Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Designs
2.2. Sample Collection
2.2.1. Number of Flowers and Yield Data
2.2.2. Evaluation of Pollinators Using Pan Traps
2.2.3. Evaluation of Pollinators Using Sticky Traps
2.2.4. Evaluation of Pollinators from Direct Visual Counts
2.3. Data Analysis
3. Results
3.1. Plant Parameters
3.2. Effect of Sampling Week, Sampling Method and Cowpea Variety on Pollinator Abundance
3.3. Abundance and Diversity of Pollinators Associated with Cowpea Varieties
3.3.1. Evaluation of Pollinators Using Pan Traps
3.3.2. Evaluation of Pollinators Using Sticky Traps
3.3.3. Evaluation of Pollinators from Direct Visual Counts
3.4. Pollinator Abundance and Diversity Indices Associated with Cowpea Varieties and the Three Sampling Methods
3.5. Relationship between Number of Pollinators, Cowpea Flowers and Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, A.M.; Vaissiere, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Kremen, C.; Morales, J.M.; Bommarco, R.; Cunningham, S.A.; Carvalheiro, L.G.; Chacoff, N.P.; Dudenhöffer, J.H.; Greenleaf, S.S.; et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 2011, 14, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, L.A.; Steffan-Dewenter, I.; Winfree, R.; Aizen, M.A.; Bommarco, R.; Cunningham, S.A.; Kremen, C.; Carvalheiro, L.G.; Harder, L.D.; Afik, O.; et al. Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science 2013, 339, 1608–1611. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, S.L.; Nabhan, G.P. The Forgotten Pollinators; Island Press/Shearwater Books: Washington, DC, USA, 1996; p. 292. [Google Scholar]
- Ghazoul, J. Buzziness as usual? Questioning the global pollination crisis. Trends Ecol. Evol. 2005, 20, 367–373. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Potts, S.G.; Packer, L.J.T. Pollinator diversity and crop pollination services are at risk. Trends Ecol. Evol. 2005, 20, 651–652. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemuller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Williams, P.; Osborne, J. Bumblebee vulnerability and conservation world-wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef] [Green Version]
- FDA—Food and Drug Administration. Helping Agriculture’s Helpful Honey Bees; FDA: Silver Spring, MD, USA, 2018; p. 11. [Google Scholar]
- Kremen, C.; Williams, N.M.; Thorp, R.W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 2002, 99, 16812–16816. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, D.; Raemakers, I. A retrospective analysis of pollen host plant use by stable and declining bumble bee species. Ecology 2008, 89, 1811–1823. [Google Scholar] [CrossRef]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Winfree, R.; Aguilar, R.; Vázquez, D.; LeBuhn, G.; Aizen, M.A. Meta-analysis of bees’ response to anthropogenic disturbance. Ecology 2009, 90, 2068–2076. [Google Scholar] [CrossRef] [PubMed]
- Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecol. Lett. 2004, 7, 1109–1119. [Google Scholar] [CrossRef]
- Winfree, R.; Williams, N.; Dushoff, J.; Kremen, C. Native bees provide insurance against ongoing honey bee loss. Ecol. Lett. 2007, 10, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Chacoff, N.P.; Aizen, M.A. Edge effects on flower-visiting insects in grapefruit plantations bordering premontane subtropical forest. J. Appl. Ecol. 2006, 43, 18–27. [Google Scholar] [CrossRef]
- USDA—United States Department of Agriculture. Attractiveness of Agricultural Crops to Pollinating Bees for the Collection of Nectar and/or Pollen; USDA: Washington, DC, USA, 2017; p. 49. [Google Scholar]
- Quinn, J. Cowpea: A Versatile Legume for Hot, Dry Conditions; Jefferson Institute: Columbia, MO, USA, 1999. [Google Scholar]
- SARE—Sustainable Agriculture Research & Education. Managing Cover Crops Profitably, 3rd ed.; Sustainable Agriculture Research & Education (SARE) Program: College Park, MD, USA, 2012; p. 248. [Google Scholar]
- Folger, P.; Cody, B.A.; Carter, N.T. Drought in the United States: Causes and Issues for Congress; Congressional Research Service: Washington, DC, USA, 2012; p. 36. [Google Scholar]
- Gonçalves, A.; Goufo, P.; Barros, A.; Domínguez-Perles, R.; Trindade, H.; Rosa, E.A.S.; Ferreira, L.; Rodrigues, M. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: Nutritional advantages and constraints. J. Sci. Food Agric. 2016, 96, 2941–2951. [Google Scholar] [CrossRef]
- Quin, F.M. Introduction. In Advances in Cowpea Research; Singh, B.B., Raj, D.R.M., Dashiel, K.E., Jackai, L.E.N., Eds.; International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS): Sayce Publishing: Devon, UK, 1997; p. 375. [Google Scholar]
- Singh, S.R.; Rachie, K.O. Cowpea Research, Production, and Utilization; John Wiley & Sons Inc: Chichester, NY, USA, 1985; p. 488. [Google Scholar]
- Fohouo, F.-N.; Albert, N.; Kengni, B. Pollination and yield responses of cowpea (Vigna unguiculata L. Walp.) to the foraging activity of Apis mellifera adansonii (Hymenoptera: Apidae) at Ngaoundéré (Cameroon). Afr. J. Biotechnol. 2009, 8, 1988–1996. [Google Scholar]
- Kennedy, C.M.; Lonsdorf, E.; Neel, M.C.; Williams, N.M.; Ricketts, T.H.; Winfree, R.; Bommarco, R.; Brittain, C.; Burley, A.L.; Cariveau, D.; et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 2013, 16, 584–599. [Google Scholar] [CrossRef]
- Nicholls, C.; Altieri, M. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agro. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, L.A.; Carvalheiro, L.G.; Leonhardt, S.D.; Aizen, M.A.; Blaauw, B.R.; Isaacs, R.; Kuhlmann, M.; Kleijn, D.; Klein, A.M.; Kremen, C.; et al. From research to action: Enhancing crop yield through wild pollinators. Front. Ecol. Environ. 2014, 12, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Calderone, N.W. Insect pollinated crops, insect pollinators and US agriculture: Trend analysis of aggregate data for the period 1992–2009. PLoS ONE 2012, 7, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olasantan, F.O. Response of tomato and okra to nitrogen fertilizer in sole cropping and intercropping with cowpea. J. Hort. Sci. 1991, 66, 191–199. [Google Scholar] [CrossRef]
- John, S.A.; Mini, C.B. Biological efficiency of intercropping in okra (Abelmoschus esculentus (L.) Moench). J. Trop. Agric. 2005, 43, 33–36. [Google Scholar]
- Akande, M.O.; Oluwatoyinbo, F.I.; Kayode, C.O.; Olowokere, F.A. Response of maize (Zea mays) and okra (Abelmoschus esculentus) intercrop relayed with cowpea (Vigna unguiculata) to different levels of cow dung amended phosphate rock. World J. Agric. Sci. 2006, 2, 119–122. [Google Scholar]
- Agboh-Noameshie, A.; Jackai, L.E.N.; Agboola, A.A.; Ezumah, H.C. Manipulating canopy structure in cassava intercropped with cowpea and its effects on cowpea insect population densities. Trop. Agric. 1997, 74, 210–215. [Google Scholar]
- Amanullah, M.M.; Vaiyapuri, K.; Alagesan, A.; Somasundaram, E.; Sathyamoorth, K.; Pazhanivelan, S. Effect of intercropping and organic manures on the yield and biological efficiency of cassava intercropping system (Manihot esculenta Crantz.). Res. J. Agric. Biolo. Sci. 2006, 2, 201–208. [Google Scholar]
- Larsen, N.J.; Minor, M.A.; Cruickshank, R.H.; Robertson, A.W. Optimising methods for collecting Hymenoptera, including parasitoids and Halictidae bees, in New Zealand apple orchards. J. Asia Pac. Entomol. 2014, 17, 375–381. [Google Scholar] [CrossRef]
- Wheelock, M.J.; O’Neal, M.E. Insect Pollinators in Iowa Cornfields: Community Identification and Trapping Method Analysis. PLoS ONE 2016, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- McCravy, K.; Ruholl, J. Bee (Hymenoptera: Apoidea) Diversity and Sampling Methodology in a Midwestern USA Deciduous Forest. Insects 2017, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Wousla, E.; Andargie, M.; Pasquet, R.; Mondon, M.; Menez, V.; Cochin, C.; Paul, L.; Pardon, L.; Roubaud, M. Is bigger better? Apidae (Xylocopinae), megachilidae and cowpea (Vigna unguiculata ) pollination. Plant Breed. 2019, 139, 156–166. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W.W. The Mathematical Theory of Communications; University of Illinois Press: Urbana, IL, USA, 1963; p. 117. [Google Scholar]
- Roulston, T.H.; Smith, S.A.; Brewster, A.L. A Comparison of Pan Trap and Intensive Net Sampling Techniques for Documenting a Bee (Hymenoptera: Apiformes) Fauna. J. Kans. Entomol. Soc. 2007, 80, 179–181. [Google Scholar] [CrossRef]
- Hordzi, W. Insects observed on cowpea flowers in three districts in the central region of Ghana. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 4880–4895. [Google Scholar] [CrossRef]
- Ige, O.; Olotuah, O.; Akerele, V. Floral Biology and Pollination Ecology of Cowpea (Vigna Unguiculata L. Walp). Mod. Appl. Sci. 2011, 5, 74–82. [Google Scholar]
- Dan, S.; Murungi, L.K.; Kioko, E. Diversity and abundance of insect pollinators and their effect on yield and quality of cowpea and cucumber in Makueni, Kenya. Afr. J. Hort. Sci. 2019, 16, 43–54. [Google Scholar]
- Matteson, P.C. The Effects of Intercropping with cereals and minimal permethrin applications on insect pests of cowpea and their natural enemies in Nigeria. Trop. Pest Manag. 1982, 28, 372–380. [Google Scholar] [CrossRef]
- Adamson, N.L.; Roulston, T.H.; Fell, R.D.; Mullins, D.E. From April to August—Wild bees pollinating crops through the growing season in Virginia, USA. Environ. Entomol. 2012, 41, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Geroff, R.K.; Gibbs, J.; McCravy, K.W. Assessing bee (Hymenoptera: Apoidea) diversity of an Illinois restored tallgrass prairie: Methodology and conservation considerations. J. Insect Cons. 2014, 18, 951–964. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Pollinators vital to our food supply under threat; FAO: Rome, Italy, 2016; p. 4. [Google Scholar]
- Garibaldi, L.A.; Aizen, M.A.; Klein, A.M.; Cunningham, S.A.; Harder, L.D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. USA 2011, 108, 5909–5914. [Google Scholar] [CrossRef] [Green Version]
- Ehlers, J.D.; Hall, A.E. Cowpea (Vigna unguiculata L Walp). Field Crop Res. 1997, 53, 187–204. [Google Scholar] [CrossRef]
- Vaz, C.; de Oliveira, D.; Ohashi, O. Pollinator contribution to the production of cowpea in the Amazon. HortScience 1998, 33, 1157–1159. [Google Scholar] [CrossRef] [Green Version]
- Crane, E.; Walker, P. Pollination Directory for World Crops; International Bee Research Association: Bucks, UK, 1984; p. 183. [Google Scholar]
- Bjorkman, T. Role of Honey-Bees (Hymenoptera, Apidae) in the Pollination of Buckwheat in Eastern North-America. J. Econ. Entomol. 1995, 88, 1739–1745. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, M. Pollination of Crops in Australia and New Zealand; Rural Industries Research and Development Corporation: Hamilton, New Zealand, 2012; p. 136. [Google Scholar]
- USDA-NASS. Agricultural Statistics 2018; Service United States Government Printing Office: Washington, DC, USA, 2018; p. 502. [Google Scholar]
- Winfree, R. Pollinator-dependent crops: An increasingly risky business. Curr. Biol. 2008, 18, 968–969. [Google Scholar] [CrossRef] [Green Version]
- Patricio, G.B.; Grisolia, B.B.; Desuó, I.C.; Montagnana, P.C.; Brocanelli, F.G.; Gomig, E.G.; Campos, M.J.d.O.J.S. The Importance of bees for eggplant cultivations (Hymenoptera: Apidae, Andrenidae, Halictidae). Sociobiology 2014, 59, 1037–1052. [Google Scholar]
- Goubara, M.; Takasaki, T. Flower visitors of lettuce under field and enclosure conditions. Appl. Entomol. Zool. 2003, 38, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Gómez, S.R.; Ornosa, C.; Selfa, J.; Guara, M.; Polidori, C. Small sweat bees (Hymenoptera: Halictidae) as potential major pollinators of melon (Cucumis melo) in the Mediterranean. Entomol. Sci. 2016, 19, 55–66. [Google Scholar] [CrossRef]
- Singer, R.; Cocucci, A. Pollination mechanism in southern Brazilian orchids which are exclusively or mainly pollinated by halictid bees. Plant Syst. Evol. 1999, 217, 101–117. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Ghanbari, A.; Syasar, B.; Ramrodi, M. Intercropping maize (Zea mays L.) and cowpea (Vigna unguiculata L.) as a whole-crop forage: Effects of planting ratio and harvest time on forage yield and quality. J. Food Agric. Environ. 2009, 7, 505–509. [Google Scholar]
- Negrini, A.C.A.; de Melo, P.C.T.; Ambrosano, E.J.; Sakai, R.H.; Schammass, E.A.; Rossi, F. Performance of lettuce in sole cropping and intercropping with green manures. Hortic. Bras. 2010, 28, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Van der Kooi, C.; Dyer, A.; Kevan, P.; Lunau, K. Functional significance of the optical properties of flowers for visual signalling. Ann. Bot. 2019, 123, 263–276. [Google Scholar] [CrossRef] [Green Version]
- Aragon, S.; Ackerman, J.D. Does flower color variation matter in deception pollinated Psychilis monensis (Orchidaceae)? Oecologia 2004, 138, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Renoult, J.P.; Valido, A.; Jordano, P.; Schaefer, H.M. Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytol. 2014, 201, 678–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dafni, A.; Bernhardt, P.; Shmida, A.; Ivri, Y.; Greenbaum, S.; Otoole, C.; Losito, L. Red Bowl-Shaped Flowers —Convergence for Beetle Pollination in the Mediterranean Region. Israel J. Bot. 1990, 39, 81–92. [Google Scholar]
- Dotterl, S.; Gluck, U.; Jurgens, A.; Woodring, J.; Aas, G. Floral Reward, Advertisement and Attractiveness to Honey Bees in Dioecious Salix caprea. PLoS ONE 2014, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Reverté, S.; Retana, J.; Gómez, J.M.; Bosch, J. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators. Ann. Bot. 2016, 118, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Augspurger, C.K. Mass-flowering of a tropical shrub (Hybanthus prunifolius): Influence on pollinator attraction and movement. Evolution 1980, 34, 475–488. [Google Scholar]
- Bell, G.; Hamilton, W.D. On the function of flowers. Proc. R. Soc. Lond. Ser. B Biol. Sci. Lond. 1985, 224, 223–265. [Google Scholar]
- Conner, J.K.; Rush, S. Effects of flower size and number on pollinator visitation to wild radish, Raphanus raphanistrum. Oecologia 1996, 105, 509–516. [Google Scholar] [CrossRef]
- Kawarasaki, S.; Hori, Y. Effect of flower number on the pollinator attractiveness and the threshold plant size for flowering in Pertya triloba (Asteraceae). Plant Species Biol. 2002, 14, 69–74. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. Floral strips attract beneficial insects but do not enhance yield in cucumber fields. J. Econ. Entomol. 2017, 110, 517–524. [Google Scholar] [CrossRef]
- McFrederick, Q.; LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)? Biol. Conserv. 2006, 129, 372–382. [Google Scholar] [CrossRef]
- Ahrné, K.; Bengtsson, J.; Elmqvist, T. Bumble Bees (Bombus spp) along a gradient of increasing urbanization. PLoS ONE 2009, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matteson, K.; Langellotto, G. Small scale additions of native plants fail to increase beneficial insect richness in urban gardens: Native plant additions in urban gardens. Insect Conserv. Divers. Insect Conserv. Divers. 2010, 4, 89–98. [Google Scholar] [CrossRef]
- Bates, A.J.; Sadler, J.P.; Fairbrass, A.J.; Falk, S.J.; Hale, J.D.; Matthews, T.J. Changing bee and hoverfly pollinator assemblages along an Urban-Rural gradient. PLoS ONE 2011, 6, e23459. [Google Scholar] [CrossRef] [PubMed]
- Hennig, E.I.; Ghazoul, J. Pollinating animals in the urban environment. Urban Ecosyst. 2012, 15, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Pardee, G.; Philpott, S. Native plants are the bee’s knees: Local and landscape predictors of bee richness and abundance in backyard gardens. Urban Ecosyst. 2014, 17, 641–659. [Google Scholar] [CrossRef] [Green Version]
- Hardy, P.B.; Dennis, R.L.H. The impact of urban development on butterflies within a city region. Biodivers. Conserv. 1999, 8, 1261–1279. [Google Scholar] [CrossRef]
- Prasifka, J.R.; Mallinger, R.E.; Portlas, Z.M.; Hulke, B.S.; Fugate, K.K.; Paradis, T.; Hampton, M.E.; Carter, C.J. Using nectar-related traits to enhance crop-pollinator interactions. Front. Plant Sci. 2018, 9, 812. [Google Scholar] [CrossRef]
- Pamminger, T.; Becker, R.; Himmelreich, S.; Schneider, C.W.; Bergtold, M. The nectar report: Quantitative review of nectar sugar concentrations offered by bee visited flowers in agricultural and non-agricultural landscapes. PeerJ 2019, 7, e6329. [Google Scholar] [CrossRef] [Green Version]
- Jackai, L.E.N.; Singh, S.R.; Raheja, A.K.; Wiedijk, F. Recent trends in the control of cowpea pests in Africa. In Cowpea Research, Production and Utilization; Singh, S.R., Rachie, K.O., Eds.; John Wiley & Sons: Chichester, UK, 1985; pp. 234–243. [Google Scholar]
Variety | Mean # (±SE) of Days to First Flower | Mean # (±SE) of Flowers/Plant | Mean # (±SE) of Days to First Pod | Flower Color |
---|---|---|---|---|
Big Boy | 54.5 ± 1.5 a | 25.4 ± 1.5 fg | 62.8 ± 2.5 | White |
Big Red Ripper | 51.0 ± 2.2 ab | 39.9 ± 4.0 a–f | 62.8 ± 2.5 | Purple |
Black Crowder | 52.8 ± 1.4 a | 44.9 ± 4.5 a–e | 61.0 ± 2.1 | Purple |
Carrapichio | 50.3 ± 1.7 ab | 26.3 ± 2.4 fg | 64.5 ± 2.5 | Purple |
CBE5 | 55.5 ± 3.7 a | 18.6 ± 1.5 g | 64.5 ± 2.5 | Purple |
Cream 40 | 54.0 ± 4.0 a | 27.8 ± 2.7 e–g | 64.5 ± 2.5 | White |
Ct Pinkeye Purple Hull | 45.5 ± 1.3 ab | 49.4 ± 3.5 a–d | 57.5 ± 2.5 | White |
Dixielee | 49.3 ± 1.4 ab | 47.6 ± 2.9 a–d | 62.8 ± 1.7 | Purple |
Early Scarlet | 42.0 ± 1.2 b | 55.5 ± 3.9 ab | 57.5 ± 2.5 | Yellow |
Iron & Clay | - | - | - | - |
Lady | 51.3 ± 1.8 ab | 50.4 ± 4.4 a–d | 61.0 ± 2.1 | White |
Mayo Colima | 48.3 ± 0.8 ab | 54.8 ± 4.0 a–c | 61.0 ± 2.1 | Purple |
Mississippi Silver | 50.3 ± 2.8 ab | 54.1 ± 4.5 a–c | 61.0 ± 2.1 | Purple |
Peking Black | 49.3 ± 1.4 ab | 42.6 ± 4.6 a–f | 61.0 ± 2.1 | Purple |
Penny Rile | 51.3 ± 1.0 ab | 54.0 ± 5.4 a–c | 61.0 ± 2.1 | Purple |
Purple Hull Big Boy | 55.5 ± 2.1 a | 19.2 ± 1.3 g | 64.5 ± 2.5 | White |
Red Bisbee | 54.8 ± 0.8 a | 37.6 ± 4.3 b–f | 64.5 ± 2.5 | Purple |
Rouge et Noir | 48.3 ± 0.8 ab | 26.5 ± 2.2 fg | 61.0 ± 2.1 | Purple |
Running Conch | 50.3 ± 1.7 ab | 32.8 ± 3.6 d–g | 61.0 ± 2.1 | White |
Tohono O’odham | - | - | - | - |
Vietnamese Black | 47.3 ± 1.3 ab | 38.0 ± 4.5 b–f | 61.0 ± 2.1 | Purple |
Whippoorwill | 49.3 ± 1.4 ab | 56.4 ± 4.2 a | 59.3 ± 0.8 | Purple |
Whippoorwill Steel Black | 53.0 ± 2.9 a | 37.5 ± 3.2 c–f | 61.0 ± 2.1 | Purple |
Zipper Cream | 52.8 ± 2.4 a | 27.4 ± 2.7 e–g | 62.8 ± 2.5 | White |
Source | DF | L-R χ2 | Prob > χ2 |
Sampling week | 4 | 167.35628 | <0.0001 |
Sampling methods | 4 | 645.27582 | <0.0001 |
Sampling week × Sampling methods | 16 | 87.586056 | <0.0001 |
Variety | 23 | 84.183526 | <0.0001 |
Sampling week × Variety | 92 | 35.250846 | 1.000 |
Sampling method × Variety | 92 | 140.18891 | 0.0009 |
Sampling week × Sampling method × Variety | 368 | 95.557676 | 1.000 |
Mean number per trap ± SE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
White | Yellow | Blue | ||||||||||
Variety | Apidae | Crabronidae | Halictidae | Tachnidae | Apidae | Crabronidae | Halictidae | Tachnidae | Apidae | Crabronidae | Halictidae | Tachnidae |
Big Boy | 1.3 ± 0.5 b | 15.0 ± 6.0 | 32.5 ± 6.1 | 5.3 ± 1.7 | 0.5 ± 0.5 | 2.8 ± 0.9 b | 9.5 ± 2.0 ab | 3.0 ± 1.8 | 1.0± 0.7 | 0.3 ± 0.3 | 7.0 ± 2.1 | 1.3 ± 0.5 |
Big Red Ripper | 1.0 ± 1.0 b | 8.8 ± 0.3 | 32.3 ± 10.4 | 6.3 ± 2.2 | 0.0 ± 0.0 | 1.5 ± 1.0 b | 6.0 ± 2.1 b | 3.8 ± 0.9 | 2.3 ± 1.3 | 0.5 ± 0.5 | 8.0 ± 1.1 | 1.5 ± 0.9 |
Black Crowder | 3.3 ± 1.3 b | 14.3 ± 5.3 | 35.8 ± 8.3 | 4.8 ± 2.5 | 2.5 ± 2.2 | 5.0 ± 1.2 a | 17.3 ± 3.2 a | 6.5 ± 2.7 | 7.3 ± 2.9 | 1.0 ± 0.7 | 6.8 ± 2.1 | 1.3 ± 0.5 |
Carrapichio | 0.3 ± 0.3 b | 5.8 ± 2.7 | 22.8 ± 5.5 | 3.0 ± 1.1 | 0.5 ± 0.3 | 1.5 ± 0.6 b | 8.3 ± 2.3 b | 1.8 ± 1.8 | 2.8 ± 0.8 | 1.0 ± 1.0 | 5.8 ± 1.8 | 0.3 ± 0.3 |
CBE5 | 0.5 ± 0.3 b | 9.3 ± 2.1 | 34.0 ± 9.7 | 10.5 ± 2.0 | 0.3 ± 0.3 | 1.3 ± 0.6 b | 9.8 ± 1.4 | 3.8 ± 1.7 | 1.3 ± 0.5 | 0.3 ± 0.3 | 5.8 ± 2.8 | 1.0 ± 0.7 |
Cream 40 | 0.8 ± 0.3 b | 9.3 ± 3.6 | 29.5 ± 7.3 | 3.5 ± 2.3 | 0.5 ± 0.3 | 3.8 ± 1.8 b | 12.8 ± 2.4 | 3.8 ± 2.2 | 2.0 ± 0.4 | 0.3 ± 0.3 | 4.0 ± 1.4 | 0.0 ± 0.0 |
CT Pinkeye Purple Hull | 1.3 ± 0.8 b | 25.3 ± 17.0 | 35.0 ± 1.8 | 5.5 ± 2.4 | 0.3 ± 0.3 | 2.3 ± 0.5 b | 9.0 ± 1.9 b | 1.5 ± 0.6 | 4.8 ± 1.8 | 1.3 ± 0.8 | 10.5 ± 1.3 | 1.5 ± 1.5 |
Dixielee | 6.5 ± 4.6 a | 14.0 ± 2.9 | 35.0 ± 6.8 | 4.0 ± 2.7 | 2.0 ± 0.9 | 5.5 ± 1.8 b | 12.8 ± 1.3 | 7.5 ± 2.7 | 2.8 ± 1.0 | 0.5 ± 0.3 | 5.8 ± 3.4 | 0.5 ± 0.3 |
Early Scarlet | 1.0 ± 0.7 b | 6.0 ± 1.8 | 25.0 ± 5.0 | 4.0 ± 1.2 | 1.3 ± 0.3 | 1.8 ± 0.9 b | 14.3 ± 1.5 a | 1.5 ± 0.9 | 1.8 ± 0.3 | 0.3 ± 0.3 | 6.5 ± 2.1 | 1.0 ± 1.0 |
Iron and Clay | 0.5 ± 0.5 b | 11.3 ± 3.2 | 26.3 ± 4.6 | 7.8 ± 3.3 | 0.5 ± 0.3 | 2.5 ± 1.5 b | 9.8 ± 2.1 b | 2.8 ± 2.8 | 1.3 ± 0.8 | 0.3 ± 0.3 | 6.8 ± 1.1 | 0.3 ± 0.3 |
Lady | 2.3 ± 1.9 b | 7.8 ± 3.1 | 26.0 ± 7.6 | 2.5 ± 0.5 | 0.0 ± 0.0 | 2.8 ± 1.5 b | 13.8 ± 4.4 a | 2.8 ± 2.4 | 1.3 ± 0.6 | 0.3 ± 0.3 | 6.0 ± 1.4 | 0.5 ± 0.3 |
Mayo Colima | 2.3 ± 0.8 b | 13.3 ± 5.3 | 31.8 ± 9.1 | 7.5 ± 2.2 | 0.3 ± 0.3 | 1.5 ± 0.6 b | 6.8 ± 1.3 b | 4.0 ± 2.7 | 1.8 ± 0.6 | 0.0 ± 0.0 | 4.3 ± 1.3 | 0.5 ± 0.3 |
Mississippi Silver | 1.0 ± 0.7 b | 1.5 ± 0.9 | 24.5 ± 2.1 | 2.5 ± 0.9 | 0.5 ± 0.3 | 2.5 ± 1.7 b | 9.8 ± 1.4 ab | 3.8 ± 2.8 | 2.5 ± 1.2 | 1.5 ± 1.2 | 5.8 ± 0.9 | 0.0 ± 0.0 |
Peking Black | 2.5 ± 1.2 b | 20.5 ± 6.1 | 38.0 ± 1.5 | 6.5 ± 1.8 | 0.5 ± 0.5 | 0.8 ± 0.3 b | 8.0 ± 1.8 b | 1.0 ± 0.6 | 3.5 ± 1.0 | 1.0 ± 0.7 | 3.3 ± 1.0 | 0.5 ± 0.5 |
Penny Rile | 10.0 ± 4.1 a | 18.3 ± 5.0 | 34.5 ± 7.7 | 9.0 ± 0.8 | 3.0 ± 0.9 | 7.3 ± 2.1 a | 14.0 ± 0.8 a | 4.8 ± 2.1 | 3.3 ± 1.7 | 0.8 ± 0.5 | 7.5 ± 1.7 | 0.3 ± 0.3 |
Purple Hull Big boy | 1.3 ± 0.8 b | 5.0 ± 1.3 | 25.0 ± 3.3 | 3.3 ± 0.8 | 3.8 ± 2.8 | 2.3 ± 1.1 b | 10.3 ± 2.6 ab | 2.3 ± 1.4 | 1.8 ± 0.5 | 0.5 ± 0.3 | 6.0 ± 1.7 | 0.8 ± 0.3 |
Red Bisbee | 1.5 ± 0.5 b | 15.8 ± 4.6 | 28.0 ± 4.8 | 6.0 ± 1.1 | 0.5 ± 0.3 | 0.3 ± 0.3 b | 8.8 ± 1.0 b | 2.5 ± 1.2 | 0.8 ± 0.5 | 0.0 ± 0.0 | 3.8 ± 0.5 | 0.0 ± 0.0 |
Rouge et noir | 4.8 ± 3.8 b | 14.3 ± 3.9 | 36.5 ± 17.3 | 5.5 ± 3.6 | 1.5 ± 1.2 | 4.3 ± 2.5 b | 17.5 ± 4.9 a | 2.8 ± 1.2 | 3.5 ± 2.6 | 1.0 ± 1.0 | 6.0 ± 1.1 | 1.5 ± 0.3 |
Running Conch | 0.5 ± 0.3 b | 3.5 ± 1.0 | 20.3 ± 5.0 | 1.5 ± 0.6 | 0.5 ± 0.3 | 1.8 ± 1.2 b | 6.5 ± 1.9 b | 2.0 ± 1.7 | 1.5 ± 0.3 | 0.5 ± 0.3 | 4.5 ± 1.7 | 0.0 ± 0.0 |
Tohono O’odham | 0.3 ± 0.3 b | 6.3 ± 1.4 | 20.0 ± 4.4 | 4.5 ± 1.0 | 0.0 ± 0.0 | 0.5 ± 0.5 b | 5.0 ± 1.8 b | 0.8 ± 0.3 | 0.5 ± 0.3 | 0.3 ± 0.3 | 4.0 ± 0.9 | 0.0 ± 0.0 |
Vietnamese Black | 1.8 ± 0.5 b | 14.8 ± 6.0 | 22.0 ± 4.8 | 6.0 ± 2.7 | 1.5 ± 1.2 | 1.3 ± 0.6 b | 8.3 ± 1.4 b | 3.0 ± 0.9 | 2.5 ± 1.6 | 1.0 ± 0.7 | 5.0 ± 2.3 | 0.3 ± 0.3 |
Whippoorwill | 4.8 ± 2.8 b | 15.5 ± 6.9 | 34.5 ± 8.2 | 10.0 ± 3.7 | 0.8 ± 0.8 | 2.0 ± 1.4 b | 6.8 ± 3.3 b | 8.0 ± 4.6 | 5.0 ± 2.7 | 0.5 ± 0.3 | 7.0 ± 2.1 | 1.0 ± 0.6 |
Whippoorwill Steel Black | 8.5 ± 3.3 a | 17.3 ± 8.2 | 39.8 ± 9.6 | 10.3 ± 3.8 | 3.3 ± 2.6 | 3.3 ± 1.4 b | 11.0 ± 1.4 ab | 7.3 ± 3.8 | 3.3 ± 2.3 | 0.8 ± 0.3 | 9.0 ± 2.0 | 2.8 ± 1.4 |
Zipper Cream | 0.5 ± 0.3 b | 6.5 ± 2.6 | 20.0 ± 2.9 | 3.0 ± 1.2 | 7.0 ± 6.7 | 3.0 ± 1.6 | 9.5 ± 2.6 ab | 1.8 ± 0.8 | 2.3 ± 0.9 | 1.0 ± 0.4 | 7.0 ± 2.7 | 1.0 ± 0.4 |
F value | 1.97 | 1.56 | 0.83 | 1.5 | 0.91 | 1.84 | 1.98 | 1.13 | 1.27 | 0.76 | 0.85 | 1.35 |
P value | 0.02 | 0.08 | 0.69 | 0.95 | 0.58 | 0.03 | 0.02 | 0.34 | 0.22 | 0.77 | 0.66 | 0.17 |
Variety | Pan Trap | Sticky Trap | Direct Visual Counts | |||
---|---|---|---|---|---|---|
H′ | E | H′ | E | H′ | E | |
Big Boy | 1.71 | 0.74 | 1.50 | 0.55 | 1.22 | 0.76 |
Big Red Ripper | 1.87 | 0.81 | 1.46 | 0.54 | 1.25 | 0.78 |
Black Crowder | 1.86 | 0.81 | 1.56 | 0.57 | 1.16 | 0.72 |
Carrapichio | 1.89 | 0.82 | 1.42 | 0.53 | 1.20 | 0.74 |
CBE5 | 1.78 | 0.77 | 1.38 | 0.51 | 1.17 | 0.72 |
Cream 40 | 1.56 | 0.68 | 1.41 | 0.52 | 1.11 | 0.69 |
CT Pinkeye Purple Hull | 1.55 | 0.67 | 1.58 | 0.58 | 0.84 | 0.52 |
Dixielee | 1.76 | 0.76 | 1.66 | 0.61 | 1.03 | 0.64 |
Early Scarlet | 1.86 | 0.81 | 1.24 | 0.46 | 0.79 | 0.49 |
Iron and Clay | 1.75 | 0.76 | 1.44 | 0.53 | 1.00 | 0.62 |
Lady | 1.85 | 0.80 | 1.34 | 0.50 | 1.24 | 0.77 |
Mayo Colima | 1.73 | 0.75 | 1.58 | 0.58 | 1.15 | 0.72 |
Mississippi Silver | 1.85 | 0.80 | 1.24 | 0.46 | 0.87 | 0.54 |
Peking Black | 1.59 | 0.69 | 1.45 | 0.53 | 1.12 | 0.70 |
Penny Rile | 1.81 | 0.79 | 1.79 | 0.66 | 1.13 | 0.71 |
Purple Hull Big Boy | 1.94 | 0.84 | 1.57 | 0.58 | 1.31 | 0.82 |
Red Bisbee | 1.62 | 0.70 | 1.59 | 0.59 | 1.00 | 0.62 |
Rouge et noir | 1.87 | 0.81 | 1.57 | 0.58 | 1.08 | 0.40 |
Running Conch | 1.70 | 0.74 | 1.56 | 0.58 | 1.00 | 0.37 |
Tohono O’odham | 1.46 | 0.63 | 1.02 | 0.38 | 1.09 | 0.68 |
Vietnamese Black | 1.84 | 0.80 | 1.37 | 0.51 | 0.99 | 0.62 |
Whippoorwill | 1.75 | 0.76 | 1.64 | 0.60 | 1.13 | 0.70 |
Whippoorwill Steel Black | 1.78 | 0.77 | 1.61 | 0.59 | 1.13 | 0.70 |
Zipper Cream | 1.79 | 0.78 | 1.41 | 0.52 | 1.10 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dingha, B.N.; Jackai, L.E.; Amoah, B.A.; Akotsen-Mensah, C. Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects 2021, 12, 54. https://doi.org/10.3390/insects12010054
Dingha BN, Jackai LE, Amoah BA, Akotsen-Mensah C. Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects. 2021; 12(1):54. https://doi.org/10.3390/insects12010054
Chicago/Turabian StyleDingha, Beatrice N., Louis E. Jackai, Barbara A. Amoah, and Clement Akotsen-Mensah. 2021. "Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity" Insects 12, no. 1: 54. https://doi.org/10.3390/insects12010054
APA StyleDingha, B. N., Jackai, L. E., Amoah, B. A., & Akotsen-Mensah, C. (2021). Pollinators on Cowpea Vigna unguiculata: Implications for Intercropping to Enhance Biodiversity. Insects, 12(1), 54. https://doi.org/10.3390/insects12010054