A Review of Interactions between Insect Biological Control Agents and Semiochemicals
Abstract
:1. Introduction
2. Semiochemicals and Natural Enemies (Parasitoids and Predators)
2.1. Parasitoids
2.2. Predators
3. Semiochemicals and Entomopathogenic Microbials (Fungi, Nematodes, Bacteria, Viruses)
3.1. Fungi
3.2. Nematodes
3.3. Viruses
3.4. Bacteria
3.5. Protozoa
4. Future Perspective and Advancements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for unifying the terminology in biological control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Lacey, L.A.; Frutos, R.; Kaya, H.K.; Vail, P. Insect Pathogens as Biological Control Agents: Do They Have a Future? Biol. Control 2001, 21, 230–248. [Google Scholar] [CrossRef] [Green Version]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Greathead, D.J.; Greathead, A.H. Biological control of insect pests by insect parasitoids and predators: The BIOCAT database. Biocontrol News Inf. 1992, 13, 61N–68N. [Google Scholar]
- Denoth, M.; Frid, L.; Myers, J.H. Multiple agents in biological control: Improving the odds? Biol. Control 2002, 24, 20–30. [Google Scholar] [CrossRef]
- Weatherston, I.; Minks, A. Regulation of semiochemicals-global aspects. Integr. Pest Manag. Rev. 1995, 1, 1–13. [Google Scholar] [CrossRef]
- Reddy, G.V.P.; Guerrero, A. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 2004, 9, 253–261. [Google Scholar] [CrossRef]
- Smart, L.E.; Aradottir, G.I.; Bruce, T.J.A. Role of semiochemicals in Integrated Pest Management. In Integrated Pest Management, Current Concepts and Ecological Perspective; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 93–109. [Google Scholar] [CrossRef]
- Landolt, P.J.; Phillips, T.W. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 1997, 42, 371–391. [Google Scholar] [CrossRef]
- Kasinger, H.; Bauer, B.; Denzinger, J. The meaning of semiochemicals to the design of self-organizing systems. In Proceedings of the SASO 2008 IEEE Computer Society, Venice, Italy, 20–24 October 2008; pp. 139–148. [Google Scholar] [CrossRef] [Green Version]
- El-Shafie, H.A.F.; Faleiro, J.R. Semiochemicals and their Potential Use in Pest Management. In Biological Control of Pest and Vector Insects; Shields, V., Ed.; IntechOpen: London, UK, 2017; pp. 1–22. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.V.P.; Sharma, A.; Guerrero, A. Advances in the Sse of Semiochemicals in Integrated Pest management: Pheromones. In Biopesticides for Sustainable Agriculture; Birch, N., Glare, T., Eds.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2019; in press. [Google Scholar]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [Green Version]
- Murali-Baskaran, R.K.; Sharma, K.C.; Kaushal, P.; Kumar, J.; Parthiban, P. Role of kairomone in biological control of crop pests-A review. Physiol. Mol. Plant Pathol. 2018, 101, 3–15. [Google Scholar] [CrossRef]
- Gonzalez, F.; Tkaczuk, C.; Dinu, M.M.; Fiedler, Ż.; Vidal, S.; Zchori-Fein, E.; Messelink, G.J. New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J. Pest Sci. 2016, 89, 295–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niassy, S.; Maniania, N.K.; Subramanian, S.; Gitonga, L.M.; Ekesi, S. Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomol. Exp. Appl. 2012, 142, 97–103. [Google Scholar] [CrossRef]
- Vega, F.E.; Dowd, P.F.; Lacey, L.A.; Pell, J.K.; Jackson, D.M.; Klein, M.G. Dissemination of Beneficial Microbial Agents by Insects. In Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and Other Invertebrate Pests; Lacey, L.A., Kaya, H.K., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2007; pp. 127–146. [Google Scholar] [CrossRef]
- Lewis, W.J.; Jones, R.L.; Nordlund, D.A.; Sparks, A.N. Kairomones evaluation for increasing rate of parasitization by Trichogramma spp. in the field. J. Chem. Ecol. 1975, 1, 343–347. [Google Scholar] [CrossRef]
- Birkett, M.A.; Campbell, C.A.M.; Chamberlain, K.; Guerrieri, E.; Hick, A.J. Newroles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl. Acad. Sci. USA 2000, 97, 9329–9334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchel, K.; Malskies, S.; Mayer, M.; Fenning, T.M.; Gershenzon, J.; Hilker, M.; Meiners, T. How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic Appl. Ecol. 2011, 12, 403–412. [Google Scholar] [CrossRef]
- Vieira, C.R.; Blassioli-Moraes, M.C.; Borges, M.; Pires, C.S.S.; Sujii, E.R.; Laumann, R.A. Field evaluation of (E)-2-hexenal efficacy for behavioral manipulation of egg parasitoids in soybean. BioControl 2014, 59, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Michereff, M.F.F.; Michereff Filho, M.; Blassioli Moraes, M.C.; Laumann, R.A.; Diniz, I.R.; Borges, M. Effect of resistant and susceptible soybean cultivars on the attraction of egg parasitoids under field conditions. J. App. Entomol. 2015, 139, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Herms, D.A.; Haack, R.A.; Ayres, B.A. Variation in semiochemical-mediated prey-predator interactions: Ips pini (Scolytidae) and Thanasimus dubius (Cleridae). J. Chem. Ecol. 1991, 17, 515–524. [Google Scholar] [CrossRef]
- Aukema, B.H.; Dahlsten, D.L.; Raffa, K.F. Improved population monitoring of bark beetles and predators by incorporating disparate behavioral responses to semiochemicals. Environ. Entomol. 2000, 29, 618–629. [Google Scholar] [CrossRef]
- Wyatt, T.D.; Phillips, A.D.; Gregoire, J.C. Turbulence, trees and semiochemicals: Wind-tunnel orientation of the predator, Rhizophagus grandis, to its barkbeetle prey, Dendroctonus micans. Physiol. Entomol. 1993, 18, 204–210. [Google Scholar] [CrossRef]
- Dahlsten, D.L.; Six, D.L.; Rowney, D.L.; Lawson, A.B.; Erbilgin, N.; Raffa, K.F. Attraction of Ips pini (Coleoptera: Scolytinae) and its predators to natural attractants and synthetic semiochemicals in northern California: Implications for population monitoring. Environ. Entomol. 2004, 33, 1554–1561. [Google Scholar] [CrossRef] [Green Version]
- Hulcr, J.; Ubik, K.; Vrkoc, J. The role of semiochemicals in tritrophic interactions between the spruce bark beetle Ips typographus, its predators and infested spruce. J. Appl. Entomol. 2006, 130, 275–283. [Google Scholar] [CrossRef]
- Kelly, J.L.; Hagler, J.R.; Kaplan, I. Semiochemical lures reduce emigration and enhance pest control services in open-field predator augmentation. Biol. Control 2014, 71, 70–77. [Google Scholar] [CrossRef]
- Pierce, A.M.; Pierce, H.D.; Borden, J.H.; Oehlschlager, A.C. Fungal volatiles: Semiochemicals for stored-product beetles (Coleoptera: Cucujidae). J. Chem. Ecol. 1991, 17, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Pell, J.K.; Macaulay, E.D.M.; Wilding, N. A pheromone trap for dispersal of the pathogen Zoophthora radicans Brefeld. (Zygomycetes: Entomophthorales) amongst populations of the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponeumatidae). Biocontrol Sci. Technol. 1993, 3, 315–320. [Google Scholar] [CrossRef]
- Furlong, M.J.; Pell, J.K.; Ong, P.C.; Syed, A.R. Field and laboratory evaluation of a sex pheromone trap for the autodissemination of the fungal entomopathogen Zoophthora radicans (Entomophthorales) by the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Bull. Entomol. Res. 1995, 85, 331–337. [Google Scholar] [CrossRef]
- Yasuda, K. Auto-infection system for the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera: Curculionidae) with entomopathogenic fungi, Beauveria bassiana using a modified sex pheromone trap in the field. Appl. Entomol. Zool. 1999, 34, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Hartfield, C.M.; Campbell, C.A.M.; Hardie, J.; Pickett, J.A.; Wadhams, L.J. Pheromone traps for the dissemination of an entomopathogen by the damson-hop aphid Phorodon humuli. Biocontrol Sci. Technol. 2001, 11, 401–410. [Google Scholar] [CrossRef]
- Tsutsumi, T.; Teshiba, M.; Yamanaka, M.; Ohira, Y.; Higuchi, T. An autodissemination system for the control of brown winged green bug, Plautia crossota stali Scott (Heteroptera: Pentatomidae) by an entomopathogenic fungus, Beauveria bassiana E-9102 combined with aggregation pheromone. Jpn. J. Appl. Entomol. Zool. 2003, 47, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Vickers, R.A.; Furlong, M.J.; White, A.; Pell, J.K. Initiation of fungal epizootics in diamondback moth populations within a large field cage: Proof of concept for auto-dissemination. Entomol. Exp. Appl. 2004, 111, 7–17. [Google Scholar] [CrossRef]
- Kreutz, J.; Zimmermann, G.; Vaupel, O. Horizontal transmission of the entomopathogenic fungus Beauveria bassiana among the spruce bark beetle, Ips typographus (Col., Scolytidae) in the laboratory and under field conditions. Biocontrol Sci. Technol. 2004, 14, 837–848. [Google Scholar] [CrossRef]
- Tinzaara, W.; Gold, C.S.; Dicke, M.; Van Huis, A.; Nankinga, C.M.; Kagezi, G.H.; Ragama, P.E. The use of aggregation pheromone to enhance dissemination of Beauveria bassiana for the control of the banana weevil in Uganda. Biocontrol Sci. Technol. 2007, 17, 111–124. [Google Scholar] [CrossRef]
- Lopes, R.B.; Laumann, R.A.; Moore, D.; Oliveira, M.W.; Faria, M. Combination of the fungus Beauveria bassiana and pheromone in an attract-and-kill strategy against the banana weevil, Cosmopolites sordidus. Entomol. Exp. Appl. 2014, 151, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Nchu, F.; Maniania, N.K.; Touré, A.; Hassanali, A.; Eloff, J.N. The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales). Vet. Parasitol. 2009, 160, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nchu, F.; Maniania, N.K.; Hassanali, A.; Eloff, J.N. Performance of a Metarhizium anisopliae-treated semiochemical-baited trap in reducing Amblyomma variegatum populations in the field. Vet. Parasitol. 2010, 169, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Kabaluk, J.T.; Lafaontaine, J.P.; Bordon, J.H. An attract and kills tactic for click beetles based on Metarhizium brunneum and a new formulation of sex pheromone. J. Pest Sci. 2015, 88, 707–716. [Google Scholar] [CrossRef]
- Mfuti, D.K.; Subramanian, S.; van Tol, R.W.; Wiegers, G.L.; de Kogel, W.J.; Niassy, S.; du Plessis, H.; Ekesi, S.; Maniania, N.K. Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Manag. Sci. 2016, 72, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, D.I.; Lewis, E.E. Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environ. Entomol. 1999, 28, 907–911. [Google Scholar] [CrossRef]
- Kaplan, F.; Alborn, H.T.; von Reuss, S.H.; Ajredini, R.; Ali, J.G.; Akyazi, F.; Stelinski, L.L.; Edison, A.S.; Schroeder, F.C.; Teal, P.E. Interspecific nematode signals regulate dispersal behavior. PLoS ONE 2012, 7, e38735. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Kaplan, F.; Lewis, E.; Alborn, H.T.; Shapiro-Ilan, D.I. Infected host macerate enhances entomopathogenic nematode movement towards hosts and infectivity in a soil profile. J. Invertebr. Pathol. 2018, 159, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Hofman, C.; Kaplan, F.; Stevens, G.; Lewis, E.; Wu, S.; Alborn, H.T.; Perret-Gentil, A.; Shapiro-Ilan, D.I. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. J. Invertebr. Pathol. 2019, 164, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.M.; Brown, G.C.; Nordin, G.L.; Johnson, D.W. Autodissemination of a baculovirus for management of tobacco budworms (Lepidoptera: Noctuidae) on tobacco. J. Econ. Entomol. 1992, 85, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Cross, J.V.; Winstanley, D.; Naish, N.; Helton, S.; Keane, G.; van Wezel, R.; Gakek, D. Semiochemical driven auto-dissemination of Cydia pomonella and Adoxophyes orana baculoviruses. IOBC Bull. 2005, 28, 319–324. [Google Scholar]
- Blommers, L.H.M. Integrated pest management in European apple orchards. Annu. Rev. Entomol. 1994, 39, 213–241. [Google Scholar] [CrossRef]
- Pultar, O.; Kocourek, F.; Berankova, J.; Stara, J.; Kuldova, J.; Hrdy, I. Codling moth management by means of pheromone stations with Cydia pomonella granulosis virus. Acta Hortic. 2000, 525, 477–480. [Google Scholar] [CrossRef]
- Nakai, M. Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virol. Sin. 2009, 24, 323–332. [Google Scholar] [CrossRef]
- Shapas, T.J.; Burkholder, W.E.; Boush, G.M. Population suppression of Trogoderma glabrum by using pheromone luring for protozoan pathogen dissemination. J. Econ. Entomol. 1977, 70, 469–474. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.A.; Hooper, A.; Pickett, J. Push-pull: Chemical ecology-based integrated pest management technology. J. Chem. Ecol. 2016, 42, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Lewis, W.J.; Jones, R.L.; Gross, H.R., Jr.; Nordlund, D.A. The role of kairomones and other behavioral chemicals in host finding by parasitic insects. Behav. Biol. 1976, 16, 267–289. [Google Scholar] [CrossRef]
- Rutledge, C.E. A survey of identified kairomones and synomones used by insect parasitoids to locate and accept their hosts. Chemoecology 1996, 7, 121–131. [Google Scholar] [CrossRef]
- Parthiban, P.; Chinniah, C.; Kalyanasundaram, M. Kairomonal effect of Corcyra cephalonica Stainton and their influence on the parasitic and predation potential of Trichogramma chilonis Ishii and Chrysoperla zastrowi sillemi (Esben- Peterson) against eggs of Spodoptera litura (Fab.). Bioscan 2015, 10, 1671–1674. [Google Scholar]
- Turlings, T.C.; Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Ann. Rev. Entomol. 2018, 63, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Beale, M.H.; Birkett, M.A.; Bruce, T.J.A.; Chamberlain, K.; Field, L.M. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Nat. Acad. Sci. USA 2006, 103, 10509–10513. [Google Scholar] [CrossRef] [Green Version]
- Bakthavatsalam, N.; Singh, S.P.; Tandon, P.L.; Chaudhary, M.; Preethi, S. Behavioural responses of key parasitoids of Opisina arenosella Walker (Lepidoptera: Noctuidae) to the kairomones. J. Biol Control 1999, 13, 7–14. [Google Scholar]
- Senthil-Nathan, S.; Choi, M.Y.; Paik, C.H.; Kalaivani, K. The toxicity and physiological effect of goniothalamin, a styryl-pyrone, on the generalist herbivore, Spodoptera exigua Hübner. Chemosphere 2008, 72, 1393–1400. [Google Scholar] [CrossRef]
- Bruce, T.J.; Cork, A. Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta. J. Chem Ecol. 2001, 27, 1119–1131. [Google Scholar] [CrossRef]
- Zaki, F.N.; Awadallah, K.T.; Gesraha, M.A. Parasitism by Meteorus rubens on Agrotis ipsilon as affected by supplementary food and kairomone, field studies. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 1997, 70, 117–119. [Google Scholar] [CrossRef]
- Kuramitsu, K.; Ishihara, T.; Sugita, A.; Yooboon, T.; Lustig, B.; Matsumori, Y.; Yamada, H.; Kinoshita, N. The attraction of Tremex apicalis (Hymenoptera, Siricidae, Tremecinae) and its parasitoid Ibalia japonica (Hymenoptera, Ibaliidae) to the fungus Cerrena unicolor. J. Hymenopt. Res. 2019, 68, 37–48. [Google Scholar] [CrossRef]
- Webster, B.; Bruce, T.; Pickett, J.; Hardie, J. Volatiles functioning as host cues in a blend become nonhost cues when presented alone to the black bean aphid. Anim. Behav. 2010, 79, 451–457. [Google Scholar] [CrossRef]
- D’Auria, J.C.; Pichersky, E.; Schaub, A.; Hansel, A.; Gershenzon, J. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 2007, 49, 194–207. [Google Scholar] [CrossRef] [Green Version]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Scala, A.; Allmann, S.; Mirabella, R.; Haring, M.A.; Schuurink, R.C. Green leaf volatiles: A plant’s multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 2013, 14, 17781–17811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, W.J.; Martin, W.R., Jr. Semiochemicals for use with parasitoids: Status and future. J. Chem. Ecol. 1990, 16, 3067–3089. [Google Scholar] [CrossRef] [PubMed]
- Hatano, E.; Kunert, G.; Michaud, J.P.; Weisser, W.W. Chemical cues mediating aphid location by natural enemies. Eur. J. Entomol. 2008, 105, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Tapia, D.H.; Morales, F.; Grez, A.A. Olfactory cues mediating prey-searching behaviour in interacting aphidophagous predators: Are semiochemicals key factors in predator-facilitation? Entomol. Exp. App. 2010, 137, 28–35. [Google Scholar] [CrossRef]
- Nakashima, Y.; Birkett, M.A.; Pye, B.J.; Powell, W. Chemically mediated intraguild predator avoidance by aphid parasitoids: Interspecific variability in sensitivity to semiochemical trails of ladybird predators. J. Chem. Ecol. 2006, 32, 1989–1998. [Google Scholar] [CrossRef] [Green Version]
- Aldrich, J.R.; Zanuncio, J.C.; Vilela, E.F.; Torres, J.B.; Cave, R.D. Field tests of predaceous pentatomid pheromones and semiochemistry of Podisus and Supputius species (Hemiptera: Pentatomidae: Asopinae). Ann. Soc. Entomol. Bras. 1997, 26, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gavloski, J. Integrated pest management in canola and other Brassica oilseed crops: How far have we come, and what is still needed. In Integrated Management of Insect Pests on Canola and Other Brassica Oilseed Crops; Reddy, G.V.P., Ed.; CABI: Wallingford, UK; Oxfordshire, UK, 2017; pp. 295–304. [Google Scholar] [CrossRef]
- Sharma, A.; Reddy, G.V.P. IPM and Pollinator Protection in Canola Production in the USA. In Springer Book Series: Progress in Biological Control; Gao, Y., Hokkanen, H., Menzler-Hokkanen, I., Eds.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Klein, M.G.; Lacey, L.A. An attractant trap for autodissemination of entomopathogenic fungi into populations of Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). Biocontrol Sci. Technol. 1999, 9, 151–158. [Google Scholar] [CrossRef]
- Vega, F.E.; Posada, F.; Aime, M.C.; Pava-Ripoll, M.; Infante, F.; Rehner, S.A. Entomopathogenic fungal endophytes. Biol. Control 2008, 46, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Wagner, B.L.; Lewis, L.C. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl. Environ. Microbiol. 2000, 66, 3468–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quesada-Moraga, E.; Munoz-Ledesma, F.J.; Santiago-Alvarez, C. Systematic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ. Entomol. 2009, 38, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, T.S.; Boundy-Mills, K.; Landolt, P.J. Volatile Emissions from an Epiphytic Fungus are Semiochemicals for Eusocial Wasps. Microb. Ecol. 2012, 64, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.T.; Berisford, C.W. Semiochemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. J Chem. Ecol. 2004, 30, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro-Ilan, D.; Dolinski, C. Entomopathogenic Nematode Application Technology. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland, 2015; pp. 231–254. [Google Scholar] [CrossRef]
- Rasmann, S.; Köllner, T.G.; Degenhardt, J.; Hiltpold, I.; Toepfer, S.; Kuhlmann, U.; Gershenzon, J.; Turlings, T.C.J. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Turlings, T.C.; Hiltpold, I.; Rasmann, S. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 2012, 358, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Willett, D.S.; Martini, X.; Stelinski, L.L. Chemoecology and Behavior of Parasitic Nematode—Host Interactions: Implications for Management. In Chemical Ecology of Insects; Tabata, J., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 91–113. [Google Scholar]
- Knight, A.L.; Witzgall, P. Combining mutualistic yeast and pathogenic virus—a novel method for codling moth control. J. Chem. Ecol. 2013, 39, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Skadeland, D.A. Dispersal of Pathogenic Material for Pest Control. U.S. Patent No. 4,301,147, 17 November 1981. [Google Scholar]
- Sharma, A.; Shrestha, G.; Reddy, G.V. Trap crops: How far we are from using them in cereal crops? Ann. Entomol. Soc. Am. 2019, 112, 330–339. [Google Scholar] [CrossRef]
- van der Putten, W.H.; Vet, L.E.; Harvey, J.A.; Wäckers, F.L. Linking above-and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol. Evol. 2001, 16, 547–554. [Google Scholar] [CrossRef]
- Wajnberg, E.; Colazza, S. Chemical Ecology of Insect Parasitoids; Wiley-Blackwell Publishing: Oxford, UK, 2013. [Google Scholar]
- Blassioli-Moraes, M.C.; Borges, M.; Michereff, M.F.F.; Magalhães, D.M.; Laumann, R.A. Semiochemicals from plants and insects on the foraging behavior of Platygastridae egg parasitoids. Pesqui. Agropecu. Bras. Brasília Maio 2016, 51, 454–464. [Google Scholar] [CrossRef] [Green Version]
Biological Control Agent | Insect Pest | Host Plant | Type of Semiochemical | Reference | |
---|---|---|---|---|---|
1. | Parasitoids | ||||
i. | Trichogramma (Riley) spp. (Hymenoptera: Trichogrammatidae) | Heliothis zea (Boddie) (Lepidoptera: Noctuidae) and Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) | Glycine max ((L.) Merr.) and Trifolium incarnatum (L.) (both Fabales: Fabaceae) | synthetic tricosane | [19] |
ii. | Aphidius ervi (Haliday) (Hymenoptera: Braconidae) | Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) | Vicia faba (L.) (Fabales: Fabaceae) | cis-Jasmone | [20] |
iii. | Oomyzus gallerucae (Fonscolombe) (Hymenoptera: Eulophidae)) | Xanthogaleruca luteola Müller (Coleoptera: Chrysomelidae) | Ulmus minor (Mill.) (Rosales: Ulmaceae) | Terpenoids | [21] |
iv. | Trissolcus (Ashmead) spp. (Hymenoptera: Platygastridae) | Euschistus heros (Fabricius) (Hemiptera: Pentatomidae) | Glycine max | (E)-2-hexenal | [22] |
v. | Telenomus podisi (Ashmead) (Hymenoptera: Platygastridae), Trisscolus teretis (Johnson (Hymenoptera: Scelionidae) | Euschistus heros fabricius (Hemiptera: Pentatomidae) | resistant Glycine max cultivars Dowling and IAC 100 | (E,E)-α-farnesene, methyl salicylate, (Z)-3-hexenyl acetate, and (E)-2-octen-1-ol | [23] |
2. | Predators | ||||
i. | Thanasimus dubius (Fabricius) (Coleoptera: Cleridae) | Ips pini (Say) (Coleoptera: Curculionidae) | Pinus strobus (L.) (Pinales: Pinaceae) | Ipsdienol | [24,25] |
ii. | Rhizophagus grandis (Gyllenhall) (Coleoptera: Rhizophagidae) | Dendroctonus micans (Kugelann) (Coleoptera: Curculionidae) | - | monoterpenes and oxygenated monoterpenes | [26] |
iii. | Coccinella septempunctata (L.) (Coleoptera: Coccinellidae) | Rhopalosiphumpadi | Vicia faba | cis-Jasmone | [20] |
iv. | Temnochila chlorodia (Mannerheim) (Coleoptera: Trogossitidae) and Enoclerus lecontei (Wolcott) (Coleoptera: Cleridae) | Ips pini | Pinus strobus | ipsdienol and lanierone | [27] |
v. | Medetera setiventris (Thuneberg) (Diptera: Dolichopodidae), Thanasimus formicarius (L.) (Coleoptera: Cleridae) and Thanasimus femoralis | Ips typographus (L.) (Coleoptera: Curculionidae) | Picea abies ([L.] H. Karst.) (Pinales: Pinaceae) | S-cis-verbenol, 2-methyl-3-buten-2-ol, ipsdienol, (+)-a-pinene, (–))-a-pinene, (±)-a-pinene, limonene, Camphor and ipsdienol | [28] |
vi. | Podisus maculiventris (Say) (Coleoptera: Pentatomidae) | Manduca sexta (L.) (Lepidoptera: Sphingidae) | Solanum lycopersicum (L.) (Solanales: Solanaceae) | Methyl salicylate (MeSA), or Podisus maculiventris aggregation pheromone | [29] |
3. | Entomopathogenic Fungus | ||||
1. | Trichothecium roseum ([Pers.] Link) (Hypocreales: Incertae sedis) | Oryzaephilus surinamensis (L.) and O. mercator (Fauvel) (both Coleoptera: Silvanidae) Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae), Ahasverus advena (Waltl) (Coleoptera: Silvanidae), Cathartus quadricollis (Guerin-Meneville) (Coleoptera: Silvanidae) | - | l-Octen-3-one, racemic 3-octanol, and 3-octanone | [30] |
ii. | Zoophthora radicans (Brefeld) (Zygomycetes: Entomophthorales) | Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) | Brassica chinensis (L.) var. pekinensis (Rupr.) Sun. (Brassicales: Brassicaceae) | (Z)-ll-hexadecenal, (Z)-ll-hexadecenyl acetate, (Z)-ll-hexadecanol and (Xg BHT antioxidant (di-tertbutyl-4-methylphenol) in hexane | [31,32] |
iii. | Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Cordycipitaceae) | Cylas formicarius (Fabricius) (Coleoptera: Brentidae) | - | - | [33] |
Iv. | Verticillium lecanii ([Zimm.] Viégas) (Hypocreales: Cordycipitaceae) | Phorodon humuli (Schrank) (Hemiptera: Aphididae) | Prunus domestica (L.) (Rosales: Rosaceae) | nepetalactol | [34] |
v. | Beauveria bassiana | Plautia crossota stali (Scot) (Hemiptera: Pentatomidae) | Orchards | Aggregation pheromone | [35] |
vi. | Zoophthora radicans | Plutella xylostella | Brassica oleracea (L.) (Brassicales: Brassicaceae) | Synthetic sex pheromone (1: 1 mix of (Z)-11-hexadecenal and (Z)-11-hexadecenyl acetate) | [36] |
vii. | Beauveria bassiana | Ips typographus | [37] | ||
viii. | Beauveria bassiana | Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) | - | aggregation pheromone sordidin (Cosmolure®) | [38,39] |
ix. | Metarhizium anisopliae ([Metchnikoff] Sorokin) (Hypocreales: Clavicipitaceae) | Amblyomma variegatum (Fabricius) (Ixodida: Ixodidae) | - | attraction-aggregation-attachment pheromone (AAAP), made up of o-nitrophenol, methyl salicylate and nonanoic acid in the ratio 2:1:8, 1-octen-3-ol and butyric acid with CO2 | [40,41] |
x. | Metarhizium anisopliae | Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) | Phaseolus vulgaris (L.) var. Samantha (Fabales: Fabaceae). | Lurem-TR | [17] |
xi. | Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) | Agriotes obscurus (L.) (Coleoptera: Elateridae) | - | (1 % wt/wt 1:1 geranyl hexanoate:geranyl octanoate | [42] |
xii. | Metarhizium brunneum and Metarhizium anisopliae | Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae) | Vigna unguiculata ([L.] Walp.) (Fabales: Fabaceae) | Lurem-TR, a commercial semiochemical (active ingredient is methyl-isonicotinate) | [43] |
4. | Entomopathogenic Nematodes | ||||
i. | Heterorhabditis bacteriophora (Poinar) (Rhabdita: Heterorhabditidae) | Galleria mellonella (L.) (Lepidoptera: Pyralidae) | - | - | [44] |
ii. | Steinernema feltiae (Filipjev) (Rhabdita: Steinernematidae) | Galleria mellonella | - | - | [45] |
iii. | Steinernema carpocapsae (Weiser) (Rhabdita: Steinernematidae), Steinernema feltiae, Heterorhabditis bacteriophora | Galleria mellonella | - | - | [46] |
iv. | Steinernema feltiae and S Steinernema carpocapsae | Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) | - | - | [47] |
5. | Entomopathogenic Virus | ||||
i. | Baculoviruses [nucleopolyhedrovirus (NPV) Autographa californica nuclear polyhedrosis virus (AcNPV) (Baculoviridae) | Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) | - | - | [18,48] (references cited in Vega et al. [18]) |
ii. | Baculoviruses (BV) Summer fruit totrix GV(AdorGV) | Cydia pomonella (L.) (Lepidopetra: Tortricidae), Adoxophyes orana (Fischer von Röslerstamm) (Lepidopetra: Tortricidae) | - | - | [49,50,51,52] |
6. | Protozoa | ||||
i. | Mattesia trogodermae (Canning) (Neogregarinorida) Lipotrophidae | Trogoderma glabrum (Herbst) (Coleoptera: Dermestidae) | - | synthetic sex pheromone, (E)-14-methyl-8-hexadecenal | [53] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Sandhi, R.K.; Reddy, G.V.P. A Review of Interactions between Insect Biological Control Agents and Semiochemicals. Insects 2019, 10, 439. https://doi.org/10.3390/insects10120439
Sharma A, Sandhi RK, Reddy GVP. A Review of Interactions between Insect Biological Control Agents and Semiochemicals. Insects. 2019; 10(12):439. https://doi.org/10.3390/insects10120439
Chicago/Turabian StyleSharma, Anamika, Ramandeep Kaur Sandhi, and Gadi V. P. Reddy. 2019. "A Review of Interactions between Insect Biological Control Agents and Semiochemicals" Insects 10, no. 12: 439. https://doi.org/10.3390/insects10120439
APA StyleSharma, A., Sandhi, R. K., & Reddy, G. V. P. (2019). A Review of Interactions between Insect Biological Control Agents and Semiochemicals. Insects, 10(12), 439. https://doi.org/10.3390/insects10120439