Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Community Composition
3.2. Species Diversity and Abundance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MacArthur, R.H.; MacArthur, J.W. On Bird Species Diversity. Ecology 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Landis, D.A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha-Filho, L.C.; Montagnana, P.C.; Boscolo, D.; Garófalo, C.A. Green patches among a grey patchwork: The importance of preserving natural habitats to harbour cavity-nesting bees and wasps (Hymenoptera) and their natural enemies in urban areas. Biodivers. Conserv. 2020. [Google Scholar] [CrossRef]
- Flores, L.M.A.; Zanette, L.R.S.; Araujo, F.S. Effects of habitat simplification on assemblages of cavity nesting bees and wasps in a semiarid neotropical conservation area. Biodivers. Conserv. 2018, 27, 311–328. [Google Scholar] [CrossRef]
- Jeliazkov, A.; Mimet, A.; Chargé, R.; Jiguet, F.; Devictor, V.; Chiron, F. Impacts of agricultural intensification on bird communities: New insights from a multi-level and multi-facet approach of biodiversity. Agric. Ecosyst. Environ. 2016, 216, 9–22. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef]
- Holzschuh, A.; Steffan-Dewenter, I.; Tscharntke, T. How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? J. Anim. Ecol. 2010, 79, 491–500. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D.; et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Bianchi, F.J.J.A.; Booij, C.J.H.; Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B Biol. Sci. 2006, 273, 1715–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly, H.; Poveda, K.; Loeb, G. Landscape simplification decreases wild bee pollination services to strawberry. Agric. Ecosyst. Environ. 2015, 211, 51–56. [Google Scholar] [CrossRef]
- Cunningham, S.A.; Schellhorn, N.A.; Marcora, A.; Batley, M. Movement and phenology of bees in a subtropical Australian agricultural landscape: Bees in an agricultural landscape. Austral Ecol. 2013, 38, 456–464. [Google Scholar] [CrossRef]
- Brosi, B.J.; Daily, G.C.; Shih, T.M.; Oviedo, F.; Durán, G. The effects of forest fragmentation on bee communities in tropical countryside: Bee communities and tropical forest fragmentation. J. Appl. Ecol. 2007, 45, 773–783. [Google Scholar] [CrossRef]
- Montoya-Pfeiffer, P.M.; Rodrigues, R.R.; Alves dos Santos, I. Bee pollinator functional responses and functional effects in restored tropical forests. Ecol. Appl. 2020, 30. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Mayfield, M.M. The effect of habitat fragmentation on the bee visitor assemblages of three Australian tropical rainforest tree species. Ecol. Evol. 2018, 8, 8204–8216. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.M.; Crone, E.E.; Roulston, T.a.H.; Minckley, R.L.; Packer, L.; Potts, S.G. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 2010, 143, 2280–2291. [Google Scholar] [CrossRef]
- Persson, A.S.; Rundlöf, M.; Clough, Y.; Smith, H.G. Bumble bees show trait-dependent vulnerability to landscape simplification. Biodivers. Conserv. 2015, 24, 3469–3489. [Google Scholar] [CrossRef]
- Sobek, S.; Tscharntke, T.; Scherber, C.; Schiele, S.; Steffan-Dewenter, I. Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata? For. Ecol. Manag. 2009, 258, 609–615. [Google Scholar] [CrossRef]
- Staab, M.; Pufal, G.; Tscharntke, T.; Klein, A.M. Trap nests for bees and wasps to analyse trophic interactions in changing environments—A systematic overview and user guide. Methods Ecol. Evol. 2018, 9, 2226–2239. [Google Scholar] [CrossRef]
- Tonietto, R.K.; Larkin, D.J. Habitat restoration benefits wild bees: A meta-analysis. J. Appl. Ecol. 2018, 55, 582–590. [Google Scholar] [CrossRef]
- Freitas, B.M.; Imperatriz-Fonseca, V.L.; Medina, L.M.; Kleinert, A.D.M.P.; Galetto, L.; Nates-Parra, G.; Quezada-Euán, J.J.G. Diversity, threats and conservation of native bees in the Neotropics. Apidologie 2009, 40, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Michener, C.D. The Bees of the World, 2nd ed.; Johns Hopkins Press: Baltimore, Maryland, 2007. [Google Scholar]
- Matos, M.C.B.; Sousa-Souto, L.; Almeida, R.S.; Teodoro, A.V. Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta: Hymenoptera) according to land-use. Biotropica 2013, 45, 73–79. [Google Scholar] [CrossRef]
- Tylianakis, J.M.; Klein, A.M.; Tscharntke, T. Spatiotemporal variation in the diversity of hymenoptera across a tropical habitat gradient. Ecology 2005, 86, 3296–3302. [Google Scholar] [CrossRef]
- Lassau, S.A.; Hochuli, D.F. Wasp community responses to habitat complexity in Sydney sandstone forests. Austral Ecol. 2005, 30, 179–187. [Google Scholar] [CrossRef]
- Gutiérrez-Chacón, C.; Dormann, C.F.; Klein, A.M. Forest-edge associated bees benefit from the proportion of tropical forest regardless of its edge length. Biol. Conserv. 2018, 220, 149–160. [Google Scholar] [CrossRef]
- Jha, S.; Vandermeer, J.H. Impacts of coffee agroforestry management on tropical bee communities. Biol. Conserv. 2010, 143, 1423–1431. [Google Scholar] [CrossRef]
- Carre, G.; Roche, P.; Chifflet, R.; Morison, N.; Bommarco, R.; Harrison-Cripps, J.; Krewenka, K.; Potts, S.G.; Roberts, S.P.; Rodet, G. Landscape context and habitat type as drivers of bee diversity in European annual crops. Agric. Ecosyst. Environ. 2009, 133, 40–47. [Google Scholar] [CrossRef]
- Feltham, H.; Park, K.; Minderman, J.; Goulson, D. Experimental evidence that wildflower strips increase pollinator visits to crops. Ecol. Evol. 2015, 5, 3523–3530. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Canadas, S.; Arnan, X.; Bassols, E.; Vicens, N.; Bosch, J. Seasonal dynamics in a cavity-nesting bee-wasp community: Shifts in composition, functional diversity and host-parasitoid network structure. PLoS ONE 2018, 13, e0205854. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, S. The nesting of Osmia rufa (L.)(Hymenoptera, Megachilidae) in the Crimea: Structure and composition of nests. Entomol. Rev. 2006, 86, 524–533. [Google Scholar] [CrossRef]
- MacIvor, J.S. Cavity-nest boxes for solitary bees: A century of design and research. Apidologie 2017, 48, 311–327. [Google Scholar] [CrossRef] [Green Version]
- Fortel, L.; Henry, M.; Guilbaud, L.; Mouret, H.; Vaissière, B.E. Use of human-made nesting structures by wild bees in an urban environment. J. Insect Conserv. 2016, 20, 239–253. [Google Scholar] [CrossRef] [Green Version]
- Hogendoorn, K.; Gross, C.L.; Sedgley, M.; Keller, M.A. Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J. Econ. Entomol. 2006, 99, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J.; Ford, A.; Rosauer, D.F.; De Silva, N.; Mittermeier, R.; Bruce, C.; Larsen, F.W.; Margules, C. Forests of East Australia: The 35th biodiversity hotspot. In Biodiversity Hotspots; Springer: Berlin/Heidelberg, Germany, 2011; pp. 295–310. [Google Scholar]
- Kaluza, B.F.; Wallace, H.; Heard, T.A.; Klein, A.M.; Leonhardt, S.D. Urban gardens promote bee foraging over natural habitats and plantations. Ecol. Evol. 2016, 6, 1304–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaluza, B.F.; Wallace, H.; Keller, A.; Heard, T.A.; Jeffers, B.; Drescher, N.; Blüthgen, N.; Leonhardt, S.D. Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments. Ecosphere 2017, 8, e01758. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Bell, M.; Spooner-Hart, R.; Holford, P. X-ray computerized tomography as a new method for monitoring Amegilla holmesi nest structures, nesting behaviour, and adult female activity. Entomol. Exp. Appl. 2006, 120, 71–76. [Google Scholar] [CrossRef]
- Makinson, J.C.; Threlfall, C.G.; Latty, T. Bee-friendly community gardens: Impact of environmental variables on the richness and abundance of exotic and native bees. Urban Ecosyst. 2017, 20, 463–476. [Google Scholar] [CrossRef]
- Palladini, J.D.; Maron, J.L. Reproduction and survival of a solitary bee along native and exotic floral resource gradients. Oecologia 2014, 176, 789–798. [Google Scholar] [CrossRef]
- Steckel, J.; Westphal, C.; Peters, M.K.; Bellach, M.; Rothenwoehrer, C.; Erasmi, S.; Scherber, C.; Tscharntke, T.; Steffan-Dewenter, I. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 2014, 172, 56–64. [Google Scholar] [CrossRef]
- Diekötter, T.; Peter, F.; Jauker, B.; Wolters, V.; Jauker, F. Mass-flowering crops increase richness of cavity-nesting bees and wasps in modern agro-ecosystems. GCB Bioenergy 2014, 6, 219–226. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package; CRAN: Vienna, Austria, 2019. [Google Scholar]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar]
- Harrison, X.A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2014, 2, e616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Barton, K. MuMIn: Multi-Model Inference; R Package Version 1.43.6; CRAN: Vienna, Austria, 2019. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.M.; Schuetzenmeister, A.; Scheibe, S. Multcomp: Simultaneous Inference in General Parametric Models; 1.4-14; CRAN: Vienna, Austria, 2020. [Google Scholar]
- Stangler, E.S.; Hanson, P.E.; Steffan-Dewenter, I. Interactive effects of habitat fragmentation and microclimate on trap-nesting Hymenoptera and their trophic interactions in small secondary rainforest remnants. Biodivers. Conserv. 2015, 24, 563–577. [Google Scholar] [CrossRef]
- Vehviläinen, H.; Koricheva, J.; Ruohomäki, K. Tree species diversity influences herbivore abundance and damage: Meta-analysis of long-term forest experiments. Oecologia 2007, 152, 287–298. [Google Scholar] [CrossRef]
- Buschini, M.L.T.; Caldas, T.R.; Borba, N.A.; Brescovit, A.D. Spiders used as prey by the hunting wasp Trypoxylon (Trypargilum) agamemnon Richards (Hymenoptera: Crabronidae). Zool. Stud. 2010, 49, 169–175. [Google Scholar]
- Jauker, B.; Krauss, J.; Jauker, F.; Steffan-Dewenter, I. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landsc. Ecol. 2013, 28, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Fabian, Y.; Sandau, N.; Bruggisser, O.T.; Aebi, A.; Kehrli, P.; Rohr, R.P.; Naisbit, R.E.; Bersier, L.F. Plant diversity in a nutshell: Testing for small-scale effects on trap nesting wild bees and wasps. Ecosphere 2014, 5, art18. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, A.; Klein, A.M.; Weisser, W.W.; Tscharntke, T. Multitrophic effects of experimental changes in plant diversity on cavity-nesting bees, wasps, and their parasitoids. Oecologia 2012, 169, 453–465. [Google Scholar] [CrossRef]
- Bommarco, R.; Biesmeijer, J.C.; Meyer, B.; Potts, S.G.; Pöyry, J.; Roberts, S.P.M.; Steffan-Dewenter, I.; Öckinger, E. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B Biol. Sci. 2010, 277, 2075–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wcislo, W.T.; Cane, J.H. Floral Resource Utilization by Solitary Bees (Hymenoptera: Apoidea) and Exploitation of Their Stored Foods by Natural Enemies. Annu. Rev. Entomol. 1996, 41, 257–286. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.M. Use of novel pollen species by specialist and generalist solitary bees (Hymenoptera: Megachilidae). Oecologia 2003, 134, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Vanderplanck, M.; Vereecken, N.J.; Grumiau, L.; Esposito, F.; Lognay, G.; Wattiez, R.; Michez, D. The importance of pollen chemistry in evolutionary host shifts of bees. Sci. Rep. 2017, 7, 43058. [Google Scholar] [CrossRef] [Green Version]
- Ogilvie, J.E.; Forrest, J.R.K. Interactions between bee foraging and floral resource phenology shape bee populations and communities. Curr. Opin. Insect Sci. 2017, 21, 75–82. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Holzschuh, A.; Dormann, C.F.; Tscharntke, T.; Steffan-Dewenter, I. Mass-flowering crops enhance wild bee abundance. Oecologia 2013, 172, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Weiner, C.N.; Werner, M.; Linsenmair, K.E.; Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 2014, 95, 466–474. [Google Scholar] [CrossRef]
- Vizentin-Bugoni, J.; Maruyama, P.K.; de Souza, C.S.; Ollerton, J.; Rech, A.R.; Sazima, M. Plant-Pollinator Networks in the Tropics: A Review. In Ecological Networks in the Tropics; Dáttilo, W., Rico-Gray, V., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 73–91. [Google Scholar]
- Hoffmann, U.S.; Jauker, F.; Lanzen, J.; Warzecha, D.; Wolters, V.; Diekötter, T. Prey-dependent benefits of sown wildflower strips on solitary wasps in agroecosystems. Insect Conserv. Divers. 2018, 11, 42–49. [Google Scholar] [CrossRef]
- MacIvor, J.S.; Packer, L. ‘Bee Hotels’ as Tools for Native Pollinator Conservation: A Premature Verdict? PLoS ONE 2015, 10, e0122126. [Google Scholar] [CrossRef]
- LaSalle, J.; Gauld, I.D. Parasitic hymenoptera and the biodiversity crisis. Redia 1992, 74, 315–344. [Google Scholar]
- Ascher, J.S.; Pickering, J. Discover Life Bee Species Guide and World Checklist (Hymenoptera: Apoidea: Anthophila). Available online: www.discoverlife.org/20/q?search=Apoidea (accessed on 3 November 2020).
- Wcislo, W.; Fewell, J.H. Sociality in Bees. In Comparative Social Evolution; Rubenstein, D.R., Abbot, P., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 50–83. [Google Scholar]
Land Use | Site | Plant Species Richness | Forest Cover (%) | Orchard Cover (%) | Distance to Forest (m) |
---|---|---|---|---|---|
Forest | F1 | 53 | 96.36 | 0 | 0 |
F2 | 139 | 89.79 | 0 | 0 | |
F3 | 155 | 97.52 | 0 | 0 | |
F4 | 173 | 75.06 | 20.65 | 0 | |
Orchard | P2 | 51 | 0 | 92.04 | 640 |
P3 | 134 | 3.53 | 93.21 | 212 | |
P4 | 69 | 16.74 | 80.08 | 177 |
Family (% of Nests) | Species | Abundance | Number of Nests | |||
---|---|---|---|---|---|---|
Total Brood | Per Nest Mean ± SE | F | O | Total | ||
Bees | ||||||
Apidae (25%) | Amegilla (Zonamegilla) adelaidaeb | 85 | 5.67 (1.28) | 9 | 6 | 15 |
Amegilla (Zonamegilla) sp. B b | 4 | 2.00 (1.00) | 1 | 1 | 2 | |
Thyreus cf. caeruleopunctatus b,c.p. | 1 | 1.00 (NA) | 0 | 1 | 1 | |
Thyreus nitidulusb,c.p. | 2 | 1.00 (0.00) | 2 | 0 | 2 | |
Colletidae (26%) | Hylaeus (Euprosopoides) ruficeps ruficepsa,c | 1 | 1.00 (NA) | 1 | 0 | 1 |
Hylaeus (Hylaeorhiza) nubilosusa,c | 37 | 6.17 (2.02) | 4 | 2 | 6 | |
Hyleoides concinnaa,c | 13 | 4.33 (1.77) | 3 | 0 | 3 | |
Pachyprosopis (Parapachyprosopis) angophoraeb | 8 | 2.67 (0.88) | 0 | 3 | 3 | |
Pachyprosopis (Parapachyprosopis) indicansb | 60 | 7.50 (2.91) | 7 | 1 | 8 | |
Megachilidae (49%) | Megachile (Callomegachile) mystacaenaa,r | 69 | 3.00 (0.50) | 23 | 0 | 23 |
Megachile (Eutricharaea) simplexa,l | 49 | 4.45 (0.87) | 2 | 9 | 11 | |
Megachile (Rhodomegachile) deaniia,r | 12 | 4.00 (0.00) | 1 | 2 | 3 | |
Megachile mackayensisa,r | 3 | 1.50 (0.50) | 2 | 0 | 2 | |
Wasps | ||||||
Chrysididae (3%) | Primeuchroeus sp. a,p | 4 | 1.33 (0.33) | 0 | 3 | 3 |
Crabronidae (57%) | Pison sp. A a | 25 | 5.00 (1.31) | 1 | 4 | 5 |
Pison sp. B a | 92 | 3.54 (0.30) | 13 | 13 | 26 | |
Pison sp. C a | 9 | 2.25 (0.63) | 1 | 3 | 4 | |
Pison sp. D a | 77 | 7.70 (0.60) | 0 | 10 | 10 | |
Pison sp. E a | 93 | 5.81 (0.68) | 16 | 0 | 16 | |
Pison sp. F a | 11 | 3.67 (0.88) | 0 | 3 | 3 | |
Pison sp. G a | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Pison sp. H a | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Pison sp. I a | 1 | 1.00 (NA) | 0 | 1 | 1 | |
Pison sp. J a | 5 | 5.00 (NA) | 1 | 0 | 1 | |
Gasteruptiidae (4%) | Gasteruption sp. A a,p | 4 | 1.00 (0.00) | 4 | 0 | 4 |
Gasteruption sp. B a,p | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Mutillidae (4%) | Mutillidae sp. A a,p | 2 | 1.00 (0.00) | 1 | 1 | 2 |
Mutillidae sp. B a,p | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Mutillidae sp. C a,p | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Mutillidae sp. D a,p | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Perilampidae (2%) | Perilampus sp. a,p | 2 | 1.00 (0.00) | 1 | 1 | 2 |
Pompilidae (17%) | Fabriogenia sp. A a | 7 | 2.33 (1.33) | 1 | 2 | 3 |
Fabriogenia sp. B a | 64 | 4.57 (0.66) | 10 | 4 | 14 | |
Fabriogenia sp. C a | 8 | 4.00 (3.00) | 2 | 0 | 2 | |
Irenangelus sp. a,c.p. | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Sphecidae (3%) | Isodontia sp. a | 3 | 1.00 (0.00) | 0 | 3 | 3 |
Vespidae (12%) | Anterhynchium (Epiodynerus) nigrocinctusa | 31 | 5.17 (0.40) | 0 | 6 | 6 |
Anterhynchium (Epiodynerus) tamarinuma | 4 | 1.33 (0.33) | 0 | 3 | 3 | |
Eumeninae sp. B a | 1 | 1.00 (NA) | 1 | 0 | 1 | |
Eumeninae sp. D a | 16 | 8.00 (5.00) | 2 | 0 | 2 | |
Paralastor sp. a | 4 | 2.00 (1.00) | 2 | 0 | 2 | |
Sub total | 814 | 118 | 82 | 200 | ||
Bee nests identified to (sub)family | 230 | 53 | 15 | 68 | ||
Wasp nests identified to (sub)family | 48 | 8 | 3 | 11 | ||
Unidentified wasp nests | 1159 | 170 | 113 | 283 | ||
Total | 2251 | 349 | 213 | 562 |
Community | Stress | Explanatory Variables | F | R2 | p |
---|---|---|---|---|---|
Bees | 0.14 | Season | 1.809 | 0.14 | 0.009 |
Temperature | 4.352 | 0.11 | 0.001 | ||
Rainfall | 1.544 | 0.04 | 0.121 | ||
Land use | 3.135 | 0.08 | 0.003 | ||
Forest cover | 3.804 | 0.1 | 0.001 | ||
Distance to forest | 3.051 | 0.08 | 0.001 | ||
Plant richness | 3.328 | 0.09 | 0.002 | ||
Wasps | 0.2 | Season | 1.787 | 0.1 | 0.004 |
Temperature | 2.041 | 0.04 | 0.017 | ||
Rainfall | 2.408 | 0.04 | 0.007 | ||
Land use | 2.727 | 0.05 | 0.002 | ||
Forest cover | 2.779 | 0.05 | 0.002 | ||
Distance to forest | 2.826 | 0.05 | 0.004 | ||
Plant richness | 0.994 | 0.02 | 0.439 |
Species | Proportion | |
---|---|---|
Mean | Cumulative | |
Bees | ||
Megachile (Eutricharaea) simplex | 0.2356 | 0.2515 |
Amegilla (Zonamegilla) adelaidae | 0.1966 | 0.4613 |
Megachile (Callomegachile) mystacaena | 0.1522 | 0.6237 |
Pachyprosopis (Parapachyprosopis) indicans | 0.1032 | 0.7339 |
Hylaeus (Hylaeorhiza) nubilosus | 0.0938 | 0.8340 |
Megachile (Rhodomegachile) deanii | 0.0658 | 0.9042 |
Pachyprosopis (Parapachyprosopis) angophorae | 0.0298 | 0.9361 |
Hyleoides concinna | 0.0226 | 0.9602 |
Amegilla (Zonamegilla) sp. B | 0.0164 | 0.9778 |
Hylaeus (Euprosopoides) ruficeps ruficeps | 0.0064 | 0.9846 |
Megachile mackayensis | 0.0052 | 0.9902 |
Thyreus cf. caeruleopunctatus | 0.0049 | 0.9955 |
Thyreus nitidulus | 0.0042 | 1.0000 |
Wasps | ||
Pison sp. B | 0.1895 | 0.2049 |
Pison sp. E | 0.1562 | 0.3738 |
Fabriogenia sp. B | 0.1253 | 0.5093 |
Pison sp. D | 0.0917 | 0.6084 |
Anterhynchium (Epiodynerus) nigrocinctus | 0.0677 | 0.6817 |
Pison sp. A | 0.0560 | 0.7423 |
Pison sp. C | 0.0328 | 0.7778 |
Pison sp. F | 0.0298 | 0.8101 |
Fabriogenia sp. A | 0.0259 | 0.8381 |
Fabriogenia sp. C | 0.0195 | 0.8592 |
Eumeninae sp. D | 0.0171 | 0.8778 |
Isodontia sp. | 0.0166 | 0.8957 |
Gasteruption sp. A | 0.0136 | 0.9105 |
Paralastor sp. | 0.0110 | 0.9225 |
Primeuchroeus sp. | 0.0105 | 0.9339 |
Anterhynchium (Epiodynerus) tamarinum | 0.0105 | 0.9453 |
Mutillidae sp. A | 0.0090 | 0.9551 |
Pison sp. J | 0.0089 | 0.9647 |
Irenangelus sp. | 0.0061 | 0.9714 |
Gasteruption sp. B | 0.0048 | 0.9819 |
Eumeninae sp. B | 0.0048 | 0.9766 |
Perilampus sp. | 0.0036 | 0.9858 |
Pison sp. G | 0.0028 | 0.9889 |
Pison sp. H | 0.0028 | 0.9920 |
Mutillidae sp. B | 0.0024 | 0.9947 |
Mutillidae sp. C | 0.0016 | 0.9965 |
Mutillidae sp. D | 0.0016 | 0.9983 |
Pison sp. I | 0.0015 | 1.0000 |
Response | Explanatory | ∆ R2 | LRT | Tukey Post-hoc | ||||
---|---|---|---|---|---|---|---|---|
Marginal | Conditional | X2 | df | p | Levels (Direction) | p | ||
Bee diversity | Season | 0.15 | 0.40 | 8.018 | 3 | 0.0456 | Spring > Autumn | 0.0461 |
Above-ground bee abundance | Rainfall | 0.19 | 0.99 | 10.289 | 1 | 0.0013 | (+) | |
Season | 0.19 | 0.98 | 15.016 | 3 | 0.0018 | Summer > Autumn | 0.0114 | |
Below-ground bee abundance | Rainfall | 0.16 | 0.16 | 5.062 | 1 | 0.0244 | (+) | |
Season | 0.96 | 0.99 | 43.801 | 3 | <0.0001 | Spring > Autumn | <0.0001 | |
Summer > Autumn | <0.0001 | |||||||
Summer > Spring | <0.0001 | |||||||
Winter > Spring | <0.0001 | |||||||
Winter > Summer | <0.0001 | |||||||
Winter > Autumn | <0.0001 | |||||||
Wasp diversity | Season | 0.20 | 0.31 | 12.249 | 3 | 0.0065 | Summer > Autumn | 0.0033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, R.S.; Leonhardt, S.D.; Burwell, C.J.; Fuller, C.; Smith, T.J.; Kaluza, B.F.; Wallace, H.M. Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics. Insects 2020, 11, 853. https://doi.org/10.3390/insects11120853
Wilson RS, Leonhardt SD, Burwell CJ, Fuller C, Smith TJ, Kaluza BF, Wallace HM. Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics. Insects. 2020; 11(12):853. https://doi.org/10.3390/insects11120853
Chicago/Turabian StyleWilson, Rachele S., Sara D. Leonhardt, Chris J. Burwell, Chris Fuller, Tobias J. Smith, Benjamin F. Kaluza, and Helen M. Wallace. 2020. "Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics" Insects 11, no. 12: 853. https://doi.org/10.3390/insects11120853
APA StyleWilson, R. S., Leonhardt, S. D., Burwell, C. J., Fuller, C., Smith, T. J., Kaluza, B. F., & Wallace, H. M. (2020). Landscape Simplification Modifies Trap-Nesting Bee and Wasp Communities in the Subtropics. Insects, 11(12), 853. https://doi.org/10.3390/insects11120853