Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Sampling
2.3. Morphological Measurements
2.4. Statistical Procedures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Billick, I. The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 2002, 132, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Sagili, R.R.; Pankiw, T.; Metz, B.N. Division of labor associated with brood rearing in the honey bee: How does it translate to colony fitness? PLoS ONE 2011, 6. [Google Scholar] [CrossRef]
- Colin, T.; Doums, C.; Peronnet, R.; Molet, M. Decreasing worker size diversity does not affect colony performance during laboratory challenges in the ant Temnothorax nylanderi. Behav. Ecol. Sociobiol. 2017, 71, 92. [Google Scholar] [CrossRef] [Green Version]
- Gruter, C.; Menezes, C.; Imperatriz-Fonseca, V.L.; Ratnieks, F.L.W. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proc. Natl. Acad. Sci. USA 2012, 109, 1182–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulson, D.; Peat, J.; Stout, J.C.; Tucker, J.; Darvill, B.; Derwent, L.C.; Hughes, W.O.H. Can alloethism in workers of the bumblebee, Bombus terrestris, be explained in terms of foraging efficiency? Anim. Behav. 2002, 64, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Spaethe, J.; Weidenmuller, A. Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Soc. 2002, 49, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Jandt, J.M.; Dornhaus, A. Spatial organization and division of labour in the bumblebee Bombus impatiens. Anim. Behav. 2009, 77, 641–651. [Google Scholar] [CrossRef]
- O’donnell, S.; Jeanne, R.L. The roles of body size and dominance in division of labor among workers of the eusocial wasp Polybia occidentalis (Olivier) (Hymenoptera, Vespidae). J. Kans. Entomol. Soc. 1995, 68, 43–50. [Google Scholar]
- Haifig, I.; Jost, C.; Janei, V.; Costa-Leonardo, A.M. The size of excavators within a polymorphic termite species governs tunnel topology. Anim. Behav. 2011, 82, 1409–1414. [Google Scholar] [CrossRef]
- Beshers, S.N.; Traniello, J.F.A. Polyethism and the adaptiveness of worker size variation in the attine ant Trachymyrmex septentrionalis. J. Insect Behav. 1996, 9, 61–83. [Google Scholar] [CrossRef]
- Cerda, X.; Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 1997, 78, 467–474. [Google Scholar] [CrossRef]
- Huang, M.H. Multi-phase defense by the big-headed ant, Pheidole obtusospinosa, against raiding army ants. J. Insect Sci. 2010, 10. [Google Scholar] [CrossRef]
- Medan, V.; Josens, R.B. Nectar foraging behaviour is affected by ant body size in Camponotus mus. J. Insect Physiol. 2005, 51, 853–860. [Google Scholar] [CrossRef]
- Arnan, X.; Ferrandiz-Rovira, M.; Pladevall, C.; Rodrigo, A. Worker size-related task partitioning in the foraging strategy of a seed-harvesting ant species. Behav. Ecol. Sociobiol. 2011, 65, 1881–1890. [Google Scholar] [CrossRef]
- Fisher, P.J.; Stradling, D.J.; Sutton, B.C.; Petrini, L.E. Microfungi in the fungus gardens of the leaf-cutting ant Atta cephalotes: A preliminary study. Mycol. Res. 1996, 100, 541–546. [Google Scholar] [CrossRef]
- Bot, A.N.M.; Currie, C.R.; Hart, A.G.; Boomsma, J. Waste management in leaf-cutting ants. Ethol. Ecol. Evol. 2001, 13, 225–237. [Google Scholar] [CrossRef]
- Hart, A.G.; Ratnieks, F.L.W. Task partitioning, division of labour and nest compartmentalisation collectively isolate hazardous waste in the leafcutting ant Atta cephalotes. Behav. Ecol. Sociobiol. 2001, 49, 387–392. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies; WW Norton & Company: New York, NY, USA, 2008. [Google Scholar]
- Hölldobler, B.; Wilson, E.O. The Ants; Belknap Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Patel, A.D. An unusually broad behavioral repertory for a major worker in a dimorphic ant species: Pheidole morrisi (Hymenoptera, Formicidae). Psyche A J. Entomol. 1990, 97. [Google Scholar] [CrossRef] [Green Version]
- Herbers, J.M.; Cunningham, M. Social organization in Lepthotorax longispinosus Mayr. Anim. Behav. 1983, 31, 759–771. [Google Scholar] [CrossRef]
- Westling, J.N.; Harrington, K.; Bengston, S.; Dornhaus, A. Morphological differences between extranidal and intranidal workers in the ant Temnothorax rugatulus, but no effect of body size on foraging distance. Insectes Soc. 2014, 61, 367–369. [Google Scholar] [CrossRef]
- Grześ, I.M.; Okrutniak, M.; Grzegorzek, J. The size-dependent division of labour in monomorphic ant Lasius niger. Eur. J. Soil Biol. 2016, 77, 1–3. [Google Scholar] [CrossRef]
- Vele, A.; Modlinger, R. Body size of wood ant workers affects their work division. Sociobiology 2019, 66, 614–618. [Google Scholar] [CrossRef]
- Czechowski, W.; Radchenko, A.; Czechowska, W.; Vepsäläinen, K. The Ants of Poland with Reference to the Myrmecofauna of Europe; Museum and Institute of Zoology of the Polish Academy of Sciences and Natura optima dux Foundation: Warszawa, Poland, 2012. [Google Scholar]
- Offenberg, J. Balancing between mutualism and exploitation: The symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 2001, 49, 304–310. [Google Scholar] [CrossRef]
- Engel, V.; Fischer, M.K.; Wackers, F.L.; Volkl, W. Interactions between extrafloral nectaries, aphids and ants: Are there competition effects between plant and homopteran sugar sources? Oecologia 2001, 129, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Chadab, R.; Rettenmeyer, C.W. Mass recruitment by army ants. Science 1975, 188, 1124–1125. [Google Scholar] [CrossRef]
- Deslippe, R.J.; Savolainen, R. Role of food-supply in structuring a population of Formica ants. J. Anim. Ecol. 1994, 63, 756–764. [Google Scholar] [CrossRef]
- Yamauchi, K.; Yoshida, T.; Ogawa, T.; Itoh, S.; Ogawa, Y.; Jimbo, S.; Imai, H.T. Spermatogenesis of diploid males in the formicine ant, Lasius sakagamii. Insectes Soc. 2001, 48, 28–32. [Google Scholar] [CrossRef]
- Fjerdingstad, E.J. Control of body size of Lasius niger ant sexuals—Worker interests, genes and environment. Mol. Ecol. 2005, 14, 3123–3132. [Google Scholar] [CrossRef]
- Aron, S.; Steinhauer, N.; Fournier, D. Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim. Behav. 2009, 77, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Mailleux, A.C.; Deneubourg, J.L.; Detrain, C. How do ants assess food volume? Anim. Behav. 2000, 59, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Detrain, C.; Prieur, J. Sensitivity and feeding efficiency of the black garden ant Lasius niger to sugar resources. J. Insect Physiol. 2014, 64, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Portha, S.; Deneubourg, J.L.; Detrain, C. How food type and brood influence foraging decisions of Lasius niger scouts. Anim. Behav. 2004, 68, 115–122. [Google Scholar] [CrossRef]
- Beckers, R.; Deneubourg, J.L.; Goss, S. Modulation of trail laying in the ant Lasius niger (Hymenoptera, formicidae) and its role in the collective selection of a food source. J. Insect Behav. 1993, 6, 751–759. [Google Scholar] [CrossRef]
- Portha, S.; Deneubourg, J.L.; Detrain, C. Self-organized asymmetries in ant foraging: A functional response to food type and colony needs. Behav. Ecol. 2002, 13, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Detrain, C.; Verheggen, F.J.; Diez, L.; Wathelet, B.; Haubruge, E. Aphid-ant mutualism: How honeydew sugars influence the behaviour of ant scouts. Physiol. Entomol. 2010, 35, 168–174. [Google Scholar] [CrossRef]
- Kay, A.; Rissing, S.W. Division of foraging labor in ants can mediate demands for food and safety. Behav. Ecol. Sociobiol. 2005, 58, 165–174. [Google Scholar] [CrossRef]
Source | Df | F-Ratio | p-Value |
---|---|---|---|
Main Effects | |||
Colony | 29 | 51.36 | p < 0.0001 |
Worker Class | 1 | 162.7 | p < 0.0001 |
Interaction | |||
Colony*Worker Class | 29 | 4.294 | p < 0.0001 |
Residual | 2845 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okrutniak, M.; Rom, B.; Turza, F.; Grześ, I.M. Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger. Insects 2020, 11, 433. https://doi.org/10.3390/insects11070433
Okrutniak M, Rom B, Turza F, Grześ IM. Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger. Insects. 2020; 11(7):433. https://doi.org/10.3390/insects11070433
Chicago/Turabian StyleOkrutniak, Mateusz, Bartosz Rom, Filip Turza, and Irena M. Grześ. 2020. "Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger" Insects 11, no. 7: 433. https://doi.org/10.3390/insects11070433
APA StyleOkrutniak, M., Rom, B., Turza, F., & Grześ, I. M. (2020). Body Size Differences between Foraging and Intranidal Workers of the Monomorphic Ant Lasius niger. Insects, 11(7), 433. https://doi.org/10.3390/insects11070433