Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services
Abstract
:1. Introduction
2. Biological Attributes of Mayflies
2.1. Life Cycle and General Biology
2.2. Global Diversity and Distribution
3. Roles in Ecosystem Services
3.1. Cultural Services
3.2. Provisioning Services
3.3. Regulatory Services
3.4. Supporting Services
4. Challenges to Mayfly Services
4.1. Pollution
4.2. Invasive Alien Species
4.3. Habitat Loss and Degradation
4.4. Climate Change
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Herd, A. The History of Fly Fishing; Medlar Press: Ellesmere, UK, 2011; p. 440. [Google Scholar]
- Dethier, V.G. To Know a Fly; Holden-Day: San Francisco, CA, USA, 1962. [Google Scholar]
- Edmunds, G.F.; Jensen, S.L.; Berner, L. The Mayflies of North and Central America; University of Minnesota Press: Minneapolis, MN, USA, 1976; p. 330. [Google Scholar]
- Corkum, L.D. Spatial-temporal patterns of recolonizinig adult mayflies in Lake Erie after a major disturbance. J. Gt. Lakes Res. 2010, 36, 338–344. [Google Scholar] [CrossRef]
- Reynolds, D.R.; Riley, J.R. Radar observations of concentrations of insects above a river in Mali, West Africa. Ecol. Entomol. 1979, 4, 161–174. [Google Scholar] [CrossRef]
- McCafferty, W.P. Aquatic Entomology—The Fishermen’s and Ecologists’ Illustrated Guide to Insects and Their Relatives; Science Books International: Boston, MA, USA, 1981; p. 448. [Google Scholar]
- Knopp, M.; Cormier, R. Mayflies: An Angler’s Study of Trout Water Ephemeroptera; Greycliff Publishing Company: Helena, MT, USA, 1997; p. 366. [Google Scholar]
- Beattie, A.; Ehrlich, P.R. Wild Solutions: How Biodiversity Is Money in the Bank; Yale University Press: New Haven, CT, USA, 2001; p. 239. [Google Scholar]
- Edmunds, G.F.; McCafferty, W.P. The mayfly subimago. Annu. Rev. Entomol. 1988, 33, 509–529. [Google Scholar] [CrossRef]
- Peters, W.L.; Peters, J.G. Adult life and emergence of Dolania americana in northwestern Florida (Ephemeroptera: Behningiidae). Internationale Revue der Gesamten Hydrobiologie und Hydrographie 1977, 62, 409–438. [Google Scholar] [CrossRef]
- Gillies, M.T. The adult stages of Prosopistoma Latreille (Ephemeroptera) with descriptions of two new species from Africa. Trans. R. Entomol. Soc. Lond. 1954, 105, 355–372. [Google Scholar] [CrossRef]
- Lafon, J. Note sur Prosopistoma foliaceum Fourc. (Ephéméroptère). Bulletin de la Société Zoologique de France 1952, 77, 425–436. [Google Scholar]
- Kluge, N.J. The Phylogenetic System of Ephemeroptera; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; p. 442. [Google Scholar]
- Fremling, C.R. Environmental synchronization of mass Hexagenia bilineata (Ephemeroptera) emergences from the Mississipi River. Verhandlungen der Internationale Verein für Limnologie 1973, 18, 1521–1526. [Google Scholar]
- Edmunds, G.F. Exuviation of subimaginal Ephemeroptera in flight. Entomol. News 1956, 67, 91–93. [Google Scholar]
- Funk, D.H.; Sweeney, B.W.; Jackson, J.K. Why stream mayflies can reproduce without males but remain bisexual: A case of lost genetic variation. J. N. Am. Benthol. Soc. 2010, 29, 1258–1266. [Google Scholar] [CrossRef]
- Edmunds, G.F. Ovoviviparous mayflies of the genus Callibaetis. Entomol. News 1945, 56, 169–171. [Google Scholar]
- Degrange, C. L’ovolarviparité de Cloeon dipertum (L.) (Ephemereptera, Baetidae). Bulletin de la Société Zoologique de France 1959, 64, 94–100. [Google Scholar]
- Cianciara, S. Life cycles of Cloeon dipterum (L.) in natural environment. Polskie Archiwum Hydrobiologii 1979, 26, 501–513. [Google Scholar]
- Sweeney, B.W.; Vannote, R.L. Variation and the distribution of hemimetabolous aquatic insects: Two thermal equilibrium hypotheses. Science 1978, 200, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Berner, L. The occurence of mayfly nymphs in Brackish water. Ecology 1954, 35, 98. [Google Scholar] [CrossRef]
- Chadwick, M.A.; Hunter, H.; Feminella, J.W.; Henry, R.P. Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Fla. Entomol. 2002, 85, 650–651. [Google Scholar] [CrossRef]
- Austin, D.A.; Baker, J.H. Fate of bacteria ingested by larvae of the freshwater mayfly, Ephemera danica. Microb. Ecol. 1988, 15, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Hynes, H.B.N. The Ecology of Running Waters; University of Toronto Press: Toronto, ON, Canada, 1970; p. 555. [Google Scholar]
- Zahradkova, S.; Soldan, T.; Bojkova, J.; Helesic, J.; Janovska, H.; Sroka, P. Distribution and biology of mayflies (Ephemeroptera) of the Czech Republic: Present status and perspectives. Aquat. Insects 2009, 31, 629–652. [Google Scholar] [CrossRef]
- Soluk, D.A.; Craig, D.A. Vortex feeding from pits in the sand: A unique method of suspension feeding used by a stream invertebrate. Limnol. Oceanogr. 1988, 33, 638–645. [Google Scholar] [CrossRef]
- Cavaletto, J.F.; Nalepa, T.F.; Fanslow, D.L.; Schloesser, D.W. Temporal variation of energy reserves in mayfly nymphs (Hexagenia spp.) from Lake St Clair and western Lake Erie. Freshw. Biol. 2003, 48, 1726–1738. [Google Scholar] [CrossRef]
- Petr, T. Macroinvertebrates of flooded trees in the man-made Volta lake (Ghana) with special reference to the burrowing mayfly Povilla adusta Navas. Hydrobiologia 1970, 36, 373–398. [Google Scholar] [CrossRef]
- Gattolliat, J.-L.; Sartori, M. Predaceous Baetidae in Madagascar: An uncommon and unsuspected high diversity. In Trends in Research in Ephemeroptera and Plecoptera; Dominguez, E., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 321–330. [Google Scholar]
- Waltz, R.D.; Burian, S.K. Chapter 11: Ephemeroptera. In An introduction to the Aquatic Insects of North America; Merritt, R.W., Cummins, K.W., Berg, M.B., Eds.; Kendall/Hunt: Dubuque, IA, USA, 2008; pp. 181–236. [Google Scholar]
- Gillies, M.T.; Elouard, J.-M. The mayfly-mussel association, a new example from the River Niger Basin. In Mayflies and Stoneflies: Life Story and Biology; Campbell, I.C., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; Volume 44, pp. 289–298. [Google Scholar]
- Kukalova-Peck, J. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Can. J. Zool. 1985, 63, 933–955. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Y.; Gao, Y.J.; Zhang, L.P.; Yu, D.N.; Storey, K.B.; Zhang, J.Y. The mitochondrial genome of Caenis sp (Ephemeroptera: Caenidae) and the phylogeny of Ephemeroptera in Pterygota. Mitochondrial DNA Part B-Resour. 2018, 3, 577–579. [Google Scholar] [CrossRef]
- Simon, S.; Blanke, A.; Meusemann, K. Reanalyzing the Palaeoptera problem—The origin of insect flight remains obscure. Arthropod Struct. Dev. 2018, 47, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Trueman, J.W.H.; Rambaut, A.; Welch, J.J. Relaxed Phylogenetics and the Palaeoptera Problem: Resolving Deep Ancestral Splits in the Insect Phylogeny. Syst. Biol. 2013, 62, 285–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogden, T.H.; Gattolliat, J.L.; Sartori, M.; Staniczek, A.H.; Soldán, T.; Whiting, M.F. Towards a new paradigm in mayfly phylogeny (Ephemeroptera): Combined analysis of morphological and molecular data. Syst. Entomol. 2009, 34, 616–634. [Google Scholar] [CrossRef]
- Barber-James, H.M. Freshwater invertebrate fauna of the Tristan da Cunha islands (South Atlantic Ocean), with new records for Inaccessible and Nightingale Islands. Trans. R. Soc. S. Afr. 2007, 62, 24–36. [Google Scholar] [CrossRef]
- Clark, R.; Cooper, E.A.; MacFadyen, A.; Shipp, T.; Simpson, M.N.; Wilson, P. The Cumbria and Lancashire Falklands Expedition 1989. Falkl. Islands J. 1990, 5, 5–15. [Google Scholar]
- Bauernfeind, E.; Soldán, T. The Mayflies of Europe; Apollo Books: Ollerup, Denmark, 2012; p. 781. [Google Scholar]
- Böcher, J.; Kristensen, N.P. Ephemeroptera. In The Greeland Entomofauna; an Identification Manual of Insects, Spiders and Their Allies; Böcher, J., Kristensen, N.P., Pape, T., Vilhelmsen, L., Eds.; Brill: Leiden, The Netherlands, 2015; pp. 83–84. [Google Scholar]
- Rutschmann, S.; Detering, H.; Simon, S.; Funk, D.H.; Gattolliat, J.-L.; Hughes, S.J.; Raposeiro, P.M.; DeSalle, R.; Sartori, M.; Monaghan, M.T. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome. Mol. Phylogenet. Evol. 2017, 107, 27–38. [Google Scholar] [CrossRef]
- Rutschmann, S.; Gattolliat, J.L.; Hughes, S.J.; Baez, M.; Sartori, M.; Monaghan, M.T. Evolution and island endemism of morphologically cryptic Baetis and Cloeon species (Ephemeroptera, Baetidae) on the Canary Islands and Madeira. Freshw. Biol. 2014, 59, 2516–2527. [Google Scholar] [CrossRef]
- Hofmann, C.; Sartori, M.; Thomas, A.G.B. Les Ephéméroptères (Ephemeroptera) de la Guadeloupe (petites Antilles françaises). Mémoires de la Société Vaudoise des Sciences Naturelles 1999, 20, 1–96. [Google Scholar]
- McCafferty, W.P. Ephemeroptera and the great American interchange. J. N. Am. Benthol. Soc. 1998, 17, 1–20. [Google Scholar] [CrossRef]
- Sartori, M.; Brittain, J.E. Order Ephemeroptera. In Ecology and General Biology, Vol I: Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: New York, NY, USA, 2015; pp. 873–891. [Google Scholar] [CrossRef]
- Kluge, N.J. Contribution to the knowledge of Choroterpes (Ephemeroptera: Leptophlebiidae). Russ. Entomol. J. 2012, 21, 273–306. [Google Scholar] [CrossRef]
- Salles, F.F.; Gattolliat, J.-L.; Angeli, K.B.; De-Souza, M.R.; Goncalves, I.C.; Nessimian, J.L.; Sartori, M. Discovery of an alien species of mayfly in South America (Ephemeroptera). Zookeys 2014, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Peters, W.L.; Peters, J.G.; Edmunds, G.F. The Leptophlebiidae of New Caledonia (Ephemeroptera). Part I. Introduction and systematics. Cahiers de l’ORSTOM Série Hydrobiologie 1978, 12, 97–117. [Google Scholar]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Millenium Ecosystem Assessment. Ecosystems and Human Well-Being: A Framework for Assessment; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Soldán, T. Mayflies (Ephemeroptera): One of the earliest insect groups known to man. In Ephemeroptera & Plecoptera Biology-Ecology-Systematics; Landolt, P., Sartori, M., Eds.; Mauron+Tinguely & Lachat SA: Fribourg, Switzerland, 1997; pp. 511–513. [Google Scholar]
- Zhou, C.F.; Su, C.R.; Gui, H. Outline of Chinese Mayflies; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Chalmers, P.R. Green Days and Blue Days; Maunsel and Company Ltd.: Dublin, Ireland, 1912. [Google Scholar]
- Szent-Ivany, J.J.H.; Ujhary, E.I.V. Ephemeroptera in the regimen of some New Guinea people and in Hungarian folksongs. Eatonia 1973, 17, 1–6. [Google Scholar]
- Radcliffe, W. Fishing from the Earliest Times; John Murray: London, UK, 1921. [Google Scholar]
- Berners, J. A Treatyse of Fysshynge Wyth an Angle (in The Boke of St Albans); W. Satchell and Son: London, UK, 1496. [Google Scholar]
- Mawle, G.W.; Peirson, G. Economic Evaluation of Inland Fisheries; Environment Agency: Bristol, UK, 2009. [Google Scholar]
- Radford, A.; Riddington, G.; Anderson, J. The Economic Impact of Game and Coarse Fishing in Scotland; Report Prepared for Scottish Executive Environment and Rural Affairs Department: Edinburgh, Scotland, 2004. [Google Scholar]
- Prather, C.M.; Pelini, S.L.; Laws, A.; Rivest, E.; Woltz, M.; Bloch, C.P.; Del Toro, I.; Ho, C.K.; Kominoski, J.; ScottNewbold, T.A.; et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 2013, 88, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, D.; Bushway, R.J.; Roberts, F.L.; Kornfield, I.; Okedi, J. The nutrient composition of an insect flour sample from Lake Victoria, Uganda. J. Food Compos. Anal. 1988, 1, 371–377. [Google Scholar] [CrossRef]
- Macadam, C.R.; Stockan, J.A. The diversity of aquatic insects used as human food. J. Insects Food Feed 2017, 3, 203–209. [Google Scholar] [CrossRef]
- Fladung, E.B. Insects as Food; Maryland Academy Sciences Bulletin: Baltimore, MD, USA, 1924; pp. 5–8. [Google Scholar]
- Mathooko, J.M. Mayfly diversity in East Africa. Afr. J. Ecol. 1998, 36, 368–370. [Google Scholar] [CrossRef]
- Van Huis, A. Edible insects contributing to food security. Agric. Food Secur. 2015, 4, 20. [Google Scholar] [CrossRef]
- Ramandey, E.; van Mastrigt, H. Edible insects in Papua, Indonesia: From delicious snack to basic need. In Forest Insects as Food: Humans Bite Back, Proceedings of the Workshop on Asia-Pacific Resources and Their Potential for Development, Chiang Mai, Thailand, 19–21 February 2008; Durst, P.B., Johnson, D.V., Leslie, R.N., Shono, K., Eds.; FAO: Rome, Italy, 2010; pp. 105–114. [Google Scholar]
- Gillies, M.T. Mayflies as food: A confused story from South America. Mayfly Newsl. 1996, 6, 1. [Google Scholar]
- Chakravorty, J.; Gosh, S.; Meyer-Rochow, V.B. Comparative Survey of Entomophagy and Entomotherapeutic Practices in Six Tribes of Eastern Arunachal Pradesh (India). J. Ethnobiol. Ethnomed. 2013, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-M.; Feng, Y. The Edible Insects of China; Science and Technology Publishing House: Beijing, China, 1999. [Google Scholar]
- Chen, X.-M.; Feng, Y.; Chen, Z. Common edible insects and their utilization in China. Entomol. Res. 2009, 39, 299–303. [Google Scholar] [CrossRef]
- Tan, G.; Kaya, M.; Tevlek, A.; Sargin, I.; Baran, T. Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans. In Vitro Cell. Dev. Biol.-Anim. 2018, 54, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.; Pathmasiri, W.; Deese-Spruill, J.; Sumner, S.; Buchwalter, D.B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect Physiol. 2017, 101, 107–112. [Google Scholar] [CrossRef]
- Wallace, J.B.; Merritt, R.W. Filter-feeding ecology of aquatic insects. Annu. Rev. Entomol. 1980, 25, 103–132. [Google Scholar] [CrossRef]
- Wallace, J.B.; O’Hop, J. Fine particle suspension-feeding capabilities of Isonychia spp. (Ephemeroptera: Siphlonuridae). Ann. Entomol. Soc. Am. 1979, 72, 353–357. [Google Scholar] [CrossRef]
- Clemente, J.; Kroger, A.; Goyenola, G.; Teixera-de-Mello, F.; Maroni, S.; Fosalba, C.; Iglesias, C.; Matteo, N. Campsurus violaceus (Ephemeroptera, Polymitarcyidae) in a subtropical reservoir: Control factors and relationship with the macroinvertebrate community. Pan-Am. J. Aquat. Sci. 2018, 13, 241–253. [Google Scholar]
- Charbonneau, P.; Hare, L. Burrowing behavior and biogenic structures of mud-dwelling insects. J. N. Am. Benthol. Soc. 1998, 17, 239–249. [Google Scholar] [CrossRef]
- Chaffin, J.D.; Kane, D.D. Burrowing mayfly (Ephemeroptera: Ephemeridae: Hexagenia spp.) bioturbation and bioirrigation: A source of internal phosphorus loading in Lake Erie. J. Gt. Lakes Res. 2010, 36, 57–63. [Google Scholar] [CrossRef]
- Berner, L. The status of Asthenopus curtus (Hagen) (Ephemeroptera: Polymitarcyidae). Acta Amazonica 1978, 8, 103–105. [Google Scholar] [CrossRef]
- Satter, W. Über die Lebensweise, insbesondere das Bauverhalten, neotropischer Eintagsfliegen-Larven (Ephemeroptera, Polymitarcyidae). Beiträge zur Neotropischen Fauna 1967, 5, 89–110. [Google Scholar] [CrossRef]
- Baxter, C.V.; Fausch, K.D.; Saunders, W.C. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 2005, 50, 201–220. [Google Scholar] [CrossRef]
- Grant, P.M. Mayflies as food. In Trends in Research in Ephemeroptera and Plecoptera; Dominguez, E., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 107–124. [Google Scholar]
- Macadam, C.R.; Stockan, J.A. More than just fish food: Ecosystem services provided by freshwater insects. Ecol. Entomol. 2015, 40, 113–123. [Google Scholar] [CrossRef]
- Sangpradub, N.; Sonmark, R.; Hanjavanit, C. Food of Anematichthys repasson and Ompok bimaculatus from Kaeng Lawa, Thailand. AACLBioflux 2014, 7, 419–429. [Google Scholar]
- Godhino dos Reis, L.R.; de Alcantara Santos, A.C. Dieta de duas especies de peixes da familia Cichlidae (Astronotus ocellatus e Cichla pinima) introduzidos no rio Paraguacu, Bahia. Biotemas 2014, 27, 83–91. [Google Scholar]
- Uno, H.; Power, M.E. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network. Ecol. Lett. 2015, 18, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Yohannes, E.; Rothhaupt, K.-O. Dietary nutrient allocation to somatic tissue synthesis in emerging subimago freshwater mayfly Ephemera danica. BMC Ecol. 2018, 18, 57. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.M.; Fritz, K.M.; Otter, R.R. The dark side of subsidies: Adult stream insects export organic contaminants to riparian predators. Ecol. Appl. 2008, 18, 1835–1841. [Google Scholar] [CrossRef]
- Seton, E.T. Life History of Northern Animals; Charles Scribner’s and Sons: New York, NY, USA, 1909; p. 698. [Google Scholar]
- Ogbogu, S.S. A phoretic association between a bryozoan and an insect in a Nigerian lake. J. Trop. Ecol. 1993, 9, 125–126. [Google Scholar] [CrossRef]
- Abrahao, D.P.; Mello, J.L.; Gorni, G.; Corbi, J.J. First report of Epibiont ciliates (Ciliophora: Peritrichia) living on larvae of Leptophlebiidae (Ephemeroptera) from Brazil. Braz. Arch. Biol. Technol. 2017, 60. [Google Scholar] [CrossRef] [Green Version]
- Grzybkowska, M.; Szczerkowska-Majchrzak, E.; Dukowska, M.; Leszczynska, J.; Przybylski, M. Ephemera danica (Ephemeroptera: Ephemeridae) As a Resource for Two Commensals: Ciliated Protozoans (Sessilida) and Cironomids (Diptera). J. Insect Sci. 2016, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, R.E. Symbiotic Associations between Chironomidae (Diptera) and Ephemeroptera. In Current Directions in Research on Ephemeroptera; Corkum, L.D., Ciborowski, J.J.H., Eds.; Canadian Scholars’ Press Inc.: Toronto, ON, Canada, 1995; pp. 317–332. [Google Scholar]
- Jacobsen, R.E. The symbiotic relationship of a chironomid with its ephemeropteran host in an Arizona mountain stream. J. Kansas Entomol. Soc. 1998, 71, 426–438. [Google Scholar]
- Schiffels, S. Commensal and parasitic Chironomidae. Lauterbornia 2009, 68, 9–33. [Google Scholar]
- Winterbourn, M.J. Association between a commensal chironomid and its mayfly host in rivers of North Westland. N. Z. Nat. Sci. 2004, 29, 21. [Google Scholar]
- Moss, S.T. Harpellales (Trichomycetes); mycobionts of Insecta. Bot. J. Scotl. 1998, 50, 137–152. [Google Scholar] [CrossRef]
- Valle, L.G.; Santamaria, S. Baetimyces, a new genus of Harpellales, and first report of Legeriomyces ramosus from the northeastern Iberian Peninsula. Mycologia 2002, 94, 321–326. [Google Scholar] [CrossRef]
- Hirasawa, R.; Urabe, M. Ephemera strigata (Insecta: Ephemeroptera: Ephemeridae) is the intermediate host of the nematodes Rhabdochona denudata honshuensis and Rhabdochona coronacauda in Japan. J. Parasitol. 2003, 89, 285–293. [Google Scholar] [CrossRef]
- Kageyama, D. Microbial Endosymbionts and Chemical Ecology. In Chemical Ecology of Insects; Tabata, J., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 114–130. [Google Scholar]
- Mariluan, G.D.; Viozzi, G.P.; Albariño, R.J. Trematodes and nematodes parasitizing the benthic insect community of an Andean Patagonian stream, with emphasis on plagiorchiid metacercariae. Invertebr. Biol. 2012, 131, 285–293. [Google Scholar] [CrossRef]
- Poinar, G.; Walder, L.; Uno, H. Anomalomermis ephemerophagis ng, n. sp. (Nematoda: Mermithidae) parasitic in the mayfly Ephemerella maculata Traver (Ephermeroptera: Ephermerellidae) in California, USA. Syst. Parasitol. 2015, 90, 231–236. [Google Scholar] [CrossRef]
- Reyes-Torres, L.J.; Meléndez-Torres, Y.; Ramirez, A. Occurrence of nematodes on Ephemeroptera nymphs in a tropical rainforest stream. Intropica 2016, 11, 67. [Google Scholar] [CrossRef]
- Vance, S.A. Morphological and behavioural sex reversal in mermithid- infected mayflies. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 1996, 263, 907–912. [Google Scholar]
- Vance, S.A.; Peckarsky, B.L. The infection of nymphal Baetis bicaudatus by the mermithid nematode Gasteromermis sp. Ecol. Entomol. 1996, 21, 377–381. [Google Scholar] [CrossRef]
- Vance, S.A.; Peckarsky, B.L. The effect of mermithid parasitism on predation of nymphal Baetis bicaudatus (Ephemeroptera) by invertebrates. Oecologia 1997, 110, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Heneberg, P.; Faltynkova, A.; Bizos, J.; Mala, M.; Ziak, J.; Literak, I. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasites Vectors 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, M.; Reyes, R.; Arrivillaga, J. Benthic macroinvertebrates as bioindicators of environmental health. Boletin de Malariologia y Salud Ambiental 2008, 48, 109–120. [Google Scholar]
- Glazaczow, A.; Orwin, D.; Bajaczyk, R. The influence of river functionality on habitat selection by Ephemeroptera in spatially and temporally diverse lowland rivers, with particular reference to the River Bug. Oceanol. Hydrobiol. Stud. 2009, 38, 63–76. [Google Scholar] [CrossRef]
- Hawkes, H.A. Origin and development of the Biological Monitoring Working Party score system. Water Res. 1998, 32, 964–968. [Google Scholar] [CrossRef]
- Hilsenhoff, W.L. Using a Biotic Index to Evaluate Water Quality in Streams; Technical Bulletin; Department of Natural Resources: Madison, WI, USA, 1982; Volume 132, pp. 1–22. [Google Scholar]
- Hilsenhoff, W.L. An improved biotic index of organic stream pollution. Gt. Lakes Entomol. 1987, 20, 31–39. [Google Scholar]
- Hilsenhoff, W.L. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc. 1988, 7, 65–68. [Google Scholar] [CrossRef]
- Verneaux, J.; Tuffery, G. Une méthode zoologique pratique de détermination de la qualité biologique des eaux courantes. Annales Scientifiques de l’Université de Besançon 1967, 1967, 79–90. [Google Scholar]
- Barber-James, H.M.; Pereira-da-Conçeicoa, L.L. Efficacy and deficiencies of rapid biomonitoring in biodiversity conservation: A case study in South Africa. Afr. J. Aquat. Sci. 2016, 41, 337–343. [Google Scholar] [CrossRef]
- Bo, T.; Doretto, A.; Laini, A.; Bona, F.; Fenoglio, S. Biomonitoring with macroinvertebrate communities in Italy: What happened to our past and what is the future? J. Limnol. 2017, 76, 21–28. [Google Scholar] [CrossRef]
- Cardoni, S.; Tenchini, R.; Ficulle, I.; Piredda, R.; Simeone, M.C.; Belfiore, C. DNA barcode assessment of Mediterranean mayflies (Ephemeroptera), benchmark data for a regional reference library for rapid biomonitoring of freshwaters. Biochem. Syst. Ecol. 2015, 62, 36–50. [Google Scholar] [CrossRef]
- Ceneviva-Bastos, M.; Prates, D.B.; de Mei Romero, R.; Bispo, P.C.; Casatti, L. Trophic guilds of EPT (Ephemeroptera, Plecoptera, and Trichoptera) in three basins of the Brazilian Savanna. Limnol.-Ecol. Manag. Inland Waters 2017, 63, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Ferro, M.L.; Sites, R.W. The Ephemeroptera, Plecoptera, and Trichoptera of Missouri State Parks, with notes on biomonitoring, mesohabitat associations, and distribution. J. Kansas Entomol. Soc. 2007, 80, 105–129. [Google Scholar] [CrossRef]
- Habib, S.; Yousuf, A.R. Freshwater Zoobenthic Species: Role in Biomonitoring and Ecological Processes—A Review. Ann. Aquac. Res. 2016, 3, 1015. [Google Scholar]
- Iyagbaye, L.; Iyagbaye, R.; Omoigberale, M. Mayflies (Order Ephemeroptera) Distribution as Indicators of the Water Quality Status of a Stretch of Ovia River (Iguoriakhi), Edo State, Southern Nigeria. Int. J. Innov. Res. Dev. 2017, 6, 88–92. [Google Scholar] [CrossRef]
- Mathers, K.L.; Chadd, R.P.; Extence, C.A.; Rice, S.P.; Wood, P.J. The implications of an invasive species on the reliability of macroinvertebrate biomonitoring tools used in freshwater ecological assessments. Ecol. Indic. 2016, 63, 23–28. [Google Scholar] [CrossRef]
- Valente-Neto, F.; Rodrigues, M.E.; de Oliveira Roque, F. Selecting indicators based on biodiversity surrogacy and environmental response in a riverine network: Bringing operationality to biomonitoring. Ecol. Indic. 2018, 94, 198–206. [Google Scholar] [CrossRef]
- Wibowo, D.N.; Setijanto, S.; Santoso, S. Benthic macroinvertebrate diversity as biomonitoring of organic pollutions of river ecosystems in Central Java, Indonesia. Biodivers. J. Biol. Divers. 2017, 18, 671–676. [Google Scholar] [CrossRef]
- Finley, M.L.D.; Kidd, K.A.; Curry, R.A.; Lescord, G.L.; Clayden, M.G.; O’Driscoll, N.J. A Comparison of Mercury Biomagnification through Lacustrine Food Webs Supporting Brook Trout (Salvelinus fontinalis) and Other Salmonid Fishes. Front. Environ. Sci. 2016, 4, 23. [Google Scholar] [CrossRef]
- Xie, L.; Funk, D.H.; Buchwalter, D.B. Trophic transfer of Cd from natural periphyton to the grazing mayfly Centroptilum triangulifer in a life cycle test. Environ. Pollut. 2010, 158, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Friberg, N.; Bonada, N.; Bradley, D.C.; Dunbar, M.J.; Edwards, F.K.; Grey, J.; Hayes, R.B.; Hildrew, A.G.; Lamouroux, N.; Trimmer, M.; et al. Biomonitoring of Human Impacts in Freshwater Ecosystems: The Good, the Bad and the Ugly. In Advances in Ecological Research; Woodward, G., Ed.; Academic Press: Amsterdam, The Netherlands, 2011; Volume 44, pp. 1–68. [Google Scholar]
- Resh, V.H. Multinational, freshwater biomonitoring programs in the developing world: Lessons learned from African and Southeast Asian river surveys. Environ. Manag. 2007, 39, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Macadam, C.R. Freshwaters for the Future: A Strategy for Freshwater Invertebrates; Buglife—The Invertebrate Conservation Trust: Peterborough, UK, 2015. [Google Scholar]
- Wallace, J.B.; Grubaugh, J.W.; Whiles, M.R. Biotic indices and stream ecosystem processes: Results from an experimental study. Ecol. Appl. 1996, 6, 140–151. [Google Scholar] [CrossRef]
- Zedkova, B.; Radkova, V.; Bojkova, J.; Soldán, T.; Zahradkova, S. Mayflies (Ephemeroptera) as indicators of environmental changes in the past five decades: A case study from the Morava and Odra River Basins (Czech Republic). Aquat. Conserv.-Mar. Freshw. Ecosyst. 2015, 25, 622–638. [Google Scholar] [CrossRef]
- Svensson, A.; Bellamy, A.S.; Van den Brinck, P.J.; Tedengren, M.; Gunnarsson, J.S. Assessing the ecological impact of banana farms on water quality using aquatic macroinvertebrate community composition. Environ. Sci. Pollut. Res. 2018, 25, 13373–13381. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.; Johnson, R.K.; Sandin, L. Detection of organic pollution of streams in southern Sweden using benthic macroinvertebrates. In Integrated Assessment of Running Waters in Europe; Hering, D., Verdonschot, P., Moog, O., Sandin, L., Eds.; Springer: Dordrecht, The Netherlands, 2004; pp. 161–172. [Google Scholar]
- Parr, T.B.; Cronan, C.S.; Danielson, T.J.; Tsomides, L.; Simon, K.S. Aligning indicators of community composition and biogeochemical function in stream monitoring and ecological assessments. Ecol. Indic. 2016, 60, 970–979. [Google Scholar] [CrossRef]
- Timm, H.; Ivask, M.; Möls, T. Response of macroinvertebrates and water quality to long-term decrease in organic pollution in some Estonian streams during 1990–1998. Hydrobiologia 2001, 464, 153–164. [Google Scholar] [CrossRef]
- Menetrey, N.; Oertli, B.; Sartori, M.; Wagner, A.; Lachavanne, J.B. Eutrophication: Are mayflies (Ephemeroptera) good bioindicators for ponds? Hydrobiologia 2008, 597, 125–135. [Google Scholar] [CrossRef]
- Sandin, L.; Johnson, R.K. The statistical power of selected indicator metrics using macroinvertebrates for assessing acidification and eutrophication of running waters. In Assessing the Ecological Integrity of Running Waters; Jungwirth, M., Muha, S., Schmutz, S., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 233–243. [Google Scholar]
- Extence, C.A.; Balbi, D.M.; Chadd, R.P. River flow indexing using British benthic macroinvertebrates: A framework for setting hydroecological objectives. Regul. Rivers Res. Manag. 1999, 15, 543–574. [Google Scholar] [CrossRef]
- Davy-Bowker, J.; Murphy, J.F.; Rutt, G.P.; Steel, J.E.C.; Furse, M.T. The development and testing of a macroinvertebrate biotic index for detecting the impact of acidity on streams. Archiv für Hydrobiologie 2005, 163, 383–403. [Google Scholar] [CrossRef]
- Macedo-Sousa, J.A.; Gerhardt, A.; Brett, C.M.; Nogueira, A.J.; Soares, A.M. Behavioural responses of indigenous benthic invertebrates (Echinogammarus meridionalis, Hydropsyche pellucidula and Choroterpes picteti) to a pulse of acid mine drainage: A laboratorial study. Environ. Pollut. 2008, 156, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Chadd, R.P.; England, J.A.; Constable, D.; Dunbar, M.J.; Extence, C.A.; Leeming, D.J.; Murray-Bligh, J.A.; Wood, P.J. An index to track the ecological effects of drought development and recovery on riverine invertebrate communities. Ecol. Indic. 2017, 82, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Extence, C.A.; Chadd, R.P.; England, J.; Dunbar, M.J.; Wood, P.J.; Taylor, E.D. The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River Res. Appl. 2013, 29, 17–55. [Google Scholar] [CrossRef]
- Schriever, C.A.; Hansler-Ball, M.; Holmes, C.; Maund, S.; Liess, M. Agricultural intensity and landscape structure: Influences on the macroinvertebrate assemblages of small streams in northern Germany. Environ. Toxicol. Chem. 2007, 26, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Hilsenhoff, W.L. Changes in the downstream insect and amphipod fauna caused by an impoundment with a hypolimnion drain. Ann. Entomol. Soc. Am. 1971, 64, 743–746. [Google Scholar] [CrossRef]
- Liarte, S.; Ubero-Pascal, N.; Garcia-Ayala, A.; Puig, M.A. Histological effects and localization of dissolved microcystins LR and LW in the mayfly Ecdyonurus angelieri Thomas (Insecta, Ephemeroptera). Toxicon 2014, 92, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Conti, L.; Schmidt-Kloiber, A.; Grenouillet, G.; Graf, W. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 2014, 721, 297–315. [Google Scholar] [CrossRef]
- Hershkovitz, Y.; Dahm, V.; Lorenz, A.W.; Hering, D. A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecol. Indic. 2015, 50, 150–160. [Google Scholar] [CrossRef]
- Sandin, L.; Schmidt-Kloiber, A.; Svenning, J.-C.; Jeppesen, E.; Friberg, N. A trait-based approach to assess climate change sensitivity of freshwater invertebrates across Swedish ecoregions. Curr. Zool. 2014, 60, 221–232. [Google Scholar] [CrossRef]
- Chacon, M.M.; Segnini, S.; Briceño, D. Temperature and daily emergence of seven genera of Ephemeroptera (Insecta) in a cloud forest stream of tropical Andes. Rev. Biol. Trop. 2016, 64, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Haidekker, A.; Hering, D. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: A multivariate study. Aquat. Ecol. 2008, 42, 463–481. [Google Scholar] [CrossRef]
- Hwang, J.M.; Lee, S.J.; Bae, Y.J. Larval growth of Cloeon dipterum (Ephemeroptera: Baetidae) in different temperature conditions. Korean J. Environ. Biol. 2005, 23, 114–119. (In Korean) [Google Scholar]
- Parnrong, S.; Campbell, I.C. The effects of temperature on egg hatching of the mayfly Austrophlebioides marchanti (Ephemeroptera: Leptophlebiidae). In Research Update on Ephemeroptera and Plecoptera; Gaino, E., Ed.; University of Perugia: Perugia, Italy, 2003; pp. 189–193. [Google Scholar]
- Puckett, R.T.; Cook, J.L. Physiological tolerance ranges of larval Caenis latipennis (Ephemeroptera: Caenidae) in response to fluctuations in dissolved oxygen concentration, pH and temperature. Tex. J. Sci. 2004, 56, 123–130. [Google Scholar]
- Ross-Gillespie, V.; Picker, M.D.; Dallas, H.F.; Day, J.A. The role of temperature in egg development of three aquatic insects Lestagella penicillata (Ephemeroptera), Aphanicercella scutata (Plecoptera), Chimarra ambulans (Trichoptera) from South Africa. J. Therm. Biol. 2018, 71, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Scherr, M.A.; Wooster, D.E.; Rao, S. Effects of Temperature on Growth Rate and Behavior of Epeorus albertae (Ephemeroptera: Heptageniidae) Nymphs. Environ. Entomol. 2011, 39, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, B.W.; Funk, D.H.; Camp, A.A.; Buchwalter, D.B.; Jackson, J.K. Why adult mayflies of Cloeon dipterum (Ephemeroptera: Baetidae) become smaller as temperature warms. Freshw. Sci. 2018, 37, 64–81. [Google Scholar] [CrossRef]
- Mo, H.H.; Lee, S.E.; Son, J.; Hwang, J.M.; Bae, Y.J.; Cho, K. Exposure of mayfly Ephemera orientalis (Ephemeroptera) eggs to heavy metals and discovery of biomarkers. Environ. Toxicol. Pharmacol. 2013, 36, 1167–1175. [Google Scholar] [CrossRef]
- Haro, R.J.; Bailey, S.W.; Northwick, R.M.; Rolfhus, K.R.; Sandheinrich, M.B.; Wiener, J.G. Burrowing dragonfly larvae as biosentinels of methylmercury in freshwater food webs. Environ. Sci. Technol. 2013, 47, 8148–8156. [Google Scholar] [CrossRef]
- Jardine, T.D.; Al, T.A.; MacQuarrie, K.T.; Ritchie, C.D.; Arp, P.A.; Maprani, A.; Cunjak, R.A. Water striders (family Gerridae): Mercury sentinels in small freshwater ecosystems. Environ. Pollut. 2005, 134, 165–171. [Google Scholar] [CrossRef]
- Jardine, T.D.; Kidd, K.A.; Cunjak, R.A.; Arp, P.A. Factors affecting water strider (Hemiptera: Gerridae) mercury concentrations in lotic systems. Environ. Toxicol. Chem. 2009, 28, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Conley, J.M.; Funk, D.H.; Hesterberg, D.H.; Hsu, L.C.; Kan, J.; Liu, Y.T.; Buchwalter, D.B. Bioconcentration and biotransformation of selenite versus selenate exposed periphyton and subsequent toxicity to the mayfly Centroptilum triangulifer. Environ. Sci. Technol. 2013, 47, 7965–7973. [Google Scholar] [CrossRef] [PubMed]
- Lagauzère, S.; Boyer, P.; Stora, G.; Bonzon, J.M. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 2009, 76, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Beketov, M. Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: Linkage between experimental and observational data. Hydrobiologia 2004, 528, 209–216. [Google Scholar] [CrossRef]
- Marie, V.; Dia, A.; Thomas, A. Compléments et corrections à la faune des Ephéméroptères du Proche-Orient. 3. Serratella bauernfeindi n.sp. du Liban: Description comparativement à S. mesoleuca (Brauer, 1857) et écologie (Ephemeroptera, Ephemerellidae). Ephemera 2000, 1, 93–103, (1999). [Google Scholar]
- Vidinova, Y.; Russev, B.K. Distribution and ecology of the representatives of some Ephemeropteran families in Bulgaria. In Ephemeroptera & Plecoptera Biology-Ecology-Systematics; Landolt, P., Sartori, M., Eds.; Mauron+Tinguely & Lachat SA: Fribourg, Switzerland, 1997; pp. 139–146. [Google Scholar]
- Back, J.A.; Taylor, J.M.; King, R.S.; Fallert, K.L.; Hintzen, E.H. Ontogenic differences in mayfly stoichiometry influence growth rates in response to phosphorus enrichment. Fundam. Appl. Limnol. 2008, 171, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Lemly, A.D.; King, R.S. An insect-bacteria bioindicator for assessing detrimental nutrient enrichment in wetlands. Wetlands 2000, 20, 91–100. [Google Scholar] [CrossRef]
- Peterson, R.H.; Gordon, D.J.; Johnston, D.J. Distribution of mayfly nymphs (Insecta: Ephemeroptera) in some streams of eastern Canada as related to stream pH. Can. Field-Nat. 1985, 99, 490–493. [Google Scholar]
- Feldman, R.S.; Connor, E.F. The relationship between pH and community structure of invertebrates in streams of the Shenandoah National Park, Virginia, U.S.A. Freshw. Biol. 1992, 27, 261–276. [Google Scholar] [CrossRef]
- WWF. Living Planet Report—2018: Aiming Higher; Grooten, M., Almond, R.E.A., Eds.; WWF: Gland, Switzerland, 2018. [Google Scholar]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef]
- Frake, A.; Hayes, P. Report on the Millennium Chalk Streams Fly Trends Study; Environment Agency: Exeter, UK, 2001. [Google Scholar]
- UICN. IUCN Red List Categories and Criteria. Version 3.1, 2nd ed.; IUCN Species Survival Commission: Gland, Switzerland; Cambridge, MA, USA, 2012; p. 32. [Google Scholar]
- Collen, B.; Böhm, M.; Kemp, R.; Baillie, J.E.M. Spineless: Status and Trends of the World’s Invertebrates; Zoological Society of London: London, UK, 2012. [Google Scholar]
- Wagner, A.; Sartori, M. Liste rouge des Ephémères de Suisse. In Listes rouges Ephémères, Plécoptères Trichoptères: Espèces Menacées en Suisse, état 2010; Lubini, V., Knispel, S., Sartori, M., Vicentini, F.L., Wagner, A., Eds.; Centre Suisse de Cartographie de la Faune: Bern, Switzerland, 2012. [Google Scholar]
- UICN France; MNHN; Opie. La Liste Rouge des Espèces Menacées en France—Chapitre Ephémères de France Métropolitaine; UICN: Paris, France, 2018; p. 4. [Google Scholar]
- Jacobus, L.M. South Carolina mayflies (Insecta: Ephemeroptera) of conservation concern. J. S. C. Acad. Sci. 2013, 11, 23–26. [Google Scholar]
- Hudson, L.A.; Ciborowski, J.J.H. Spatial and taxonomic variation in incidence of mouthpart deformities in midge larvae (Diptera: Chironomidae: Chironomini). Can. J. Fish. Aquat. Sci. 1996, 53, 297–304. [Google Scholar] [CrossRef]
- Everall, N.C.; Johnson, M.F.; Wood, P.J.; Mattingley, L. Sensitivity of the early life stages of a mayfly to fine sediment and orthophosphate levels. Environ. Pollut. 2018, 237, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Pace, G.; Ormerod, S. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Res. Appl. 2011, 27, 257–267. [Google Scholar] [CrossRef]
- Larsen, S.; Ormerod, S. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biol. Conserv. 2010, 143, 2638–2646. [Google Scholar] [CrossRef]
- Angradi, T.R. Fine sediment and macroinvertebrate assemblages in Appalachian streams: A fields experiment with biomonitoring applications. J. N. Am. Benthol. Soc. 1999, 18, 49–66. [Google Scholar] [CrossRef]
- Matthaei, C.D.; Weller, F.; Kelly, D.W.; Townsend, C.R. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshw. Biol. 2006, 51, 2154–2172. [Google Scholar] [CrossRef]
- Opfer, S.E.; Farver, J.R.; Miner, J.G.; Krieger, K. Heavy metals in sediments and uptake by burrowing mayflies in western Lake Erie basin. J. Gt. Lakes Res. 2011, 37, 1–8. [Google Scholar] [CrossRef]
- Wesner, J.S.; Walters, D.M.; Schmidt, T.S.; Kraus, J.M.; Stricker, C.A.; Clements, W.H.; Wolf, R.E. Metamorphosis affects metal concentrations and isotopic signatures in a mayfly (Baetis tricaudatus): Implications for the aquatic-terrestrial transfer of metals. Environ. Sci. Technol. 2017, 51, 2438–2446. [Google Scholar] [CrossRef]
- Malaj, E.; von der Ohe, P.C.; Grote, M.; Kühne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R.B. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [Google Scholar] [CrossRef] [Green Version]
- Raby, M.; Nowierski, M.; Perlov, D.; Zhao, X.; Hao, C.; Poirier, D.G.; Sibley, P.K. Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environ. Toxicol. Chem. 2018, 37, 1430–1445. [Google Scholar] [CrossRef] [PubMed]
- Van den Brinck, P.J.; Van Smeden, J.M.; Bekele, R.S.; Dierick, W.; De Gelder, D.M.; Noteboom, M.; Roessink, I. Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences. Environ. Toxicol. Chem. 2016, 35, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, T.C.; Van Staalduinen, M.A.; Van der Sluijs, J.P. Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid. PLoS ONE 2013, 8, e62374. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Roessink, I.; Merga, L.B.; Zweers, H.J.; Van den Brinck, P.J. The neonicotinoid Imidacloprid shows high chronic toxicity to mayfly nymphs. Environ. Toxicol. Chem. 2013, 32, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Shardlow, M. Neonicotinoid Insecticides in British Freshwaters; Buglife—The Invertebrate Conservation Trust: Petersborough, UK, 2017; p. 62. [Google Scholar]
- Richmond, E.K.; Rosi, E.J.; Walters, D.M.; Fick, J.; Hamilton, S.K.; Brodin, T.; Sundelin, A.; Grace, M.R. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 2018, 9, 4491. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Kagaya, T.; Matsuda, H. Comparing macroinvertebrate assemblages at organic-contaminated river sites with different zinc concentrations: Metal-sensitive taxa may already be absent. Environ. Pollut. 2018, 241, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, B.; Aldridge, D. Review of the Ecological Impact and Invasion Potential of Ponto Caspian Invaders in Great Britain; Cambridge Environmental Consulting: Cambridge, UK, 2013; p. 130. [Google Scholar]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species A Selection from the Global Invasive Species Database; IUCN: Gland, Switzerland, 2000; p. 12. [Google Scholar]
- Kettunen, M.; Genovesi, P.; Gollasch, S.; Pagad, S.; Starfinger, U.; ten Brink, P.; Shine, C. Technical Support to EU Strategy on Invasive Species (IAS)—Assessment of the Impacts of IAS in Europe and the EU (Final Module Report for the European Commission); Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2008; p. 44 + Appendices. [Google Scholar]
- Palmer, M.; Macadam, C.R. Developing a Priority List of Alien Invasive Invertebrate Species; Buglife: Petersborough, UK, 2014. [Google Scholar]
- Tricarico, H.; Junqueira, A.O.R.; Dudgeon, D.D. Alien species in aquatic environments: A selective comparison of coastal and inland waters in tropical and temperate latitudes. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2016, 26, 872–891. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Stanley, E.H.; Vander Zanden, M.J. State of the World’s freshwater ecosystems: Physical, chemical, and biological changes. Ann. Rev. Environ. Res. 2011, 36, 75–99. [Google Scholar] [CrossRef]
- Zarfl, C.; Lumsdon, A.E.; Berlekamp, J.; Tydecks, L.; Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 2015, 77, 161–170. [Google Scholar] [CrossRef]
- Souto, P.M.; Angeli, K.B.; Salles, F.F. Tricorythodes tragoedia sp nov (Ephemeroptera: Leptohyphidae), a new species from Rio Doce and surrounding areas, southeastern Brazil. Zootaxa 2017, 4341, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, T.A.; Muehlbauer, J.D.; Yackulic, C.B.; Lytle, D.A.; Miller, S.W.; Dibble, K.L.; Kortenhoeven, E.W.; Metcalfe, A.N.; Baxter, C.V. Flow Management for Hydropower Extirpates Aquatic Insects, Undermining River Food Webs. Bioscience 2016, 66, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Manfrin, A.; Singer, G.; Larsen, S.; Weiß, N.; van Grunsven, R.H.A.; Weiß, N.-S.; Wohlfahrt, S.; Monaghan, M.T.; Hölker, F. Artificial light at night affects organism flux across ecosystem boundaries and drives community structure in the recipient ecosystem. Front. Environ. Sci. 2017, 5, 61. [Google Scholar] [CrossRef]
- Kriska, G.; Horvath, G.; Andrikovics, S. Why do mayflies lay their eggs “en masse” on dry asphalts roads? Water-immitating polarized light reflected from asphalt attracts Ephemeroptera. J. Exp. Biol. 1998, 201, 2273–2286. [Google Scholar] [PubMed]
- Horvath, G.; Kriska, G. Polarization vision in aquatic insects and ecological traps for polarotactic insects. In Aquatic Insects: Challenges to Populations; Lancaster, J., Briers, B.A., Eds.; CAB International Publishing: Wallingford, UK, 2008; pp. 204–229. [Google Scholar]
- Horvath, G.; Blaho, M.; Egri, A.; Kriska, G.; Seres, I.; Robertson, B. Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects. Conserv. Biol. 2010, 24, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Loxdale, H.; Loxdale, N.; Macadam, C.R. A bridge too far... at least for caddisflies and Mayflies. Antenna 2013, 37, 106–110. [Google Scholar]
- Malnas, K.; Polyak, L.; Prill, E.; Hegedus, R.; Kriska, G.; Devai, G.; Horvath, G.; Lengyel, S. Bridges as optical barriers and population disruptors for the mayfly Palingenia longicauda: An overlooked threat to freshwater biodiversity? J. Insect Conserv. 2011, 15, 823–832. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Kefford, B.J.; Piscart, C.; Prat, N.; Schäfer, R.B.; Schulz, C.J. Salinisation of rivers: An urgent ecological issue. Environ. Pollut. 2013, 173, 157–167. [Google Scholar] [CrossRef]
- Center, S.W.R. Ecotoxicity Study for Mayflies Exposed to Ambient Stream Water from the Upper Delaware River Basin, Reference Toxicant, and to Produced-Water from Natural Gas Drilling; Publication Number 2013003; Stroud Water Research Center: Avondale, PA, USA, 2013. [Google Scholar]
- Hannah, L. Climate Change Biology, 2nd ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Brittain, J.E. Mayflies, biodiversity and climate change. In International Advances in the Ecology, Zoogeography and Systematics of Mayflies and Stoneflies; Hauer, F.R., Stanford, J.A., Newell, R.L., Eds.; University of California Press: Berkeley, CA, USA, 2008; pp. 1–14. [Google Scholar]
- Darwall, W.; Bremerich, V.; De Wever, A.; Dell, A.I.; Freyhof, J.; Gessner, M.O.; Grossart, H.P.; Harrison, I.; Irvine, K.; Jahnig, S.C.; et al. The Alliance for Freshwater Life: A global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv.-Mar. Freshw. Ecosyst. 2018, 28, 1015–1022. [Google Scholar] [CrossRef]
- Hering, D.; Schmidt-Kloiber, A.; Murphy, J.; Locke, S.; Zamora-Muñoz, C.; Lopez Rodriguez, M.J.; Huber, T.; Graf, W. Potential impact of climate change on aquatic insects: A sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat. Sci. 2009, 71, 3–14. [Google Scholar] [CrossRef]
- Durance, I.; Ormerod, S. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Chang. Biol. 2007, 13, 942–957. [Google Scholar] [CrossRef]
- Kitchen, L.; Macadam, C.R.; Yeomans, W.E. Is the Upland Summer Mayfly (Ameletus Inopinatus Eaton 1887) in Hot Water? Freshwater Biological Association: Windermere, UK, 2010. [Google Scholar]
- Taubmann, J.; Theissinger, K.; Feldheim, K.A.; Laube, I.; Graf, W.; Haase, P.; Johannesen, J.; Pauls, S.U. Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv. Genet. 2011, 12, 503–515. [Google Scholar] [CrossRef]
- Jonsson, M.; Hedström, P.; Stenroth, K.; Hotchkiss, E.R.; Vasconcelos, F.R.; Karlsson, J.; Byström, P. Climate change modifies the size structure of assemblages of emerging aquatic insects. Freshw. Biol. 2015, 60, 78–88. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobus, L.M.; Macadam, C.R.; Sartori, M. Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services. Insects 2019, 10, 170. https://doi.org/10.3390/insects10060170
Jacobus LM, Macadam CR, Sartori M. Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services. Insects. 2019; 10(6):170. https://doi.org/10.3390/insects10060170
Chicago/Turabian StyleJacobus, Luke M., Craig R. Macadam, and Michel Sartori. 2019. "Mayflies (Ephemeroptera) and Their Contributions to Ecosystem Services" Insects 10, no. 6: 170. https://doi.org/10.3390/insects10060170