Butterfly Conservation in China: From Science to Action
Abstract
:Simple Summary
Abstract
1. Introduction
2. China’s Butterfly Diversity and Threats
3. China Butterfly Conservation: Current Situation and Gaps
3.1. Current Conservation Modes
3.1.1. Protected Areas
3.1.2. Legislation and Protected Species Lists
3.1.3. National Biodiversity Conservation Strategy
3.2. Gaps and Challenges
3.2.1. Lack of Holistic Conservation Research
3.2.2. Bias in Protected Species
3.2.3. Unregulated Commercial Collection
4. Recommendations of Future Butterfly Conservation
4.1. Improving Conservation Science
4.1.1. Revising the Protected Species Lists
4.1.2. Identify High Priority Areas and Refugia
4.1.3. Assessing Genetic Diversity
4.1.4. Using Umbrella Species to Boost Conservation
4.2. Wise Land Use Management
4.2.1. Butterfly-Friendly Agriculture
4.2.2. Butterfly-Friendly Urban Green Spaces
4.2.3. Increasing Diversity in Reforestation
4.2.4. Protection of Traditional Forests
4.3. Pros and Cons of Butterfly Ranching and Collecting
4.3.1. Ranching over Collecting
4.3.2. Developing and Enforcing Regulations for Collecting
4.4. Increasing Public Involvement
4.4.1. Adoption of Citizen Science
4.4.2. Elevation of Public Awareness
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ponder, W.; Lunney, D. The Other 99%: The Conservation and Biodiversity of Invertebrates; The Royal Zoological Society of New South Wales: New South Wales, UK, 1999. [Google Scholar]
- New, T.R. Butterfly Conservation; Oxford University Press: Melbourne, Australia, 1997. [Google Scholar]
- Fleishman, E.; Murphy, D.D. A realistic assessment of the indicator potential of butterflies and other charismatic taxonomic groups. Conserv. Biol. 2009, 23, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Pe’er, G.; Settele, J. The rare butterfly Tomares nesimachus (Lycaenidae) as a bioindicator for pollination services and ecosystem functioning in northern Israel. Isr. J. Ecol. Evol. 2008, 54, 113–136. [Google Scholar] [CrossRef]
- Waltz, A.E.M.; Wallace Covington, W. Butterfly response and successional change following ecosystem restoration. USDA For. Serv. Proc. 2001, RMRS-P-22, 88–94. [Google Scholar]
- Ghazanfar, M.; Malik, M.F.; Hussain, M.; Iqbal, R.; Younas, M. Butterflies and their contribution in ecosystem: A review. J. Entomol. Zool. Stud. 2016, 4, 115–118. [Google Scholar]
- Corlett, R.T. Flower visitors and pollination in the Oriental (Indomalayan) Region. Biol. Rev. 2004, 79, 497–532. [Google Scholar] [CrossRef] [PubMed]
- Munyuli, T. Pollinator biodiversity in Uganda and in Sub-Sahara Africa: Landscape and habitat management strategies for its conservation. Int. J. Biodivers. Conserv. 2011, 3, 551–609. [Google Scholar]
- Jiang, Y.X. Two important ornamental and medicinal butterflies in the Mudanjiang Region: Papilio machaon and P. xuthus. For. By-Prod. Spec. China 2004, 72, 22–23. [Google Scholar]
- Kim, S.R.; Choi, K.-H.; Kim, K.-Y.; Kwon, H.-Y.; Park, S.-W. Development of a novel short synthetic antibacterial peptide derived from the swallowtail butterfly Papilio xuthus larvae. J. Microbiol. Biotechnol. 2020, 03009. [Google Scholar] [CrossRef]
- Chen, T.X.; Lu, T.; Chen, Z.X.; Wang, W.L.; Zhang, W.; Pan, H.; Meng, X.; Jiang, X.L.; Zhu, S.M. Microstructures of responsive photonic crystals on the stimuli-responsive performance: Effects and simulation. Sens. Actuators B-Chem. 2020, 305. [Google Scholar] [CrossRef]
- Shen, Q.C.; Ma, S.; Luo, Z.; An, S.; He, J.Q.; Zhang, R.X.; Tao, P.; Song, C.Y.; Wu, J.B.; Potyrailo, R.A.; et al. Butterfly wing inspired high performance infrared detection with spectral selectivity. Adv. Opt. Mater. 2020. [Google Scholar] [CrossRef]
- Fenner, J.; Benson, C.; Rodriguez-Caro, L.; Ren, A.; Papa, R.; Martin, A.; Hoffmann, F.; Range, R.; Counterman, B.A. WntGenes in wing pattern development of Coliadinae butterflies. Front. Ecol. Evol. 2020, 8, 00197. [Google Scholar] [CrossRef]
- Owens, H.L.; Lewis, D.S.; Condamine, F.L.; Kawahara, A.Y.; Guralnick, R.P. Comparative phylogenetics of Papilio butterfly wing shape and size demonstrates independent hindwing and forewing evolution. Syst. Biol. 2020, 69, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.L.; Mazo-Vargas, A.; Brack, B.J.; Reed, R.D. Multiple roles for laccase2 in butterfly wing pigmentation, scale development, and cuticle tanning. Evol. Dev. 2020, 22, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Van Belleghem, S.M.; Roman, P.A.A.; Gutierrez, H.C.; Counterman, B.A.; Papa, R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B-Biol. Sci. 2020, 287, 20201267. [Google Scholar] [CrossRef]
- Yang, J.; Wan, W.T.; Xie, M.; Mao, J.L.; Dong, Z.W.; Lu, S.H.; He, J.W.; Xie, F.A.; Liu, G.C.; Dai, X.L.; et al. Chromosome-level reference genome assembly and gene editing of the dead-leaf butterfly Kallima inachus. Mol. Ecol. Resour. 2020, 20, 1080–1092. [Google Scholar] [CrossRef]
- Morris, J.; Hanly, J.J.; Martin, S.H.; Van Belleghem, S.M.; Salazar, C.; Jiggins, C.D.; Dasmahapatra, K.K. Deep convergence, shared ancestry and evolutionary novelty in the genetic architecture of Heliconius mimicry. Genetics 2020, 216, 303611. [Google Scholar] [CrossRef]
- Palmer, D.H.; Kronforst, M.R. A shared genetic basis of mimicry across swallowtail butterflies points to ancestral co-option of doublesex. Nat. Commun. 2020, 11, 6. [Google Scholar] [CrossRef]
- Spaniol, R.L.; Mendonca, M.d.S., Jr.; Hartz, S.M.; Iserhard, C.A.; Stevens, M. Discolouring the Amazon Rainforest: How deforestation is affecting butterfly coloration. Biodivers. Conserv. 2020, 29, 2821–2838. [Google Scholar] [CrossRef]
- Timmermans, M.J.T.N.; Srivathsan, A.; Collins, S.; Meier, R.; Vogler, A.P. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed-invected. Proc. R. Soc. B-Biol. Sci. 2020, 287, 20200443. [Google Scholar] [CrossRef]
- Vankuren, N.W.; Massardo, D.; Nallu, S.; Kronforst, M.R. Butterfly mimicry polymorphisms highlight phylogenetic limits of gene reuse in the evolution of diverse adaptations. Mol. Biol. Evol. 2019, 36, 2842–2853. [Google Scholar] [CrossRef]
- Dapporto, L.; Hardy, P.B.; Dennis, R.L.H. Evidence for adaptive constraints on size of marginal wing spots in the grayling butterfly, Hipparchia semele. Biol. J. Linn. Soc. 2019, 126, 131–145. [Google Scholar] [CrossRef]
- Iwata, M.; Otaki, J.M. Focusing on butterfly eyespot focus: Uncoupling of white spots from eyespot bodies in nymphalid butterflies. Springerplus 2016, 5, 1287. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.C.; Monteiro, A. On the origins of sexual dimorphism in butterflies. Proc. R. Soc. B-Biol. Sci. 2011, 278, 1981–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coristine, L.E.; Soroye, P.; Soares, R.N.; Robillard, C.; Kerr, J. Dispersal limitation, climate change, and practical tools for butterfly conservation in intensively used landscapes. Nat. Areas J. 2016, 36, 440–452. [Google Scholar] [CrossRef]
- Habel, J.C.; Teucher, M.; Ulrich, W.; Bauer, M.; Rödder, D. Drones for butterfly conservation: Larval habitat assessment with an unmanned aerial vehicle. Landsc. Ecol. 2016, 31, 2385–2395. [Google Scholar] [CrossRef]
- Scalco, V.W.; De Morais, A.B.B.; Romanowski, H.P.; Mega, N.O. Population dynamics of the swallowtail butterfly Battus polystictus polystictus (Butler) (Lepidoptera: Papilionidae) with notes on its natural history. Neotrop. Entomol. 2016, 45, 33–43. [Google Scholar] [CrossRef]
- Johansson, V.; Knape, J.; Franzén, M. Population dynamics and future persistence of the clouded Apollo butterfly in southern Scandinavia: The importance of low intensity grazing and creation of habitat patches. Biol. Conserv. 2017, 206, 120–131. [Google Scholar] [CrossRef]
- Gao, A.B.; Cui, R.R. Semiotic study on the butterfly image in traditional costume culture. J. Silk 2015, 52, 46–50. [Google Scholar] [CrossRef]
- Hogue, C.L. Cultural Entomology. Annu. Rev. Entomol. 1987, 32, 181–199. [Google Scholar] [CrossRef]
- Wang, J.B. Butterfly image and psychological aesthetic culture of Chinese nationality. J. Yunnan RTV Univ. 2009, 11, 36–41. [Google Scholar]
- Wang, K.F.; Ge, M.; Zhang, T. On butterfly aesthetics of Nabokov’s postmodern novel writing. J. Northeast Norm. Univ. 2012, 257, 103–106. [Google Scholar]
- Yeh, M.L.; Lien, C.M.; Kao, Y.F. Applying the story of the dream of the butterfly in creative design. In Proceedings of the 9th International Conference on Cross-Cultural Design, Vancover, BC, Canada, 9–14 July 2017. [Google Scholar]
- Zhang, X. The image of butterfly in new style poetry. Fudan J. 2001, 2001, 133–139. [Google Scholar]
- Lemelin, R.H.; Boileau, E.Y.S.; Russell, C. Entomotourism: The allure of the arthropod. Soc. Anim. 2019, 27, 733–750. [Google Scholar] [CrossRef]
- McNeely, J.A.; Miller, K.R.; Reid, W.V.; Mittermeier, R.A.; Werner, T.B. Conserving the World’s Biological Diversity; International Union for Conservation of Nature and Natural Resources: Gland, Switzerland, 1990. [Google Scholar]
- Mittermeier, R.A.; Gil, P.R.; Mittermeier, C.G. Megadiversity: Earth’s Biologically Wealthiest Nations; CEMEX: Mexico City, Mexico, 1997. [Google Scholar]
- Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.F.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban Plan. 2016, 145, 21–23. [Google Scholar] [CrossRef]
- Wang, W.L.; Delang, C.O. Chinese forest policies in the age of ideology (1949–1977). Int. For. Rev. 2011, 13, 416–430. [Google Scholar] [CrossRef]
- NPC. Amendment to the Constitution of the People’s Republic of China; Art. 32; NPC: Beijing, China, 2018.
- Xi, J.P. Green development model and green way of life. In The Governance of China; Foreign Languages Press: Beijing, China, 2017; Volume 2, pp. 428–431. [Google Scholar]
- Bergkamp, L.; Xu, G.D. Design and implementation of a governance system for the protection of the environment and public health in China: International models, best practices, and implications for contemporary China. China-Eu Law J. 2017, 5, 135–174. [Google Scholar] [CrossRef]
- Xu, H.G.; Tang, X.P.; Liu, J.Y.; Ding, H.; Wu, J.; Zhang, M.; Yang, Q.W.; Cai, L.; Zhao, H.J.; Liu, Y. China’s progress toward the significant reduction of the rate of biodiversity loss. BioScience 2009, 59, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Cao, C.; Gu, J.Z.; Liu, T. A new environmental protection law, many old problems? Challenges to environmental governance in China. J. Environ. Law 2016, 28, 325–335. [Google Scholar] [CrossRef]
- Ma, F.Z.; Xu, H.G.; Chen, M.M.; Tong, W.J.; Wang, C.B.; Cai, L. Progress in construction of China butterfly diversity observation network (China BON-Butterflies). J. Ecol. Rural Environ. 2018, 34, 27–36. [Google Scholar] [CrossRef]
- Fang, L.J.; Xu, H.G.; Guan, J.L. History and present status of butterfly monitoring in Europe and related development strategies for China. Chin. J. Appl. Ecol. 2013, 24, 2691–2698. [Google Scholar]
- NPC. Law of the People’s Republic of China on the Protection of Wildlife (2018 Amended); National Forestry and Grassland Administration: Beijing, China, 2018.
- Wu, C.S.; Hsu, Y.F. Butterflies of China; The Straits Publishing & Distributing Group: Fuzhou, China, 2017. [Google Scholar]
- Tillberg, C.V.; Breed, M.D. Co-extinction of tropical butterflies and their host plants. Biotropica 2004, 26, 272–274. [Google Scholar]
- Koiwaya, S.; Ueda, K. The Zephyrus Hairstreaks of the World; Fujita, H., Ed.; Mushi-Sha: Tokyo, Japan, 2007. [Google Scholar]
- Zhu, J.Q.; Gu, Y.; Chen, Z.B.; Chen, J.L. The Life History of Chinese Butterflies; Chongqing University Press: Chongqing, China, 2019; p. 616. [Google Scholar]
- Preston-Mafham, R.; Preston-Mafham, K. Butterflies of the World; Blandford Press: London, UK, 1988; p. 192. [Google Scholar]
- Chong, K.Y.; Teo, S.; Kurukulasuriya, B.; Chung, Y.F.; Rajathurai, S.; Tan, H.T.W. Not all green is as good: Different effects of the natural and cultivated components of urban vegetation on bird and butterfly diversity. Biol. Conserv. 2014, 171, 299–309. [Google Scholar] [CrossRef]
- Concepcion, E.D.; Obrist, M.K.; Moretti, M.; Altermatt, F.; Baur, B.; Nobis, M.P. Impacts of urban sprawl on species richness of plants, butterflies, gastropods and birds: Not only built-up area matters. Urban Ecosyst. 2016, 19, 225–242. [Google Scholar] [CrossRef]
- Lagucki, E.; Burdine, J.D.; McCluney, K.E. Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city. PeerJ 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R. Habitat resources, remnant vegetation condition and area determine distribution patterns and abundance of butterflies and day-flying moths in a fragmented urban landscape, south-west Western Australia. J. Insect Conserv. 2011, 15, 37–54. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Wyckhuys, K.A.G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Delang, C.O.; Wang, W.L. Chinese forest policies in the age of decentralisation (1978–1997). Int. For. Rev. 2012, 14, 13–26. [Google Scholar] [CrossRef]
- Delang, C.O.; Wang, W.L. Chinese forest policy reforms after 1998: The case of the Natural Forest Protection Program and the Slope Land Conversion Program. Int. For. Rev. 2013, 15, 290–304. [Google Scholar] [CrossRef]
- Li, X.S.; Luo, Y.Q.; Yuan, S.Y.; Zhang, Y.L.; Settele, J. Forest management and its impact on present and potential future Chinese insect biodiversity—A butterfly case study from Gansu Province. J. Nat. Conserv. 2011, 19, 285–295. [Google Scholar] [CrossRef]
- Gao, K.; Li, X.S.; Guo, Z.Y.; Zhang, Y.L. The bionomics, habitat requirements and population threats of the butterfly Bhutanitis thaidina in Taibai Mountain. J. Insect Conserv. 2014, 18, 29–38. [Google Scholar] [CrossRef]
- Yi, C.H.; He, F.X.; He, Q.J.; Wang, L. The biological characteristics of Bhutanitis yulongensis Chou. Chin. J. Appl. Entomol. 2011, 48, 1505–1508. [Google Scholar]
- Yi, C.H.; He, Q.J.; Wang, L.; Chen, Y.; Yi, W. Distribution, endangered reasons and protective research of Bhutanitis thaidina. Hubei Agric. Sci. 2011, 50, 2851–2854. [Google Scholar] [CrossRef]
- Basley, K.; Goulson, D. Effects of field-relevant concentrations of clothianidin on larval development of the butterfly Polyommatus icarus (Lepidoptera, Lycaenidae). Environ. Sci. Technol. 2018, 52, 3990–3996. [Google Scholar] [CrossRef] [PubMed]
- Halsch, C.A.; Code, A.; Hoyle, S.M.; Fordyce, J.A.; Baert, N.; Forister, M.L. Pesticide contamination of milkweeds across the agricultural, urban, and open spaces of low-elevation northern California. Front. Ecol. Evol. 2020, 8, 00162. [Google Scholar] [CrossRef]
- James, D.G. A neonicotinoid insecticide at a rate found in nectar eeduces longevity but not oogenesis in monarch butterflies, Danaus plexippus (L.). (Lepidoptera: Nymphalidae). Insects 2019, 10, 276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaya-Arenas, P.; Hauri, K.; Scharf, M.E.; Kaplan, I. Larval pesticide exposure impacts monarch butterfly performance. Sci. Rep. 2020, 10, 14490. [Google Scholar] [CrossRef] [PubMed]
- Forister, M.L.; Cousens, B.; Harrison, J.G.; Anderson, K.; Thorne, J.H.; Waetjen, D.; Nice, C.C.; De Parsia, M.; Hladik, M.L.; Meese, R.; et al. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett. 2016, 12, 20160475. [Google Scholar] [CrossRef]
- Mule, R.; Sabella, G.; Robba, L.; Manachini, B. Systematic review of the effects of chemical insecticides on four common butterfly families. Front. Environ. Sci. 2017, 5, 00032. [Google Scholar] [CrossRef]
- Gilburn, A.S.; Bunnefeld, N.; Wilson, J.M.; Botham, M.S.; Brereton, T.M.; Fox, R.; Goulson, D. Are neonicotinoid insecticides driving declines of widespread butterflies? PeerJ 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Belsky, J.; Joshi, N.K. Assessing role of major drivers in recent decline of monarch butterfly population in North America. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Li, X.S.; Zhang, Y.L.; Fang, J.H.; Schweiger, O.; Settele, J. A butterfly hotspot in western China, its environmental threats and conservation. J. Insect Conserv. 2011, 15, 617–632. [Google Scholar] [CrossRef]
- Patton, D. China to Phase Out More Pesticides in Push to Improve Food Safety. Available online: https://www.reuters.com/article/china-pesticides/china-to-phase-out-more-pesticides-in-push-to-improve-food-safety-idUSL3N1O51PO (accessed on 23 January 2020).
- Jin, S.Q.; Zhou, F. Zero growth of chemical fertilizer and pesticide use: China’s objectives, progress and challenges. J. Resour. Ecol. 2018, 9, 50–58. [Google Scholar] [CrossRef]
- Breed, G.A.; Stichter, S.; Crane, E.E. Climate-driven change in northeastern butterfly communities. Nat. Clim. Chang. 2013, 36, 272–274. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescu, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Hu, S.J.; Xing, D.H.; Gong, Z.X.; Hu, J.M. Projecting suitability and climate vulnerability of Bhutanitis thaidina (Blanchard) (Lepidoptera: Papilionidae) with conservation implications. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- MEE. List of Nature Reserves of China, 2019/5/15 ed.; Ministry of Ecology and Environment: Beijing, China, 2017.
- MEP. China National Biodiversity Conservation Strategy Action Plan: 2011–2030; Environmental Science Press: Beijing, China, 2011.
- SC. Regulations of the People’s Republic of China on Nature Reserves; China Legal Publishing House: Beijing, China, 1994. [Google Scholar]
- Hu, S.J. Species Richness and Abundance Differences between Protected and Unprotected Areas in the Upper Yangtze River Watershed; Yunnan University: Kunming, China, 2018. [Google Scholar]
- Lo, Y.F.P.; Bi, Z. A preliminary report on butterfly fauna (Insecta: Lepidoptera) of the Tengchong section of Gaoligongshan National Nature Reserve, China. J. Threat. Taxa 2019, 11. [Google Scholar] [CrossRef]
- CITES. Convention on International Trade in Endangered Species of Wild Fauna and Flora. Appendices I, II, and III; valid from 4 October 2017. Available online: https://cites.org/eng/app/appendices.php (accessed on 8 September 2018).
- Coote, L.D.; Lafleur, Y.; Charette, R.; Smith, J.; Maliepaard, T.; Millar, D.; Koster, T. CITES Identification Guide—Butterflies; Environment Canada: Ottwa, ON, Canada, 2000; Volume 2020.
- MOF; MOA. List of Wildlife under Special State Protection, 1989/1/14 ed.; Law Press: Beijing, China, 2003. [Google Scholar]
- SFA. List of Terrestrial Wildlife under State Protection for Ecological, Economic and Scientific Values (Bulletin of the State Forestry Administration of P. R. China 2000-07), 2000/8/1 ed.; National Forestry and Grassland Administration: Beijing, China, 2000.
- Xing, S.; Au, T.F.; Dufour, P.C.; Cheng, W.D.; Yuan, F.L.; Jia, F.H.; Vu, L.V.; Wang, M.; Bonebrake, T.C. Conservation of data deficient species under multiple threats: Lessons from an iconic tropical butterfly (Teinopalpus aureus). Biol. Conserv. 2019, 234, 154–164. [Google Scholar] [CrossRef]
- Li, X.S.; Luo, Y.Q.; Zhang, Y.L.; Schweiger, O.; Settele, J.; Yang, Q.S. On the conservation biology of a Chinese population of the birdwing Troides aeacus (Lepidoptera: Papilionidea). J. Insect Conserv. 2010, 14, 257–268. [Google Scholar] [CrossRef]
- Racheli, T.; Cotton, A.M. Guide to the Butterflies of the Palearctic Region: Papilionidae Part I; Bozano, G.C., Ed.; Omnes Artes: Milano, Italy, 2009. [Google Scholar]
- Bollino, M.; Racheli, T. Butterflies of the World: Supplement 20; Bauer, E., Frankenbach, T., Eds.; Goeck & Evers: Keltern, Germany, 2012. [Google Scholar]
- Teague, M. Inside the Murky World of Butterfly Catchers; National Geographic: Washington, DC, USA, 2018. [Google Scholar]
- Dinet, V. Fighting Butterfly Poachers. Available online: http://dinets.info/parnassius.htm (accessed on 13 August 2019).
- Ansari, F.; Jeong, Y.; Putri, I.A.; Kim, S. Sociopsychological aspects of butterfly souvenir purchasing behavior at Bantimurung Bulusaraung National Park in Indonesia. Sustainability 2019, 11, 1789. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Yuan, L.; Qin, R.M. The First Trial of the Country’s Largest Smuggling of Endangered Butterfly Products. Leagal Daily, 7 November 2017. [Google Scholar]
- Li, J. Illegal Sale and Purchase of National Protected Wildlife: Four “Insect Fans” Sentenced. Available online: https://www.chinacourt.org/article/detail/2009/12/id/386981.shtml (accessed on 13 August 2019).
- MOF. Implementation Regulations of the People’s Republic of China on the Protection of Terrestrial Wildlife (2016 Amended); Law Press: Beijing, China, 2016. [Google Scholar]
- Shook, G.; Wu, X.Q. Tiger Beetles of Yunnan; Yunnan Science and Technology Press: Kunming, China, 2007; p. 119. [Google Scholar]
- NatureServe. Conservation Status Assessment: Identifying Threatened Species and Ecosystems. Available online: https://www.natureserve.org/conservation-tools/conservation-status-assessment (accessed on 10 August 2020).
- Evans, T.G.; Diamond, S.E.; Kelly, M.W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Fajardo, J.; Lessmann, J.; Bonaccorso, E.; Devenish, C.; Muñoz, J. Combined use of systematic conservation planning, species distribution modelling, and connectivity analysis reveals severe conservation gaps in a megadiverse country (Peru). PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.T.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C.; et al. Predicting species distributions for conservation decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Kujala, H.; Moilanen, A.; Gordon, A. Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol. Evol. 2018, 9, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Villero, D.; Pla, M.; Camp, D.; Ruiz-Olmo, J.; Brotons, L. Integrating species distribution modelling into decision-making to inform conservation actions. Biodivers. Conserv. 2017, 26, 251–271. [Google Scholar] [CrossRef]
- Eaton, S.; Ellis, C.; Genney, D.; Thompson, R.; Yahr, R.; Haydon, D.T. Adding small species to the big picture: Species distribution modelling in an age of landscape scale conservation. Biol. Conserv. 2018, 217, 251–258. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- Xu, Z.B.; Wang, Y.Y.; Condamine, F.L.; Cotton, A.M.; Hu, S.J. Are the yellow and red marked club-tail Losaria coon the same species? Insects 2020, 11, 392. [Google Scholar] [CrossRef]
- Maes, D.; Ellis, S.; Goffart, P.; Cruickshanks, K.L.; van Swaay, C.; Cors, R.; Herremans, M.; Swinnen, K.; Wils, C.; Verhulst, S.; et al. The potential of species distribution modelling for reintroduction projects: The case study of the Chequered Skipper in England. J. Insect Conserv. 2019, 23, 419–431. [Google Scholar] [CrossRef]
- Scoble, J.; Lowe, A.J. A case for incorporating phylogeography and landscape genetics into species distribution modelling approaches to improve climate adaptation and conservation planning. Divers. Distrib. 2010, 16, 343–353. [Google Scholar] [CrossRef]
- Graham, V.; Baumgartner, J.B.; Beaumont, L.J.; Esperon-Rodriguez, M.; Grech, A. Prioritizing the protection of climate refugia: Designing a climate-ready protected area network. J. Environ. Plan. Manag. 2019, 62, 2588–2606. [Google Scholar] [CrossRef] [Green Version]
- Linder, H.P. On areas of endemism, with an example from the African Restionaceae. Syst. Biol. 2001, 50, 892–912. [Google Scholar] [CrossRef]
- Morrone, J.J. Parsimony analysis of endemicity (PAE) revisited. J. Biogeogr. 2014, 41, 842–854. [Google Scholar] [CrossRef]
- Morrone, J.J. On the identification of areas of endemism. Syst. Biol. 1994, 43, 438–441. [Google Scholar] [CrossRef]
- Rosen, B.R. Analytical biogeography: An integrated approach to the study of animal and plant distributions. In From Fossils to Earth History: Applied Historical Biogeography; Myers, A.A., Giller, P.A.S., Eds.; Chapman & Hall: London, UK, 1988; pp. 437–481. [Google Scholar]
- Zhang, H.H.; Wang, W.L.; Yu, Q.; Xing, D.H.; Xu, Z.B.; Duan, K.; Zhu, J.Q.; Zhang, X.; Li, Y.P.; Hu, S.J. Spatial distribution of pollinating butterflies in Yunnan Province, Southwest China with resource conservation implications. Insects 2020, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Scriber, J.M. Climate-driven reshuffling of species and genes: Potential conservation roles for species translocations and recombinant hybrid geneotypes. Insects 2014, 5, 1–61. [Google Scholar] [CrossRef] [Green Version]
- Dinca, V.; Balint, Z.; Voda, R.; Dapporto, L.; Hebert, P.D.N.; Vila, R. Use of genetic, climatic, and microbiological data to inform reintroduction of a regionally extinct butterfly. Conserv. Biol. 2018, 32, 828–837. [Google Scholar] [CrossRef]
- Collins, N.M.; Barkham, P.J.; Blencowe, M.; Brazil, A.; Kelly, A.; Oldfield, S.; Strudwick, T.; Vane-Wright, R.I.; Stewart, A.J.A. Ecology and conservation of the British Swallowtail butterfly, Papilio machaon britannicus: Old questions, new challenges and potential opportunities. Insect Conserv. Divers. 2020, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Crawford, L.A.; Keyghobadi, N. Analysis of genetic diversity in a peatland specialist butterfly suggests an important role for habitat quality and small habitat patches. Conserv. Genet. 2018, 19, 1109–1121. [Google Scholar] [CrossRef]
- Kramp, K.; Cizek, O.; Madeira, P.M.; Ramos, A.A.; Konvicka, M.; Castilho, R.; Schmitt, T. Genetic implications of phylogeographical patterns in the conservation of the boreal wetland butterfly Colias palaeno (Pieridae). Biol. J. Linn. Soc. 2016, 119, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, J.R.; Marcus, J.M. Molecular tools for understanding landscape genetics and the population genetic effects of the habitat restoration on butterflies. J. Lepid. Soc. 2018, 72, 253–264. [Google Scholar] [CrossRef]
- Marschalek, D.A.; Deutschman, D.H.; Strahm, S.; Berres, M.E. Dynamic landscapes shape post-wildfire recolonisation and genetic structure of the endangered Hermes copper (Lycaena hermes) butterfly. Ecol. Entomol. 2016, 41, 327–337. [Google Scholar] [CrossRef]
- Nakahama, N.; Uchida, K.; Ushimaru, A.; Isagi, Y. Historical changes in grassland area determined the demography of semi-natural grassland butterflies in Japan. Heredity 2018, 121, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Roitman, M.; Gardner, M.G.; New, T.R.; Nguyen, T.T.T.; Roycroft, E.J.; Sunnucks, P.; Yen, A.L.; Harrisson, K.A. Assessing the scope for genetic rescue of an endangered butterfly: The case of the Eltham copper. Insect Conserv. Divers. 2017, 10, 399–414. [Google Scholar] [CrossRef]
- Seraphim, N.; Barreto, M.A.; Almeida, G.S.S.; Esperanco, A.P.; Monteiro, R.F.; Souza, A.P.; Freitas, A.V.L.; Silva-Brandao, K.L. Genetic diversity of Parides ascanius (Lepidoptera: Papilionidae: Troidini): Implications for the conservation of Brazil’s most iconic endangered invertebrate species. Conserv. Genet. 2016, 17, 533–546. [Google Scholar] [CrossRef]
- Wells, C.N.; Marko, P.B.; Tonkyn, D.W. The phylogeographic history of the threatened Diana fritillary, Speyeria diana (Lepidoptera: Nymphalidae): With implications for conservation. Conserv. Genet. 2015, 16, 703–716. [Google Scholar] [CrossRef]
- Gunton, R.M.; Marsh, C.J.; Moulherat, S.; Malchow, A.-K.; Bocedi, G.; Klenke, R.A.; Kunin, W.E. Multicriterion trade-offs and synergies for spatial conservation planning. J. Appl. Ecol. 2017, 54, 903–913. [Google Scholar] [CrossRef] [Green Version]
- Saarinen, E.V.; Reilly, P.F.; Austin, J.D. Conservation genetics of an endangered grassland butterfly (Oarisma poweshiek) reveals historically high gene flow despite recent and rapid range loss. Insect Conserv. Divers. 2016, 9, 517–528. [Google Scholar] [CrossRef]
- DiLeo, M.F.; Husby, A.; Saastamoinen, M. Landscape permeability and individual variation in a dispersal-linked gene jointly determine genetic structure in the Glanville fritillary butterfly. Evol. Lett. 2018, 2, 544–556. [Google Scholar] [CrossRef] [Green Version]
- Fountain, T.; Husby, A.; Nonaka, E.; Dileo, M.F.; Korhonen, J.H.; Rastas, P.; Schulz, T.; Saastamoinen, M.; Hanski, I. Inferring dispersal across a fragmented landscape using reconstructed families in the Glanville fritillary butterfly. Evol. Appl. 2018, 11, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Talla, V.; Pierce, A.A.; Adams, K.L.; de Man, T.J.B.; Nallu, S.; Villablanca, F.X.; Kronforst, M.R.; de Roode, J.C. Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Mol. Ecol. 2020, 29, 2567–2582. [Google Scholar] [CrossRef]
- Vanden Broeck, A.; Maes, D.; Kelager, A.; Wynhoff, I.; WallisDeVries, M.F.; Nash, D.R.; Oostermeijer, J.G.B.; Van Dyck, H.; Mergeay, J. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 2017, 209, 89–97. [Google Scholar] [CrossRef]
- Vila, M.; Auger-Rozenberg, M.A.; Goussard, F.; Lopez-Vaamonde, C. Effect of non-lethal sampling on life-history traits of the protected moth Graellsia isabelae (Lepidoptera: Saturniidae). Ecol. Entomol. 2009, 34, 356–362. [Google Scholar] [CrossRef]
- Lushai, G.; Fjellsted, W.; Marcovitch, O.; Aagaard, K.; Sherratt, T.N.; Allen, J.A.; Maclean, N. Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol. Conserv. 2000, 94, 43–50. [Google Scholar] [CrossRef]
- Hamm, C.A.; Aggarwal, D.; Landis, D.A. Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice. J. Insect Conserv. 2009, 14, 11–18. [Google Scholar] [CrossRef]
- Maschalek, D.A.; Jesu, J.A.; Berres, M.E. Impact of non-lethal genetic sampling on the survival, longevity and behaviour of the Hermes copper (Lycaena hermes) butterfly. Insect Conserv. Divers. 2013, 6, 658–662. [Google Scholar] [CrossRef]
- Koscinski, D.; Crawford, L.A.; Keller, H.A.; Keyghobadi, N. Effects of different methods of non-lethal tissue sampling on butterflies. Ecol. Entomol. 2011, 36, 301–308. [Google Scholar] [CrossRef]
- Hu, S.J.; Cotton, A.M.; Condamine, F.L.; Duan, K.; Wang, R.J.; Hsu, Y.F.; Zhang, X.; Cao, J. Revision of Pazala Moore, 1888: The Graphium (Pazala) mandarinus (Oberthür, 1879) group, with treatments of known taxa and descriptions of new species and new subspecies (Lepidoptera: Papilionidae). Zootaxa 2018, 4441, 401–446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.H.; Cotton, A.M.; Condamine, F.L.; Wang, R.J.; Hsu, Y.F.; Duan, K.; Zhang, X.; Hu, S.J. Revision of Pazala Moore, 1888: The Graphium (Pazala) alebion and G. (P.) tamerlanus groups, with notes on taxonomic and distribution confusions (Lepidoptera: Papilionidae). Zootaxa 2020, 4759, 77–97. [Google Scholar] [CrossRef]
- Shefferson, R.P.; Mason, C.M.; Kellett, K.M.; Goolsby, E.W.; Coughlin, E.; Flynn, R.W. The evolutionary impacts of conservation actions. Popul. Ecol. 2018, 60, 49–59. [Google Scholar] [CrossRef]
- Costello, M.J. Unhelpful inflation of threatened species. Science 2019, 365, 332–333. [Google Scholar] [CrossRef]
- Ozaki, K.; Isono, M.; Kawahara, T.; Iida, S.; Kudo, T.; Fukuyama, K. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 2006, 20, 1507–1515. [Google Scholar] [CrossRef]
- Lebeau, J.; Wesselingh, R.A.; Van Dyck, H. Floral resource limitation severely reduces butterfly survival, condition and flight activity in simplified agricultural landscapes. Oecologia 2016, 180, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Feest, A.; van Swaay, C.; van Hinsberg, A. Nitrogen deposition and the reduction of butterfly biodiversity quality in the Netherlands. Ecol. Indic. 2014, 39, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Asmah, S.; Ghazali, A.; Syafiq, M.; Yahya, M.S.; Peng, T.L.; Norhisham, A.R.; Puan, C.L.; Azhar, B.; Lindenmayer, D.B. Effects of polyculture and monoculture farming in oil palm smallholdings on tropical fruit-feeding butterfly diversity. Agric. For. Entomol. 2017, 19, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Habel, J.C.; Ulrich, W.; Biburger, N.; Seibold, S.; Schmitt, T. Agricultural intensification drives butterfly decline. Insect Conserv. Divers. 2019, 12, 289–295. [Google Scholar] [CrossRef]
- Hachuy-Filho, L.; Ballarin, C.S.; Amorim, F.W. Changes in plant community structure and decrease in floral resource availability lead to a high temporal β-diversity of plant-bee interaction. Arthropod-Plant Interact. 2020. [Google Scholar] [CrossRef]
- James, D.G.; Seymour, L.; Lauby, G.; Buckley, K. Beauty with benefits: Butterfly conservation in Washington State, USA, wine grape vineyards. J. Insect Conserv. 2015, 19, 341–348. [Google Scholar] [CrossRef]
- Majewska, A.A.; Sims, S.; Wenger, S.J.; Davis, A.K.; Altizer, S. Do characteristics of pollinator-friendly gardens predict the diversity, abundance, and reproduction of butterflies? Insect Conserv. Divers. 2018, 11, 370–382. [Google Scholar] [CrossRef]
- Pywell, R.F.; Meek, W.R.; Hulmes, L.; Hulmes, S.; James, K.L.; Nowakowski, M.; Carvell, C. Management to enhance pollen and nectar resources for bumblebees and butterflies within intensively farmed landscapes. J. Insect Conserv. 2011, 15, 853–864. [Google Scholar] [CrossRef]
- Shackleton, K.; Ratnieks, F.L.W. Garden varieties: How attractive are recommended garden plants to butterflies? J. Insect Conserv. 2016, 20, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Estebanez, F.J.; Garcia-Tejero, S.; Mateo-Tomas, P.; Olea, P.P. Effects of irrigation and landscape heterogeneity on butterfly diversity in Mediterranean farmlands. Agric. Ecosyst. Environ. 2011, 144, 262–270. [Google Scholar] [CrossRef]
- Feber, R.E.; Johnson, P.J.; Firbank, L.G.; Hopkins, A.; Macdonald, D.W. A comparison of butterfly populations on organically and conventionally managed farmland. J. Zool. 2007, 273, 30–39. [Google Scholar] [CrossRef]
- Goded, S.; Ekroos, J.; Azcárate, J.G.; Guitián, J.A.; Smith, H.G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 2019, 284, 106600. [Google Scholar] [CrossRef]
- Rundlöf, M.T.; Smith, H.G. The effect of organic farming on butterfly diversity depends on landscape context. J. Appl. Ecol. 2006, 43, 1121–1127. [Google Scholar] [CrossRef]
- Redhead, J.W.; Powney, G.D.; Woodcock, B.A.; Pywell, R.F. Effects of future agricultural change scenarios on beneficial insects. J. Environ. Manag. 2020, 265, 110550. [Google Scholar] [CrossRef]
- Tavares, P.D.; Uzeda, M.C.; Pires, A.S. Biodiversity conservation in agricultural landscapes: The importance of the matrix. Floresta e Ambiente 2019, 26. [Google Scholar] [CrossRef]
- Prasifka, J.R.; Mallinger, R.E.; Potlas, Z.M.; Hulke, B.S.; Fugate, K.K.; Paradis, T.; Hampton, M.E.; Carter, C.J. Using nectar-related traits to enhance crop-pollinator interaction. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Barranco-Leon de las Nieves, M.; Luna-Castellanos, F.; Vergara, C.H.; Badano, E.I. Butterfly conservation within cities: A landscape scale approach integrating natural habitats and abandoned fields in central Mexico. Trop. Conserv. Sci. 2016, 9, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Konvicka, M.; Kadlec, T. How to increase the value of urban areas for butterfly conservation? A lesson from Prague nature reserves and parks. Eur. J. Entomol. 2011, 108, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Ockinger, E.; Dannestam, A.; Smith, H.G. The importance of fragmentation and habitat quality of urban grasslands for butterfly diversity. Landsc. Urban Plan. 2009, 93, 31–37. [Google Scholar] [CrossRef]
- Sing, K.W.; Dong, H.; Wang, W.Z.; Wilson, J.-J. Can butterflies cope with city life? Butterfly diversity in a young megacity in southern China. Genome 2016, 59, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Tiple, A.D.; Khurad, A.M.; Dennis, R.L.H. Butterfly larval host plant use in a tropical urban context: Life history associations, herbivory, and landscape factors. J. Insect Sci. 2011, 11, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, P.K.; Sodhi, N.S. Importance of reserves, fragments, and parks for butterfly conservation in a tropical urban landscape. Ecol. Appl. 2004, 14, 1695–1708. [Google Scholar] [CrossRef] [Green Version]
- CCTV. Beijing: Let Ecological Civilisation become Bright Colours of the Capital City of China; China Central Television Station: Beijing, China, 2019; Available online: http://tv.cctv.com/2019/08/21/VIDEwTvo1mczs1y64lXOV9c7190821.shtml?spm=C31267.PFsKSaKh6QQC.S71105.16. (accessed on 21 August 2019).
- Ahrends, A.; Hollingsworth, P.M.; Beckschäfer, P.; Chen, H.F.; Zomer, R.J.; Zhang, L.B.; Wang, M.C.; Xu, J.C. China’s fight to halt tree cover loss. Proc. R. Soc. B 2017, 284, 20162559. [Google Scholar] [CrossRef]
- Li, W.H. Degradation and restoration of forest ecosystems in China. For. Ecol. Manag. 2004, 201, 33–41. [Google Scholar] [CrossRef]
- Benra, F.; Nahuelhual, L.; Gaglio, M.; Gissi, E.; Aguayo, M.; Jullian, C.; Bonn, A. Ecosystem services tradeoffs arising from non-native tree plantation expansion in southern Chile. Landsc. Urban Plan. 2019, 190, 103589. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Quine, C.P.; Sayer, J. Plantation forests and biodiversity: Oxymoron or opportunity? Biodivers. Conserv. 2008, 17, 925–951. [Google Scholar] [CrossRef]
- Pozo, P.; Säumel, I. How to bloom the green desert: Eucalyptus plantations and native forests in Uruguay beyond black and white perspectives. Forests 2018, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Axmacher, J.C.; Sang, W.G. Plant invasions in China—Challenges and chances. PLoS ONE 2013, 8, e64173. [Google Scholar] [CrossRef] [Green Version]
- Hua, F.Y.; Xu, J.C.; Wilcove, D.S. A new opportunity to recover native forests in China. Conserv. Lett. 2018, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hua, F.Y.; Wang, L.; Fisher, B.; Zhang, X.L.; Wang, X.Y.; Yu, D.W.; Tang, Y.; Zhu, J.G.; Wilcove, D.S. Tree plantations displacing native forests: The nature and drivers of apparent forest recovery on former croplands in Southwestern China from 2000 to 2015. Biol. Conserv. 2018, 222, 113–124. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Li, Q.; Chen, Y.L.; Lu, Z.X.; Zhou, X.Y. Ant diversity and bio-indicators in land management of lac insect agroecosystem in Southwestern China. Biodivers. Conserv. 2011, 20, 3017–3038. [Google Scholar] [CrossRef]
- Lu, Z.X.; Hoffmann, B.D.; Chen, Y.Q. Can reforested and plantation habitats effectively conserve SW China’s ant biodiversity? Biodivers. Conserv. 2016, 25, 753–770. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, X.M.; Li, Z.F.; Meng, X.L.; Heino, J.; Xie, Z.C.; Wang, X.M.; Yu, J. Changes in multiple facets of macroinvertebrate alpha diversity are linked to afforestation in a subtropical riverine natural reserve. Environ. Sci. Pollut. Res. 2018, 25, 36124–36135. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.D.; Luo, T.H.; Zhou, H.Z. Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. For. Ecol. Manag. 2008, 255, 2617–2625. [Google Scholar] [CrossRef]
- Liu, R.T.; Zhu, F.; An, H.; Steinberger, Y. Effect of naturally vs manually managed restoration on ground-dwelling arthropod communities in a desertified region. Ecol. Eng. 2014, 73, 545–552. [Google Scholar] [CrossRef]
- Nagy, D.D.; Magura, T.; Mizser, S.; Debnár, Z.; Tóthmérész, B. Recovery of surface-dwelling assemblages (Coleoptera: Carabidae, Staphylinidae) during clear-cut originated reforestation with native tree species. Period. Biol. 2016, 118, 195–203. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.F.; Chen, L.D. Responses of ground-active arthropods to black locust (Robinia pseudoacacia L.) afforestation in the Loess Plateau of China. Catena 2019, 183, 104233. [Google Scholar] [CrossRef]
- Raoul, F.; Pleydell, D.; Quéré, J.-P.; Vaniscotte, A.; Rieffel, D.; Takahashi, K.; Bernard, N.; Wang, J.L.; Dobigny, T.; Galbreath, K.E.; et al. Small-mammal assemblage response to deforestation and afforestation in central China. Mammalia 2008, 72, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.C.; Su, Z.M.; Zhang, R.Z.; Koh, L.P. Degree of urbanization influences the persistence of Dorytomus weevils (Coleoptera: Curculionoidae) in Beijing, China. Landsc. Urban Plan. 2010, 96, 163–171. [Google Scholar] [CrossRef]
- Warren-Thomas, E.; Zou, Y.; Dong, L.J.; Yao, X.N.; Yang, M.; Zhang, X.L.; Qin, Y.; Liu, Y.H.; Sang, W.G.; Axmacher, J.C. Ground beetle assemblages in Beijing’s new mountain forests. For. Ecol. Manag. 2014, 334, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Pei, N.C.; Wang, C.; Jin, J.L.; Jia, B.Q.; Chen, B.F.; Qie, G.F.; Qiu, E.F.; Gu, L.; Sun, R.L.; Li, J.R.; et al. Long-term afforestation efforts increase bird species diversity in Beijing, China. Urban For. Urban Green. 2018, 29, 88–95. [Google Scholar] [CrossRef]
- Li, Q.; Hoffmann, B.D.; Lu, Z.X.; Chen, Y.Q. Ants show that the conservation potential of afforestation efforts in Chinese valley-type savanna is dependent upon the afforestation method. J. Insect Conserv. 2017, 21, 621–631. [Google Scholar] [CrossRef]
- Zou, F.S.; Yang, Q.F.; Lin, Y.B.; Xu, G.L.; Greenberg, R. Bird community comparisons of four plantations and conservation concerns in South China. Integr. Zool. 2014, 9, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhong, J.; Lei, B.Y.; Xie, Z.Q.; Zhou, Y.B. Community reestablishment and poor body conditions of small mammal assemblages in subtropical afforested ecosystems. Ecol. Eng. 2019, 135, 1–7. [Google Scholar] [CrossRef]
- Yu, X.D.; Luo, T.H.; Zhou, H.Z. Distribution of ground-dwelling beetle assemblages (Coleoptera) across ecotones between natural oak forests and mature pine plantations in North China. J. Insect Conserv. 2010, 14, 617–626. [Google Scholar] [CrossRef]
- Luo, T.H.; Yu, X.D.; Zhou, H.Z. Effects of reforestation practices on staphylinid beetles (Coleoptera: Staphylinidae) in southwestern China forests. Environ. Entomol. 2013, 42, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.N.; Miao, J.X. Community-based forest conservation by local regulations in ethnicity inhabiting regions. Low Carbon World 2015, 5, 18–19. [Google Scholar]
- Liu, X.T. Preservation of forests and environment by ethnic groups in Southern China. Yunnan For. 1998, 1998, 27. [Google Scholar]
- Hu, L.; Li, Z.; Liao, W.B.; Fan, Q. Values of village fengshui forest patches in biodiversity conservation in the Pearl River Delta, China. Biol. Conserv. 2011, 144, 1553–1559. [Google Scholar] [CrossRef]
- Bossart, J.L.; Antwi, J.B. Limited erosion of genetic and species diversity from small forest patches: Sacred forest groves in an Afrotropical biodiversity hotspot have high conservation value for butterflies. Biol. Conserv. 2016, 198, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.M.; Zhou, C.L.; Shi, J.Y.; Shi, L.; Yi, C.H. Ornamental Butterflies in China; China Forestry Publishing House: Beijing, China, 2008; p. 360. [Google Scholar]
- Cooper, J.E.; Gordon, A.J.; Cooper, M.E. Invertebrate health and the contribution of butterfly farming to conservation: Synergies on the Kenyan coast. Antenna 2019, 43, 114–117. [Google Scholar]
- Parsons, M.J. The butterfly farming and trading industry in the Indo-Australian Region and its role in tropical forest conservation. Trop. Lepid. 1992, 3, 1–31. [Google Scholar]
- Morgan-Brown, T.; Jacobson, S.K.; Wald, K.; Child, B. Quantitative assessment of a Tanzanian integrated conservation and development program involving butterfly farming. Conserv. Biol. 2010, 24, 563–572. [Google Scholar] [CrossRef] [PubMed]
- New, T.R. Butterfly ranching: Sustainable use of insects and sustainable benefit to habitats. Oryx 1994, 28, 169–172. [Google Scholar] [CrossRef]
- Butterfly Kingdom Mariposario Home Page. Available online: https://en.butterflykingdom.net/ (accessed on 22 September 2020).
- El Bosque Nuevo Butterfly Farm Home Page. Available online: https://www.elbosquenuevo.org/ (accessed on 22 September 2020).
- Mariposas de Mindo Home Page. Available online: https://www.mariposasdemindo.com (accessed on 22 September 2020).
- Butterflies of El Salvador Home Page. Available online: http://www.butterfliesofelsalvador.com/ (accessed on 22 September 2020).
- MiniBeast Home Page. The Amani Butterfly Project. Available online: https://www.minibeast.uk/amani (accessed on 22 September 2020).
- International Association of Butterfly Exhibitors & Suppliers Home Page. Available online: https://iabes.org/ (accessed on 22 September 2020).
- Bonney, R.; Cooper, C.B.; Dickinson, J.; Kelling, S.; Phillips, T.; Rosenberg, K.V.; Shirk, J. Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience 2009, 59, 977–984. [Google Scholar] [CrossRef]
- Cooper, C.B.; Dickinson, J.; Phillips, T.; Bonney, R. Citizen science as a tool for conservation in residential ecosystems. Ecol. Soc. 2007, 12, 11. [Google Scholar] [CrossRef]
- Devictor, V.; Whittaker, R.J.; Beltrame, C. Beyond scarcity: Citizen science programmes as useful tools for conservation biogeography. Divers. Distrib. 2010, 16, 354–362. [Google Scholar] [CrossRef]
- Lewandowski, E.J.; Oberhauser, K.S. Butterfly citizen scientists in the United States increase their engagement in conservation. Biol. Conserv. 2017, 208, 106–112. [Google Scholar] [CrossRef]
- McKinley, D.C.; Miller-Rushing, A.J.; Ballard, H.L.; Bonney, R.; Brown, H.; Cook-Patton, S.C.; Evans, D.M.; French, R.A.; Parrish, J.K.; Phillips, T.B.; et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 2017, 208, 15–28. [Google Scholar] [CrossRef] [Green Version]
- CEH; BTO; JNCC. United Kingdom Butterfly Monitoring Scheme. Available online: https://www.ukbms.org/ (accessed on 22 January 2020).
- HCER. Germany Butterfly Monitoring. Available online: https://www.ufz.de/tagfalter-monitoring/ (accessed on 22 January 2020).
- EU. EU-Wide Monitoring Methods and Systems of Surveillance for Species and Habitats of Community Interest (EuMon). Available online: http://eumon.ckff.si/monitoring/ (accessed on 22 January 2020).
- ND. Mapping European Butterflies (MEB). Available online: http://www.mapeurbutt.de/index.htm (accessed on 22 January 2020).
- EU. Assessing Large-Scale Environmental Risks for Biodiversity with Tested Methods (ALARM). Available online: http://www.alarmproject.net/ (accessed on 22 January 2020).
- Kühn, E.; Feldmann, R.; Settele, J. Studies on the Ecology and Conservation of Butterflies in Europe. Vol. 1: General Concepts and Case Studies; Pensoft Publishers: Leipzig, Germany, 2005; p. 140. [Google Scholar]
- Wilson, J.-J.; Jisming-See, S.-W.; Brandon-Mong, G.-J.; Lim, A.-K.; Lim, V.-C.; Lee, P.-S.; Sing, K.-W. Citizen science: The first Peninsular Malaysia butterfly count. Biodivers. Data J. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- USDA. Monarch Butterfly: What is Citizen Science? Available online: https://www.fs.fed.us/wildflowers/pollinators/Monarch_Butterfly/citizenscience/index.shtml (accessed on 23 January 2020).
- SESYNC. Citizen Science, Butterfly Monitoring & Cyberinfrastructure. Available online: https://www.sesync.org/citizen-science-butterfly-monitoring-cyberinfrastructure (accessed on 23 January 2020).
- Prudic, K.L.; McFarland, K.P.; Oliver, J.C.; Hutchinson, R.A.; Long, E.C.; Kerr, J.T.; Larrivée, M. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 2017, 8, 53. [Google Scholar] [CrossRef] [PubMed]
- Butterfly Conservation’s Big Butterfly Count. Available online: https://bigbutterflycount.butterfly-conservation.org/ (accessed on 22 September 2020).
- Ries, L.; Oberhauser, K. A citizen army for science: Quantifying the contributions of citizen scientists for an understanding of monarch butterfly biology. BioScience 2015, 65, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Monarch Joint Venture Home Page. Available online: https://monarchjointventure.org/ (accessed on 22 September 2020).
- Lin, Y.P.; Deng, D.P.; Lin, W.C.; Lemmens, R.; Crossman, N.D.; Henle, K.; Schmeller, D.S. Uncertainty analysis of crowd-sourced and professionally collected field data used in species distribution models of Taiwanese moths. Biol. Conserv. 2015, 181, 102–110. [Google Scholar] [CrossRef]
- Taiwan Butterflies Monitoring Network Home Page. Available online: http://www.tbmn.org.tw/butterfly/index.php (accessed on 22 September 2020).
- Chen, J.L.; Hsu, Y.F. The Secrets from Caterpillars to Butterflies; The Straits Publishing House: Fuzhou, China, 2019; p. 224. [Google Scholar]
Protected Species | Larval Food Plants | Sheltered Species |
---|---|---|
Teinopalpus aureus | Magnolia spp., Michelia spp. (magnolia) | Teinopalpus imperialis, Graphium agamemnon, G. doson, G. chironides |
Bhutanitis thaidina and B. mansfieldi | Aristolochia spp. (birthwort, pipevine, Dutchman’s pipe) | Byasa plutonius, B. nevilli, B. latreillei, B. polla, B. hedistus, B. polyeuctes, B. daemonius, B. rhadinus, B. confusa, B. impediens, Pachliopta aristolochiae, Troides aeacus, Bhutanitis lidderdalii |
Luehdorfia chinensis | Asarum spp. (wild ginger) | Luehdorfia longicaudata |
Parnassius apollo | Rhodiola spp. (golden root, rose root) | Parnassius nomion, P. epaphus, P. mercurius, P. actius, P. tianschanicus, P. apollonius |
Plants | Related Butterflies | Function | Economic Benefits |
---|---|---|---|
Zanthoxylum spp. (prickly ash or huajiao) | Papilio xuthus, P. bianor, P. maackii, P. helenus (feeding) | food plants | fruits as spice |
Citrus maxima (pomelo) | Papilio memnon, P. protenor, P. polytes, P. demoleus (feeding) | food plants | fruits for market or family consumption |
Vicia spp. (vetches) | Colias poliographus, C. fieldii, Lampides boeticus (feeding); Papilio spp., Byasa spp., Pieris spp., Pontia spp., Gonepteryx spp., Tirumala spp., Parantica spp., Vanessa spp., Heliophorus spp., Hesperiidae (flower visiting) | food plants, nectar sources | nitrogen fixation, whole plant as green manure improving soil quality |
Brassica rapa (field mustard) | Pieris rapa, P. canidia (feeding) Papilio machaon, Colias spp., Pontia daplidice, Heliophorus spp., Ahlbergia spp. (flower visiting) | food plants, nectar sources | flowers for bee keeping and honey production, fruits for the oil industry |
Tagetes erecta (marigold) | Papilio spp., Pieris spp., Pontia daplidice, Colias spp., Gonepteryx spp., Danaus spp., Tirumala spp., Parantica spp., Argynnis spp., Vanessa spp., Hesperiidae (flower visiting) | nectar source | flower as material for the carotene industry |
Habitat | Habitat Type | Common Butterfly Species |
---|---|---|
Kunming Zoo | Mostly unmanaged green space with sparse animal keeping areas | Graphium sarpedon, G. cloanthus, Papilio bianor, P. xuthus, P. polytes, Ixias pyrene, Cepora nerissa, Hebomoia glaucippe, Pieris rapae, P. melete, Prioneris thestylis, Delias belladonna, Appias albina, Catopsilia pomona, Eurema laeta, E. hecabe, Gonepteryx chinensis, G. amintha, Danaus chrysippus, D. genutia, Parantica sita, P. swinhoei, Tirumala septentrionis, Euploea mulciber, Vanessa cadui, V. indica, Hypolimnas bolina, Hestina persimilis, Apatura ilia, Polyura dolon, Tongeia ion, Celastrina oreas, Lampides boeticus, Jamides bochus |
Yunnan University | Carefully managed campus with unmanaged green spaces along hill slopes | Papilio bianor, P. xuthus, Ixias pyrene, Cepora nerissa, Appias albina, Catopsilia pomona, Eurema laeta, Parantica sita, Vanessa cadui, Hestina persimilis, Tongeia ion |
Kunming street type 1 | managed street with various camphor trees | Graphium sarpedon, G. cloanthus |
Kunming street type 2 | managed street with jacaranda trees | no resident butterfly species |
Priority Areas | Recommendations | Priority Areas Targeted by The Recommendation |
---|---|---|
1-Improve the policy and legal system of biodiversity conservation and sustainable use | Revise the Protected Species Lists | 1, 3, 4 |
2-Incorporate biodiversity conservation into sectoral and regional planning and promote sustainable use | Identify High Priority Areas and Refugia | 2, 3, 4, 8, 9 |
3-Identify, evaluate, and monitor biodiversity | Use Umbrella Species to Boost Conservation | 4 |
4-Strengthen in situ biodiversity conservation | Encourage Butterfly-friendly Agricultural Methods | 2, 4, 6, 10 |
5-Carry out ex-situ conservation based on science | Promote Butterfly-friendly Urban Spaces | 2, 4, 10 |
6-Promote rational use and benefit sharing of biological genetic resources and associated traditional knowledge | Increase Diversity in Reforestation Programmes | 2, 4 |
7-Strengthen biosafety management of invasive alien species and genetically modified organisms | Protect Traditional Forests | 2, 4, 6, 10 |
8-Improve capacities to cope with climate change | Promote Appropriate Butterfly Ranching and Farming | 4, 5, 6, 10 |
9-Strengthen scientific research and human resources development in the field of biodiversity | Develop and Enforce Regulations for Butterfly Collection | 1, 6, 9, 10 |
10-Establish public participatory mechanisms and partnerships for biodiversity conservation | Adopt Citizen Science Campaigns | 3, 4, 7, 9, 10 |
Promote Public Awareness and Educational Opportunities | 10 | |
Revise the Wildlife Protection Law to incorporate the Critical Habitat concept | 1, 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-L.; Suman, D.O.; Zhang, H.-H.; Xu, Z.-B.; Ma, F.-Z.; Hu, S.-J. Butterfly Conservation in China: From Science to Action. Insects 2020, 11, 661. https://doi.org/10.3390/insects11100661
Wang W-L, Suman DO, Zhang H-H, Xu Z-B, Ma F-Z, Hu S-J. Butterfly Conservation in China: From Science to Action. Insects. 2020; 11(10):661. https://doi.org/10.3390/insects11100661
Chicago/Turabian StyleWang, Wen-Ling, Daniel O. Suman, Hui-Hong Zhang, Zhen-Bang Xu, Fang-Zhou Ma, and Shao-Ji Hu. 2020. "Butterfly Conservation in China: From Science to Action" Insects 11, no. 10: 661. https://doi.org/10.3390/insects11100661
APA StyleWang, W.-L., Suman, D. O., Zhang, H.-H., Xu, Z.-B., Ma, F.-Z., & Hu, S.-J. (2020). Butterfly Conservation in China: From Science to Action. Insects, 11(10), 661. https://doi.org/10.3390/insects11100661