- Loxdale, H.D.; Schöfl, G.; Wiesner, K.R.; Nyabuga, F.N.; Heckel, D.G.; Weisser, W.W. Stay at home aphids: Comparative spatial and seasonal metapopulation structure and dynamics of two specialist tansy aphid species studied using microsatellite markers. Biol. J. Linn. Soc. 2011, 104, 838–865. [Google Scholar] [CrossRef]
- Jakobs, R.; Mūller, C. Effects of intraspecific and intra-individual differences in plant quality on preference and performance of monophagous aphid species. Oecologia 2018, 186, 173–184. [Google Scholar] [CrossRef]
- Benedek, K.; Mara, G.; Mehrparvar, M.; Bálint, J.; Loxdale, H.D.; Balog, A. Near-regular distribution of adult crimson tansy aphids, Uroleucon tanaceti (L.), increases aposematic signal honesty on different tansy plant chemotypes. Biol. J. Linn. Soc. 2019, 126, 315–326. [Google Scholar] [CrossRef]
- Benedek, K.; Bálint, J.; Salamon, V.R.; Kovács, E.; Ábrahám, B.; Fazakas, C.S.; Loxdale, H.D.; Balog, A. Tansy plant (Tanacetum vulgare L.) chemotype determines aphid genotype and its associated predator system. Biol. J. Linn. Soc. 2015, 114, 709–719. [Google Scholar] [CrossRef]
- Zytynska, S.E.; Guenay, Y.; Sturm, S.; Clancy, M.V.; Senft, M.; Schnitzler, J.; Pophaly, S.D.; Wurmser, C.; Weisser, W.W. Effect of plant chemical variation and mutualistic ants on the local population genetic structure of an aphid herbivore. J. Anim. Ecol. 2019, 88, 1089–1099. [Google Scholar] [CrossRef]
- Jakobs, R.; Müller, C. Volatile, stored and phloem exudate-located compounds represent different appearance levels affecting aphid niche choice. Phytochemistry 2019, 159, 1–10. [Google Scholar] [CrossRef]
- Jakobs, R.; Schweiger, R.; Mūller, C. Aphid infestation leads to plant part-specific changes in phloem sap chemistry, which may indicate niche construction. New Phytol. 2019, 221, 503–514. [Google Scholar] [CrossRef]
- Boivin, G.; Hance, T.; Brodeur, J. Aphid parasitoids in biological control. Can. J. Plant Sci. 2012, 92, 1–12. [Google Scholar] [CrossRef]
- Askew, R.R.; Shaw, M.R. Parasitoid communities: Their size, structure and development. In Insect Parasitoids, 13th Symposium of Royal Entomological Society of London; Waage, J., Greathead, D., Eds.; Academic Press: London, UK, 1986; pp. 225–264. [Google Scholar]
- Harvey, J.A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 2005, 117, 1–13. [Google Scholar] [CrossRef]
- LaVine, M.; Strand, M. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002, 32, 1295–1309. [Google Scholar] [CrossRef]
- Carton, Y.; Poirié, M.; Nappi, A.J. Insect immune resistance to parasitoids. Insect Sci. 2008, 15, 67–87. [Google Scholar] [CrossRef]
- LaVine, M.; Beckage, N. Polydnaviruses: Potent mediators of host insect immune dysfunction. Parasitol. Today 1995, 11, 368–378. [Google Scholar] [CrossRef]
- Shelby, K.S.; Webb, B.A. Polydnavirus-mediated suppression of insect immunity. J. Insect Physiol. 1999, 45, 507–514. [Google Scholar] [CrossRef]
- Strand, M.R.; Burke, G.R. Polydnaviruses: nature’s genetic engineers. Annu. Rev. Virol. 2014, 1, 333–354. [Google Scholar] [CrossRef]
- Oliver, K.M.; Russell, J.A.; Moran, N.A.; Hunter, M.S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. USA 2003, 100, 1803–1807. [Google Scholar] [CrossRef] [Green Version]
- Scarborough, C.L.; Ferrari, J.; Godfray, H.C.J. Aphid protected from pathogen by endosymbiont. Science 2005, 310, 1781. [Google Scholar] [CrossRef]
- Cui, L.; Soldevila, A.I.; Webb, B.A. Relationships between polydnavirus gene expression and host range of the parasitoid wasp Campoletis sonorensis. J. Insect Physiol. 2000, 46, 1397–1407. [Google Scholar] [CrossRef]
- Muller, C.B.; Adriaanse, I.C.T.; Belshaw, R.; Godfray, H.C.J. The structure of an aphid–parasitoid community. J. Anim. Ecol. 1999, 68, 346–370. [Google Scholar] [CrossRef]
- Prado, S.G.; Jandricic, S.E.; Frank, S.D. Ecological interactions affecting the efficacy of Aphidius colemani in greenhouse crops. Insects 2015, 6, 538–575. [Google Scholar] [CrossRef]
- Fernandez, C.; Nentwig, W. Quality control of the parasitoid Aphidius colemani (Hym., Aphidiidae) used for biological control in greenhouses. J. Appl. Entomol. 1997, 121, 447–456. [Google Scholar] [CrossRef]
- van Driesche, R.G.; Lyon, S.; Sanderson, J.P.; Bennett, K.C.; Stanek, E.J.; Zhang, R. Greenhouse trials of Aphidius colemani (Hymenoptera: Braconidae) banker plants for control of aphids (Hemiptera: Aphididae) in greenhouse spring floral crops. Fla. Entomol. 2008, 91, 583–592. [Google Scholar]
- Navasse, Y.; Derocles, S.A.P.; Plantegenest, M.; Le Ralec, A. Ecological specialization in Diaeretiella rapae (Hymenoptera: Braconidae: Aphidiinae) on aphid species from wild and cultivated plants. Bull. Entomol. Res. 2018, 108, 175–184. [Google Scholar] [CrossRef]
- Stewart, A.J. Interspecific competition reinstated as an important force structuring insect herbivore communities. Trends Ecol. Evol. 1996, 11, 233–234. [Google Scholar] [CrossRef]
- Ferrari, J.; Darby, A.C.; Daniell, T.J.; Godfray, H.C.J.; Douglas, A.E. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 2004, 29, 60–65. [Google Scholar] [CrossRef]
- Ferrari, J.; Scarborough, C.L.; Godfray, H.C.J. Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 2007, 153, 323–329. [Google Scholar] [CrossRef]
- Ferrari, J.; West, J.A.; Via, S.; Godfray, H.C.J. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 2012, 66, 375–390. [Google Scholar] [CrossRef]
- Peccoud, J.; Mahéo, F.; De La Huerta, M.; Laurence, C.; Simon, J.C. Genetic characterisation of new host-specialised biotypes and novel associations with bacterial symbionts in the pea aphid complex. Insect Conserv. Divers. 2015, 8, 484–492. [Google Scholar] [CrossRef]
- Vorburger, C.; Sandrock, C.; Gouskov, A.; Castañeda, L.E.; Ferrari, J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host-parasitoid interaction. Evolution 2009, 63, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D. The nature and reality of the aphid clone: Genetic variation, adaptation and evolution. Agric. For. Entomol. 2008, 10, 81–90. [Google Scholar] [CrossRef]
- Loxdale, H.D.; Massonnet, B.; Weisser, W.W. Why are there so few aphid clones? Bull. Entomol. Res. 2010, 100, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, K.S.; Loxdale, H.D.; Harrington, R.; Clark, S.J.; Sunnucks, P. Evidence for gene flow and local clonal selection in field populations of the grain aphid (Sitobion avenae) in Britain revealed using microsatellites. Heredity 2004, 93, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.D. What’s in a clone: The rapid evolution of aphid asexual lineages in relation to geography, host plant adaptation and resistance to pesticides. In Lost Sex: The Evolutionary Biology of Parthenogenesis; Schön, I., Martens, K., van Dijk, P.J., Eds.; Springer: Berlin, Germany, 2009; pp. 535–557. [Google Scholar]
- Brookes, C.P.; Loxdale, H.D. Survey of enzyme variation in British populations of Myzus persicae (Sulzer) (Hemiptera: Aphididae) on crops and weed hosts. Bull. Entomol. Res. 1987, 77, 83–89. [Google Scholar] [CrossRef]
- Foster, S.; Denholm, I.; Devonshire, A. The ups and downs of insecticide resistance in peach-potato aphids (Myzus persicae) in the UK. Crop. Prot. 2000, 19, 873–879. [Google Scholar] [CrossRef]
- Foster, S.P.; Devine, G.; Devonshire, A.L. Insecticide resistance. In Aphids as Crop Pests, Chapter 19, 2nd ed.; van Emden, H.F., Harrington, R.H., Eds.; CAB International: Oxford, UK, 2017; pp. 426–447. [Google Scholar]
- Piperno, D.R.; Ranere, A.J.; Holst, I.; Iriarte, J.; Dickau, R. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc. Natl. Acad. Sci. USA 2009, 106, 5019–5024. [Google Scholar] [CrossRef] [Green Version]
- Puterka, G.J.; Peters, D.C. Sexual reproduction and inheritance of virulence in the Greenbug, Schizaphis graminum (Rondani). In Aphid–Plant Genotype Interactions; Campbell, R.K., Eikenbary, R.D., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 289–318. [Google Scholar]
- Burd, J.D.; Anstead, J.A.; Lushai, G.; Shufran, K.A. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: Evidence for host-adapted races. Insect Mol. Biol. 2000, 9, 179–184. [Google Scholar]
- Anstead, J.; Burd, J.D.; Shufran, K.A. Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: Haplotype and host associations. Bull. Entomol. Res. 2002, 92, 17–24. [Google Scholar]
- Stratton, C.A.; Hodgdon, E.; Rodriguez-Saona, C.; Shelton, A.M.; Chen, Y.H. Odors from phylogenetically-distant plants to Brassicaceae repel an herbivorous Brassica specialist. Sci. Rep. 2019, 9, 10621. [Google Scholar] [CrossRef]
- Whitman, D.; Ananthakrishnan, T.N. Phenotypic Plasticity of Insects: Mechanisms and Consequences; Science Publishers: Enfield, NH, USA, 2009; p. 600. [Google Scholar]
- Wool, D.; Hales, D.F. Phenotypic plasticity in Australian Cotton aphid (Homoptera: Aphididae): Host plant effects on morphological variation. Ann. Entomol. Soc. Am. 1997, 90, 316–328. [Google Scholar] [CrossRef]
- Gorur, G.; Lomônaco, C.; MacKenzie, A. Phenotypic plasticity in host-plant specialisation in Aphis fabae. Ecol. Entomol. 2005, 30, 657–664. [Google Scholar] [CrossRef]
- Gorur, G.; Lomonaco, C.; Mackenzie, A. Phenotypic plasticity in host choice behaviour in black bean aphid, Aphis fabae (Homoptera: Aphididae). Arthropod Plant Interact. 2007, 1, 187–194. [Google Scholar] [CrossRef]
- Liu, X.D.; Xu, T.T.; Lei, H.X. Refuges and host shift pathways of host-specialized aphids Aphis gossypii. Sci. Rep. 2017, 7, 265. [Google Scholar] [CrossRef]
- McLean, A.H.C.; Ferrari, J.; Godfray, H.C.J. Effects of the maternal and pre-adult host plant on adult performance and preference in the pea aphid, Acyrthosiphon pisum. Ecol. Entomol. 2009, 34, 330–338. [Google Scholar] [CrossRef]
- Serdar, S.; Kersting, U.; Yokomi, R. Presence of two host races of Aphis gossypii Glover (Hemiptera: Aphididae) collected in Turkey. Ann. Appl. Biol. 2013, 162, 41–49. [Google Scholar]
- Gompert, Z.; Jahner, J.P.; Scholl, C.F.; Wilson, J.S.; Lucas, L.K.; Soria- Carrasco, V.; Fordyce, J.A.; Nice, C.C.; Buerkle, C.A.; Forister, M.L. The evolution of novel host use is unlikely to be constrained by trade-offs or a lack of genetic variation. Mol. Ecol. 2015, 24, 2777–2793. [Google Scholar] [CrossRef]
- Senft, M.; Weisser, W.W.; Zytynska, S.E. Habitat variation, mutualism and predation shape the spatio-temporal dynamics of tansy aphids. Ecol. Entomol. 2017, 42, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Onuchak, L.A.; Pariichuk, N.V.; Arutyunov, Y.I.; Pavlova, L.V. Headspace gas chromatographic analysis of volatile components of common tansy (Tanacetum vulgare L.) and its preparations. J. Anal. Chem. 2018, 73, 1003–1013. [Google Scholar] [CrossRef]
- Clancy, M.V.; Zytynska, S.E.; Senft, M.; Weisser, W.W.; Schnitzler, J.-P. Chemotypic variation in terpenes emitted from storage pools influences early aphid colonisation on tansy. Sci. Rep. 2016, 6, 38087. [Google Scholar] [CrossRef] [Green Version]
- Clancy, M.V.; Zytynska, S.E.; Moritz, F.; Witting, M.; Schmitt-Kopplin, P.; Weisser, W.W.; Schnitzler, J.-P. Metabotype variation in a field population of tansy plants influences aphid host selection. Plant Cell Environ. 2018, 41, 2791–2805. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.; Tosh, C.R.; Hardie, J. Host plant selection by aphids: Behavioural, evolutionary, and applied perspectives. Annu. Rev. Entomol. 2006, 51, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Corliss, J.O. On lumpers and splitters of higher taxa in ciliate systematics. Trans. Am. Microsc. Soc. 1976, 95, 430–442. [Google Scholar] [CrossRef]
Aphid Species | No. Plant Families Recorded (F) | Total No. of Plant Species Recorded (S) | Ratio S/F |
---|---|---|---|
Aphis fabae Scopoli * | 71 | 293 | 4.12 |
Aulacorthum solani (Kaltenbach) † | 59 | 196 | 3.30 |
Brachycaudus helichrysi (Kaltenbach) * | 20 | 119 | 5.95 |
Dysaphis plantaginea (Passerini) * | 3 | 10 | 3.33 |
Hyalopterus pruni (Geoffroy) * | 8 | 21 | 2.63 |
Macrosiphum euphorbiae (Thomas, C.A.) † | 63 | 265 | 4.21 |
Myzus ascalonicus Doncaster †† | 36 | 129 | 3.58 |
Myzus certus (Walker) † | 4 | 18 | 4.50 |
Myzus ornatus Laing † | 41 | 136 | 3.32 |
Myzus persicae (Sulzer) † | 72 | 305 | 4.24 |
Mean ± SE of n = 10 | 37.7 ± 8.8 | 149.2 ± 35.8 | 3.9 ± 0.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loxdale, H.D.; Balog, A.; Harvey, J.A. Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples. Insects 2019, 10, 314. https://doi.org/10.3390/insects10100314
Loxdale HD, Balog A, Harvey JA. Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples. Insects. 2019; 10(10):314. https://doi.org/10.3390/insects10100314
Chicago/Turabian StyleLoxdale, Hugh D., Adalbert Balog, and Jeffrey A. Harvey. 2019. "Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples" Insects 10, no. 10: 314. https://doi.org/10.3390/insects10100314
APA StyleLoxdale, H. D., Balog, A., & Harvey, J. A. (2019). Generalism in Nature…The Great Misnomer: Aphids and Wasp Parasitoids as Examples. Insects, 10(10), 314. https://doi.org/10.3390/insects10100314