A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees
Abstract
:1. Introduction
2. Variation in Individual Learning and Behavior
3. Genetic Mechanisms
4. Fitness Consequences of Collective Behavior
5. Conclusions and Open Questions
5.1. Neurophysiological Mechanisms
5.2. Forward and Reverse Genetics
5.3. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seeley, T.D.; Buhrman, S.C. Group decision making in swarms of honey bees. Behav. Ecol. Sociobiol. 1999, 45, 19–31. [Google Scholar] [CrossRef]
- Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 2002, 218, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sih, A.; Bell, A.; Johnson, J.C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 2004, 19, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Jandt, J.M.; Bengston, S.; Pinter-Wollman, N.; Pruitt, J.N.; Raine, N.E.; Dornhaus, A.; Sih, A. Behavioural syndromes and social insects: Personality at multiple levels. Biol. Rev. 2014, 89, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Bengston, S.E.; Jandt, J.M. The development of collective personality: The ontogenetic drivers of behavioral variation across groups. Front. Ecol. Evol. 2014, 2, 63. [Google Scholar] [CrossRef]
- Calderone, N.W.; Page, R.E. Genotypic variability in age polyethism and task specialization in the honey bee, Apis mellifera (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 1988, 22, 17–25. [Google Scholar] [CrossRef]
- Beshers, S.N.; Fewell, J.H. Models of division of labor in social insects. Annu. Rev. Entomol. 2001, 413–440. [Google Scholar] [CrossRef]
- Oster, G.F.; Wilson, E.O. Caste and Ecology in the Social Insects; Princeton University Press: Princeton, NJ, USA, 1978. [Google Scholar]
- Pinter-Wollman, N. Personality in social insects: How does worker personality determine colony personality? Curr. Zool. 2012, 58, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Granovetter, M. Threshold Models of collective behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef]
- Conradt, L.; Roper, T.J. Consensus decision making in animals. Trends Ecol. Evol. 2005, 20, 449–456. [Google Scholar] [CrossRef]
- Jones, J.C.; Myerscough, M.R.; Graham, S.; Oldroyd, B.P. Honey bee nest thermoregulation: Diversity promotes stability. Science 2004, 305, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Modlmeier, A.P.; Keiser, C.N.; Watters, J.V.; Sih, A.; Pruitt, J.N. The keystone individual concept: An ecological and evolutionary overview. Anim. Behav. 2014, 89, 53–62. [Google Scholar] [CrossRef]
- Robson, S.K.; Traniello, J.F.A. Key individuals and the organisation of labor in ants. In Information Processing in Social Insects; Detrain, C., Deneubourg, J.L., Pasteels, J.M., Eds.; Birkhäuser: Basel, Switzerland, 1999; pp. 239–259. [Google Scholar]
- Pinter-Wollman, N.; Hubler, J.; Holley, J.-A.; Franks, N.R.; Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 2012, 66, 1407–1420. [Google Scholar] [CrossRef]
- Seeley, T.D. Honey bee colonies are group-level adaptive units. Am. Nat. 1997, 150, 22–41. [Google Scholar] [CrossRef]
- LeBoeuf, A.C.; Grozinger, C.M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 2014, 5, 16–24. [Google Scholar] [CrossRef]
- Page, R.E.; Robinson, G.E. The Genetics of Division of Labour in Honey Bee Colonies. In Advances in Insect Physiology; Evans, P.D., Ed.; Academic Press: Cambridge, MA, USA, 1991; pp. 117–169. [Google Scholar]
- Free, J.B.; Racey, P.A. The effect of the size of honeybee colonies on food consumption, brood rearing and the longevity of the bees during winter. Entomol. Exp. Appl. 1968, 11, 241–249. [Google Scholar] [CrossRef]
- Menzel, R.; Eckoldt, M. Die Intelligenz der Bienen: Wie sie Denken, Planen, Fühlen Und was Wir Daraus Lernen Können; Albrecht Knaus Verlag: Munich, Germany, 2016. [Google Scholar]
- Beshers, S.N.; Huang, Z.Y.; Oono, Y.; Robinson, G.E. Social inhibition and the regulation of temporal polyethism in honey bees. J. Theor. Biol. 2001, 213, 461–479. [Google Scholar] [CrossRef]
- Pankiw, T.; Page, R.E. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 2000, 47, 265–267. [Google Scholar] [CrossRef]
- Anderson, C. The adaptive value of inactive foragers and the scout-recruit system in honey bee (Apis mellifera) colonies. Behav. Ecol. 2001, 12, 111–119. [Google Scholar] [CrossRef]
- Cook, C.N.; Mosqueiro, T.; Brent, C.S.; Ozturk, C.; Gadau, J.; Pinter-Wollman, N.; Smith, B.H. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honey bee scouts and recruits. J. Anim. Ecol. 2019, 88, 236–246. [Google Scholar] [CrossRef]
- Mayack, C.; Naug, D. Individual energetic state can prevail over social regulation of foraging in honeybees. Behav. Ecol. Sociobiol. 2013, 67, 929–936. [Google Scholar] [CrossRef]
- Wagner, A.E.; Van Nest, B.N.; Hobbs, C.N.; Moore, D. Persistence, reticence and the management of multiple time memories by forager honey bees. J. Exp. Biol. 2013, 216, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Steffan-Dewenter, I.; Kuhn, A. Honeybee foraging in differentially structured landscapes. Proc. Biol. Sci. 2003, 270, 569–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, G.; Visscher, P.K. Honeybee colonies achieve fitness through dancing. Nature 2002, 419, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Von Frisch, K. The Dance Language and Orientation of Bees; Harvard University Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Menzel, R.; Muller, U. Learning and memory in honeybees: From behavior to neural substrates. Annu. Rev. Neurosci. 1996, 19, 379–404. [Google Scholar] [CrossRef] [PubMed]
- Giurfa, M. Behavioral and neural analysis of associative learning in the honeybee: A taste from the magic well. J. Comp. Physiol. Neuroethol. Sens. Neural Behav. Physiol. 2007, 193, 801–824. [Google Scholar] [CrossRef]
- Giurfa, M. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 2004, 91, 228–231. [Google Scholar] [CrossRef]
- Shafir, S.; Waite, T.A.; Smith, B.H. Context-dependent violations of rational choice in honeybees (Apis mellifera) and gray jays (Perisoreus canadensis). Behav. Ecol. Sociobiol. 2002, 51, 180–187. [Google Scholar] [CrossRef]
- Smith, B.H. An analysis of blocking in odorant mixtures: An increase but not a decrease in intensity of reinforcement produces unblocking. Behav. Neurosci. 1997, 111, 57–69. [Google Scholar] [CrossRef]
- Chandra, S.; Smith, B.H. An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). J. Exp. Biol. 1998, 201, 3113–3121. [Google Scholar]
- Bazhenov, M.; Huerta, R.; Smith, B.H. A Computational framework for understanding decision making through integration of basic learning rules. J. Neurosci. 2013, 33, 5686–5697. [Google Scholar] [CrossRef] [PubMed]
- Strang, C.G.; Sherry, D.F. Serial reversal learning in bumblebees (Bombus impatiens). Anim. Cogn. 2014, 17, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Erber, J. Movement learning of free flying honeybees. J. Comp. Physiol. 1982, 146, 273–282. [Google Scholar] [CrossRef]
- Avarguès-Weber, A.; de Brito Sanchez, M.G.; Giurfa, M.; Dyer, A.G. Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS ONE 2010, 5, 15370. [Google Scholar] [CrossRef]
- Chandra, S.B.C.; Wright, G.A.; Smith, B.H. Latent inhibition in the honey bee, Apis mellifera: Is it a unitary phenomenon? Anim. Cogn. 2010, 13, 805–815. [Google Scholar] [CrossRef]
- Ferdenzi, C.; Poncelet, J.; Rouby, C.; Bensafi, M. Repeated exposure to odors induces affective habituation of perception and sniffing. Front. Behav. Neurosci. 2014, 8, 119. [Google Scholar] [CrossRef]
- Fletcher, M.L.; Bendahmane, M. Visualizing olfactory learning functional imaging of experience-induced olfactory bulb changes. Prog. Brain Res. 2014, 208, 89–113. [Google Scholar]
- Twick, I.; Lee, J.A.; Ramaswami, M. Chapter 1—Olfactory Habituation in Drosophila—Odor Encoding and its Plasticity in the Antennal Lobe. In Progress in Brain Research; Barkai, E., Wilson, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 3–38. [Google Scholar]
- Chandra, S.B.C.; Hosler, J.S.; Smith, B.H. Heritable variation for latent inhibition and its correlation with reversal learning in honeybees (Apis mellifera). J. Comp. Psychol. US: Am. Psychol. Assoc. 2000, 86–97. [Google Scholar] [CrossRef]
- Mota, T.; Giurfa, M. Multiple reversal olfactory learning in honeybees. Front. Behav. Neurosci. 2010, 4, 1–9. [Google Scholar] [CrossRef]
- Page, R.E.; Erber, J.; Fondrk, M.K. The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 1998, 182, 489–500. [Google Scholar] [CrossRef]
- Scheiner, R.; Page, R.E.; Erber, J. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidologie 2004, 35, 133–142. [Google Scholar] [CrossRef]
- Estoup, A.; Solignac, M.; Cornuet, J.-M. Precise assessment of the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1994, 258, 1–7. [Google Scholar]
- Laidlaw, H.H.; Page, R.E. Polyandry in Honey Bees (Apis mellifera L.): Sperm utilization and intracolony genetic relationships. Genetics 1984, 108, 985–997. [Google Scholar] [PubMed]
- Page, R.E. The Spirit of the Hive; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cobey, S.W.; Tarpy, D.R.; Woyke, J. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 2013, 52, 1–18. [Google Scholar] [CrossRef]
- Brandes, C.; Menzel, R. Common mechanisms in proboscis extension conditioning and visual learning revealed by genetic selection in honeybees (Apis mellifera capensis). J. Comp. Physiol. A 1990, 166, 545–552. [Google Scholar] [CrossRef]
- Benatar, S.T.; Cobey, S.; Smith, B.H. Selection on a haploid genotype for discrimination learning performance: Correlation between drone honey bees (Apis mellifera) and their worker progeny (Hymenoptera: Apidae). J. Insect Behav. 1995, 8, 637–652. [Google Scholar] [CrossRef]
- Brandes, C. Estimation of heritability of learning behavior in honeybees (Apis mellifera capensis). Behav. Genet. 1988, 18, 119–132. [Google Scholar] [CrossRef]
- Brandes, C. Genetic differences in learning behavior in honeybees (Apis mellifera capensis). Behav. Genet. 1991, 21, 271–294. [Google Scholar] [CrossRef]
- Chandra, S.B.C.; Hunt, G.J.; Cobey, S.; Smith, B.H. Quantitative trait loci associated with reversal learning and latent inhibition in Honeybees (Apis mellifera). Behav. Genet. 2001, 31, 275–285. [Google Scholar] [CrossRef]
- Mattila, H.R.; Seeley, T.D. Does a polyandrous honeybee queen improve through patriline diversity the activity of her colony’s scouting foragers? Behav. Ecol. Sociobiol. 2011, 65, 799–811. [Google Scholar] [CrossRef]
- Liang, Z.S.; Nguyen, T.; Mattila, H.R.; Rodriguez-Zas, S.L.; Seeley, T.D.; Robinson, G.E. Molecular determinants of scouting behavior in honey bees. Science 2012, 335, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.S.; Mattila, H.R.; Rodriguez-Zas, S.L.; Southey, B.R.; Seeley, T.D.; Robinson, G.E. Comparative brain transcriptomic analyses of scouting across distinct behavioural and ecological contexts in honeybees. Proc. Biol. Sci. 2014, 281. [Google Scholar] [CrossRef] [PubMed]
- Page, R.E.; Waddington, K.D.; Hunt, G.J.; Kim Fondrk, M. Genetic determinants of honey bee foraging behaviour. Anim. Behav. 1995. [Google Scholar] [CrossRef]
- Page, R.E.; Fondrk, M.K. The effects of colony-level selection on the social organization of honey bee (Apis mellifera L.) colonies: Colony-level components of pollen hoarding. Behav. Ecol. Sociobiol. 1995, 36, 135–144. [Google Scholar] [CrossRef]
- Hunt, G.J.; Page, R.E.; Fondrk, M.K.; Dullum, C.J. Major Quantitative Trait Loci Affecting Honey-Bee Foraging Behavior. Genetics 1995, 141, 1537–1545. [Google Scholar] [PubMed]
- Page, R.E., Jr.; Fondrk, M.K.; Hunt, G.J.; Guzman-Novoa, E.; Humphries, M.A.; Nguyen, K.; Greene, A.S. Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J. Hered. 2000, 91, 474–479. [Google Scholar] [CrossRef]
- Rueppell, O.; Chandra, S.B.; Pankiw, T.; Fondrk, M.K.; Beye, M.; Hunt, G.; Page, R.E. The genetic architecture of sucrose responsiveness in the honeybee (Apis mellifera L.). Genetics 2006, 172, 243–251. [Google Scholar] [CrossRef]
- Robinson, G.E.; Fernald, R.D.; Clayton, D.F. Genes and social behavior. Science 2008, 322, 896–900. [Google Scholar] [CrossRef]
- Huang, Z.-Y.; Robinson, G.E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 1996, 39, 147–158. [Google Scholar] [CrossRef]
- Grozinger, C.M.; Sharabash, N.M.; Whitfield, C.W.; Robinson, G.E. Pheromone-mediated gene expression in the honey bee brain. Proc. Natl. Acad. Sci. USA 2003, 100, 14519–14525. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shahar, Y.; Robichon, A.; Sokolowski, M.B.; Robinson, G.E. Influence of gene action across different time scales on behavior. Science 2002, 296, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Pankiw, T.; Page, R.E., Jr.; Kim Fondrk, M. Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 1998, 44, 193–198. [Google Scholar] [CrossRef]
- Le Conte, Y.; Mohammedi, A.; Robinson, G.E. Primer effects of a brood pheromone on honeybee behavioural development. Proc. Biol. Sci. 2001, 268, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camazine, S. The regulation of pollen foraging by honey bees: How foragers assess the colony’s need for pollen. Behav. Ioral Ecol. Ogy Sociobiol. 1993. [Google Scholar] [CrossRef]
- Camazine, S.; Crailsheim, K.; Hrassnigg, N.; Robinson, G.E.; Leonhard, B.; Kropiunigg, H. Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.). Apidologie 1998, 29, 113–126. [Google Scholar] [CrossRef]
- Beekman, M.; Ratnieks, F.L.W. Long-range foraging by the honey-bee, (Apis mellifera L.). Funct. Ecol. 2000, 14, 490–496. [Google Scholar] [CrossRef]
- Mosqueiro, T.; Cook, C.; Huerta, R.; Gadau, J.; Smith, B.; Pinter-Wollman, N. Task allocation and site fidelity jointly influence foraging regulation in honeybee colonies. R. Soc. Open Sci. 2017, 4. [Google Scholar] [CrossRef]
- Donaldson-Matasci, M.C.; Dornhaus, A. How habitat affects the benefits of communication in collectively foraging honey bees. Behav. Ecol. Sociobiol. 2012, 66, 583–592. [Google Scholar] [CrossRef]
- Donaldson-Matasci, M.C.; Dornhaus, A. Dance communication affects consistency, but not breadth, of resource use in pollen-foraging honey bees. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Lemanski, N.J.; Cook, C.N.; Ozturk, C.; Smith, B.H.; Pinter-Wollman, N. The effect of individual learning on collective foraging in honey bees in complex environments. bioRxiv 2019. under review. [Google Scholar]
- Johnson, L.K.; Hubbell, S.P.; Feener, D.H. Defense of food supply by eusocial colonies. Am. Zool. 1987, 27, 347–358. [Google Scholar] [CrossRef]
- Dornhaus, A.; Klugl, F.; Oechslein, C.; Puppe, F.; Lars, C. Benefits of recruitment in honey bees: Effects of ecology and colony size in an individual-based model. Behav. Ecol. 2006, 17, 336–344. [Google Scholar] [CrossRef]
- Seeley, T.D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 1983, 12, 253–259. [Google Scholar] [CrossRef]
- Alaux, C.; Ducloz, F.; Crauser, D.; Conte, Y.L. Diet effects on honeybee immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Brodschneider, R.; Crailsheim, K. Nutrition and health in honey bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Eckholm, B.J.; Anderson, K.E.; Weiss, M.; DeGrandi-Hoffman, G. Intracolonial genetic diversity in honeybee (Apis mellifera) colonies increases pollen foraging efficiency. Behav. Ecol. Sociobiol. 2011, 65, 1037–1044. [Google Scholar] [CrossRef]
- Bennett, M.M.; Lei, H.; Cook, C.N.; Smith, B.H. Using electrophysiology to uncover the sources of variation of an important learning phenomenon in honey bees. In Proceedings of the Animal Behavior Society Conference, Chicago, IL, USA, 26 July 2019; Abstract. Available online: http://www.animalbehaviorsociety.org/abs_online/core_routines/view_abstract_no.php?show_close_window=yes&abstractno=201 (accessed on 18 October 2019).
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, T.; Robinson, K.; Vaessin, H.; Smith, B.H. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci. 2003, 23, 5370–5380. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Y.; Sinakevitch, I.; Lei, H.; Smith, B.H. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. J. Insect Physiol. 2018, 111, 47–52. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemanski, N.J.; Cook, C.N.; Smith, B.H.; Pinter-Wollman, N. A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees. Insects 2019, 10, 370. https://doi.org/10.3390/insects10110370
Lemanski NJ, Cook CN, Smith BH, Pinter-Wollman N. A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees. Insects. 2019; 10(11):370. https://doi.org/10.3390/insects10110370
Chicago/Turabian StyleLemanski, Natalie J., Chelsea N. Cook, Brian H. Smith, and Noa Pinter-Wollman. 2019. "A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees" Insects 10, no. 11: 370. https://doi.org/10.3390/insects10110370
APA StyleLemanski, N. J., Cook, C. N., Smith, B. H., & Pinter-Wollman, N. (2019). A Multiscale Review of Behavioral Variation in Collective Foraging Behavior in Honey Bees. Insects, 10(11), 370. https://doi.org/10.3390/insects10110370