Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Bt Toxins
2.3. Plant Materials
2.4. Diet Bioassays
2.5. Plant Evaluation
2.6. Statistical Analysis
3. Results
3.1. Susceptibility of BCW to Bt Toxins
3.2. Efficacy of Plant Resistance
3.2.1. Against Second-Instar Larvae
3.2.2. Against Fourth-Instar Larvae
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Erasmus, A.; Van Rensburg, J.B.J.; Van den, B.J. Effects of Bt maize on Agrotis segetum (Lepidoptera: Noctuidae): A pest of maize seedlings. Environ. Entomol. 2010, 39, 702–706. [Google Scholar] [CrossRef]
- Williams, C.B.; Cockbill, G.F.; Gibbs, M.A.; Downes, J.A. Studies in the migration of Lepidoptera. Ecol. Entomol. 2009, 92, 101–174. [Google Scholar] [CrossRef]
- Bishara, I.E. The greasy cutworm (Agrotis ipsilon Rott.) in Egypt. Bull. Minist. Agric. Egypt 1932, 114, 1–55. [Google Scholar]
- Showers, W.B. Migratory ecology of the black cutworm. Annu. Rev. Entomol. 1997, 42, 393–425. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Muñoz, D.; Berry, C.; Murillo, J.; Caballero, P. Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins 2014, 6, 3296–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, J.Z.; Hale, K.; Carta, L.; Platzer, E.; Wong, C.; Fang, S.C.; Aroian, R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 2003, 100, 2760–2765. [Google Scholar] [CrossRef] [Green Version]
- Bravo, A.; Gill, S.S.; Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 2007, 49, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Gómez, I.; Pardo-López, L.; Muñoz-Garay, C.; Fernández, L.E.; Pérez, C.; Sénchez, J.; Soberón, M.; Bravo, A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides 2007, 28, 169–173. [Google Scholar] [CrossRef]
- Pardo-López, L.; Soberón, M.; Bravo, A. Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 2013, 37, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Zhang, Y.J.; Yu, H.C.; Cao, G.C.; Lu, Y.H.; Guo, Y.Y. Insecticidal activity of Cry2Ab proteins to Agrotis ypsilon (Rottemberg) and induced protease activivities changes in the larvae. Acta Phytophys. Sin. 2009, 36, 16–20. [Google Scholar]
- De Maagd, R.A.; Weemen-Hendriks, M.; Molthoff, J.W.; Naimov, S. Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon. Arch. Microbiol. 2003, 179, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.G.; Mullins, M.A.; Warren, G.W.; Koziel, M.G.; Estruch, J.J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 1997, 2, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Shelton, A.M.; Zhao, J.Z.; Roush, R.T. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 2001, 47, 845–881. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, W.D.; Storer, N.P. Expanded use of pyramided transgenic maize hybrids expressing novel Bacillus thuringiensis toxins in the southern U.S.: Potential for areawide suppression of Helicoverpa zea (Lepidoptera: Noctuidae) in the Mississippi Delta. Southwest Entomol. 2010, 35, 403–408. [Google Scholar] [CrossRef]
- Shi, G.; Chavas, J.P.; Lauer, J. Commercialized transgenic traits, maize productivity and yield risk. Nat. Biotechnol. 2013, 31, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Binning, R.R. Fall Armyworm Spodoptera Frugiperda and Black Cutworm Agrotis Ipsilon Susceptibility and Avoidance to Bt Maize, and Implications for Global Insect Resistance Management. Ph.D. Thesis, Iowa State University, Ames, Iowa, 2013. [Google Scholar]
- Greenplate, J.; Penn, S.R.; Mullins, J.W.; Oppenhuizen, M. Seasonal Cry1Ac levels in DP50B: The “Bollgard basis” for Bollgard II. Proceedings of Beltwide Cotten Conferences, San Antonio, TX, USA, 4–8 January 2000; Dugger, P., Richter, D., Eds.; National Cotton Council: Memphis, TN, USA, 2000; Volume 2, pp. 1039–1041. [Google Scholar]
- Zhang, Y.J.; Lu, Q.; Gu, S.H.; Lu, Y.H.; Wu, K.M. The Invention Relates to Preparation Methods and Applications for Artificial Diet of Black Cutworm. China Patent ZL200810112399.7, 25 December 2009. [Google Scholar]
- Gomis-Cebolla, J.; Ferreira, D.S.R.; Wang, Y.Q.; Caballero, J.; Caballero, P.; He, K.L.; Jurat-Fuentes, J.L.; Ferré, J. Domain shuffling between Vip3Aa and Vip3Ca: Chimera stability and insecticidal activity against European, American, African and Asian pests. Toxins 2020, 12, 99. [Google Scholar] [CrossRef]
- Rule, D.M.; Nolting, S.P.; Prasifka, P.L.; Storer, N.P.; Hopkins, B.W.; Scherder, E.F.; Siebert, M.W.; Hendrix, W.H. Efficacy of pyramided Bt proteins Cry1F, Cry1A.105, and Cry2Ab2 expressed in SmartStax corn hybrids against Lepidopteran insect pests in the northern United States. J. Econ. Entomol. 2014, 107, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Estruch, J.J.; Warren, G.W.; Mullins, M.A.; Nye, G.J.; Craig, J.A.; Koziel, M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 1996, 93, 5389–5394. [Google Scholar] [CrossRef] [Green Version]
- Donovan, W.P.; Donovan, J.C.; Engleman, J.T. Gene knockout demonstrates that Vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J. Invertebr. Pathol. 2001, 78, 45–51. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Wang, Y.Q.; Quan, Y.D.; He, K.L.; Walsh, T.; James, B.; Downes, S.; Kain, W.; Wang, P.; Leonard, K.; et al. Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J. Invertebr. Pathol. 2018, 155, 64–70. [Google Scholar] [CrossRef]
- Chakroun, M.; Ferré, J. In vivo and in vitro binding of Vip3Aa to Spodoptera frugiperda midgut and characterization of binding sites by 125I radiolabeling. Appl. Environ. Microbiol. 2014, 80, 6258–6265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Chen, L.Z.; Lu, Q.; Zhang, Y.; Liang, G.M. Toxicity and binding analyses of Bacillus thuringiensis toxin Vip3Aa in Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Hübner). J. Integr. Agric. 2015, 14, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Pickett, B.R.; Gulzar, A.; Ferré, J.; Wright, D.J. Bacillus thuringiensis Vip3Aa toxin resistance in Heliothis virescens (Lepidoptera: Noctuidae). Appl. Environ. Micro. 2017, 83, e03506-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial vegetative insecticidal proteins from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downes, S.; Walsh, T.; Tay, W.T. Bt resistance in Australian insect pest species. Curr. Opin. Insect Sci. 2016, 15, 78–83. [Google Scholar] [CrossRef]
- Adamczyk, J.J.; Mahaffey, J.S. Efficacy of Vip3A and Cry1Ab transgenic traits in cotton against various Lepidopteran pests. Fla. Entomol. 2008, 91, 570–575. [Google Scholar]
- Bommireddy, P.L.; Leonard, B.R. Survivorship of Helicoverpa zea and Heliothis virescens on cotton plant structures expressing a Bacillus thuringiensis vegetative insecticidal protein. J. Econ. Entomol. 2008, 101, 1244–1252. [Google Scholar] [CrossRef]
- Kurtz, R.W.; McCaffery, A.; O’Reilly, D. Insect resistance management for Syngenta’s VipCotTM transgenic cotton. J. Invertebr. Pathol. 2007, 95, 227–230. [Google Scholar] [CrossRef]
- Rice, M.E.; Pilcher, C.D. Potential benefits and limitations of transgenic Bt corn for management of the European corn borer (Lepidoptera: Crambidae). Am. Entomol. 1998, 44, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Kullik, S.A.; Sears, M.K.; Schaafsma, A.W. Sublethal effects of Cry 1F Bt corn and clothianidin on black cutworm (Lepidoptera: Noctuidae) larval development. J. Econ. Entomol. 2011, 104, 484–493. [Google Scholar] [CrossRef]
- Burkness, E.C.; Dively, G.; Patton, T.; Morey, A.C.; Hutchison, W.D. Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions: Implications for resistance management. GM Crop. 2010, 1, 337–343. [Google Scholar] [CrossRef]
- Storer, N.P.; Thompson, G.D.; Head, G.P. Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crop. Food 2012, 3, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Huang, F.N.; Qureshi, J.A.; Leonard, B.R.; Niu, Y.; Zhang, L.P.; Wangila, D.S. Susceptibility of Louisiana and Florida populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) to transgenic Agrisure® VipteraTM 3111 corn. Crop Prot. 2013, 50, 37–39. [Google Scholar] [CrossRef]
- Reay-Jones, F.P.F.; Bessin, R.T.; Brewer, M.J.; Buntin, D.G.; Catchot, A.L.; Cook, D.R.; Flanders, K.L.; Kerns, D.L.; Porter, R.P.; Reisig, D.D.; et al. Impact of Lepidoptera (Crambidae, Noctuidae, and Pyralidae) pests on corn containing pyramided Bt traits and a blended refuge in the southern United States. J. Econ. Entomol. 2016, 109, 1859–1871. [Google Scholar] [CrossRef] [PubMed]
- Palma, L.; Hernandez-Rodriguez, C.S.; Maeztu, M.; Hernández-Martínez, P.; Ruiz de, E.I.; Escriche, B.; Muñoz, D.; Van, R.J.; Ferré, J.; Caballero, P. Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis. Appl. Environ. Microbiol. 2012, 78, 7163–7165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomis-Cebolla, J.; Ruiz de Escudero, I.; Vera-Velasco, N.M.; Hernández-Martínez, P.; Hernández-Rodríguez, C.S.; Ceballos, T.; Palma, L.; Escriche, B.; Caballero, P.; Ferré, J. Insecticidal spectrum and mode of action of the Bacillus thuringiensis Vip3Ca insecticidal protein. J. Invertebr. Pathol. 2017, 142, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Quan, Y.D.; Sivaprasath, P.; Shabbir, M.; Wang, Z.Y.; Ferré, J.; He, K.L. Insecticidal activity and synergistic combinations of ten different Bt toxins against Mythimna separata (Walker). Toxins 2018, 10, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.B.; Lu, G.Q.; Cheng, H.M.; Liu, C.X.; Xiao, Y.T.; Xu, C.; Shen, Z.C.; Wu, K.M. Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. J. Invertebr. Pathol. 2017, 149, 59–65. [Google Scholar] [CrossRef]
- Quan, Y.; Ferré, J. Structural domains of the Bacillus thuringiensis Vip3Af protein unraveled by tryptic digestion of alanine mutants. Toxins 2019, 11, 368. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rodríguez, A.; Heydrich-Pérez, M.; Acebo-Guerrero, Y.; Velazquez-del Valle, M.G.; Hernández-Lauzardo, A.N. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb. in maize (Zea mays L.). Appl. Soil. Ecol. 2008, 39, 180–186. [Google Scholar] [CrossRef]
- Lima, G.M.S.; Aguiar, R.W.S.; Corrêa, R.F.T.; Martins, E.S.; Gomes, A.C.M.; Nagata, T.; De-Souza, M.T.; Monnerat, R.G.; Ribeiro, B.M. Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World J. Microbiol. Biotechnol. 2008, 24, 2941–2948. [Google Scholar] [CrossRef]
- Fiuza, M.L.; Knaak, N.; Pires da Silva, R.F.; Henriques, J.A.P. Receptors and lethal effect of Bacillus thuringiensis insecticidal crystal proteins to the Anticarsia gemmatalis (Lepidoptera, Noctuidae). ISRN Mricrobil. 2013. [Google Scholar] [CrossRef] [Green Version]
- Gajendra, B.; Udayasuriyan, V.; Asia, M.M.; Sivakumar, N.C.; Bharathi, M.; Balasubramanian, G. Comparative toxicity of Cry1Ac and Cry2Aa–endotoxins of Bacillus thurigiensis against Helicoverpa armigera. Crop Prot. 2002, 21, 817–822. [Google Scholar] [CrossRef]
- Jurat-Fuentes, J.L.; Adang, M.J. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur. J. Biochem. 2004, 271, 3127–3135. [Google Scholar] [CrossRef] [PubMed]
- Macintosh, S.C.; Stone, T.B.; Sims, S.R.; Hunst, P.L.; Greenplate, J.T.; Marrone, P.G.; Perlak, F.J.; Fischhoff, D.A.; Fuchs, R.L. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J. Invertebr. Pathol. 1990, 56, 258–266. [Google Scholar] [CrossRef]
Toxins | Concentration (μg/g, Toxin/Diet) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cry1Ab | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | |
Cry1Ac | 0 | 1.0 | 10.0 | 50.0 | 100 | 200 | 500 | 800 | ||
Cry1Ah | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | 300 |
Cry1F | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | ||
Cry1Ie | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | 500 |
Cry1B | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | |
Cry2Aa | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | |
Vip3Aa19 | 0 | 0.05 | 0.1 | 0.2 | 0.5 | 1.0 | 2.0 | 5.0 | ||
Vip3Ca | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | |
Vip3_ch4 | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | 400 |
Vip3_ch1 | 0 | 1.0 | 2.0 | 5.0 | 10.0 | 20.0 | 50.0 | 100 | 200 | 400 |
Toxins | n | LC50 (95% FL) μg/g | LC90 (95% FL) μg/g | Slope ± SE | χ2 | df (χ2) |
Vip3Aa19 | 384 | 0.43 (0.35–0.53) | 1.96 (1.46–2.89) | 1.95 ± 0.17 | 4.7 | 12 |
Vip3_ch1 | 432 | 5.53 (4.13–7.23) | 50.75 (33.87–89.20) | 1.33 ± 0.14 | 8.0 | 13 |
Cry1F | 336 | 83.62 (48.73–203.49) | >1000 | 0.98 ± 0.15 | 6.7 | 11 |
Cry1Ac | 336 | 184.77 (126.74–282.66) | >4000 | 0.93 ± 0.11 | 4.8 | 11 |
Concentration a (μg/g) | Mortality b (%) | |||||
Control | 432 | 0 | 0 | |||
Cry1Ab | 384 | 200 | 18.7 | |||
Cry1B | 384 | 200 | 14.6 | |||
Cry2Aa | 384 | 200 | 50.0 | |||
Vip3Ca2 | 384 | 200 | 37.5 | |||
Cry1Ah | 432 | 300 | 29.2 | |||
Vip3_ch4 | 432 | 400 | 14.6 | |||
Cry1Ie | 432 | 500 | 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Lu, J.; Ren, M.; He, Y.; Wang, Y.; Wang, Z.; He, K. Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel). Insects 2020, 11, 208. https://doi.org/10.3390/insects11040208
Yan X, Lu J, Ren M, He Y, Wang Y, Wang Z, He K. Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel). Insects. 2020; 11(4):208. https://doi.org/10.3390/insects11040208
Chicago/Turabian StyleYan, Xiaorui, Junjiao Lu, Meifeng Ren, Yin He, Yueqin Wang, Zhenying Wang, and Kanglai He. 2020. "Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel)" Insects 11, no. 4: 208. https://doi.org/10.3390/insects11040208
APA StyleYan, X., Lu, J., Ren, M., He, Y., Wang, Y., Wang, Z., & He, K. (2020). Insecticidal Activity of 11 Bt toxins and 3 Transgenic Maize Events Expressing Vip3Aa19 to Black Cutworm, Agrotis ipsilon (Hufnagel). Insects, 11(4), 208. https://doi.org/10.3390/insects11040208