Spider Community Variability and Response to Restoration in Arid Grasslands of the Pacific Northwest, USA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Locations
2.2. Site Selection
2.3. Spider Sampling
2.4. Habitat Survey
2.5. Analyses
3. Results
3.1. Objective 1
3.2. Objective 2
3.3. Objective 3
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampson, F.; Knopf, F. Prairie conservation in North America. BioScience 1994, 44, 418–421. [Google Scholar] [CrossRef] [Green Version]
- Burel, F.; Baudry, J.; Butet, A.; Clergeau, P.; Delettre, Y.; Le Coeur, D.; Dubs, F.; Morvan, N.; Paillat, G.; Petit, S.; et al. Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol. 1998, 19, 47–60. [Google Scholar] [CrossRef]
- Cramer, V.A.; Hobbs, R.J. Old Fields: Dynamics and Restoration of Abandoned Farmland. Society for Ecological Restoration International; Island Press: Washington, DC, USA, 2007. [Google Scholar]
- Bakker, J.P.; Berendse, F. Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol. Evol. 1999, 14, 63–68. [Google Scholar] [CrossRef]
- Wilson, S.D.; Bakker, J.D.; Christian, J.M.; Li, X.; Ambrose, L.G.; Waddington, J. Semiarid old-field restoration: Is neighbor control needed? Ecol. Appl. 2004, 14, 476–484. [Google Scholar] [CrossRef]
- Öster, M.; Ask, K.; Cousins, S.A.O.; Eriksson, O. Dispersal and establishment limitation reduces the potential for successful restoration of semi-natural grassland communities on former arable fields. J. Appl. Ecol. 2009, 46, 1266–1274. [Google Scholar] [CrossRef]
- Torok, P.; Vida, E.; Deak, B.; Lengyel, S.; Tothmeresz, B. Grassland restoration on former croplands in Europe: An assessment of applicability of techniques and costs. Biodivers. Conserv. 2011, 20, 2311–2332. [Google Scholar] [CrossRef]
- Porensky, L.M.; Leger, E.A.; Davison, J.; Miller, W.W.; Goergen, E.M.; Espeland, E.K.; Carroll-Moore, E.M. Arid old-field restoration: Native perennial grasses suppress weeds and erosion, but also suppress native shrubs. Agric. Ecosyst. Environ. 2014, 184, 135–144. [Google Scholar] [CrossRef]
- Huxel, G.R.; Hastings, A. Habitat loss, fragmentation, and restoration. Restor. Ecol. 1999, 7, 309–315. [Google Scholar] [CrossRef]
- Gerla, P.J.; Cornett, M.W.; Ekstein, J.D.; Ahlering, M.A. Talking big: Lessons learned from a 9000 hectare restoration in the northern tallgrass prairie. Sustainability 2012, 4, 3066–3087. [Google Scholar] [CrossRef] [Green Version]
- Weisser, W.W.; Siemann, E. The various effects of insects on ecosystem functioning. Ecol. Stud. 2004, 173, 3–24. [Google Scholar]
- DeBano, S.J. Effects of livestock grazing on insect communities in semi-arid grasslands of southeastern Arizona. Biodivers. Conserv. 2006, 15, 2547–2564. [Google Scholar] [CrossRef]
- Kimoto, C.; DeBano, S.J.; Thorp, R.W.; Rao, S.; Stephen, W.P. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps. J. Insect. Sci. 2012, 12, 108–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimoto, C.; DeBano, S.J.; Thorp, R.W.; Taylor, R.V.; Schmalz, H.; DelCurto, T.; Johnson, T.; Kennedy, P.L.; Rao, S. Livestock and native bee communities: Short-term responses to grazing intensity and implications for managing ecosystem services in grasslands. Ecosphere 2012, 3, 88. [Google Scholar] [CrossRef]
- Gonzalez, N.; DeBano, S.J.; Kimoto, C.; Taylor, R.V.; Tubbesing, C.; Strohm, C. Native bees associated with isolated aspen stands in Pacific Northwest Bunchgrass Prairie. Nat. Areas J. 2013, 33, 374–383. [Google Scholar] [CrossRef]
- Coddington, J.A.; Levi, H.W. Systematics and evolution of spiders (Araneae). Annu. Rev. Ecol. Syst. 1999, 22, 565–592. [Google Scholar] [CrossRef]
- World Spider Catalog: Version 22.0. Available online: http://wsc.nmbe.ch (accessed on 7 March 2021).
- Malumbres-Olarte, J.; Vink, C.J.; Ross, J.G.; Cruickshank, R.H.; Paterson, A.M. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand: Habitat complexity and alpine spiders. Insect Conserv. Diver. 2013, 6, 124–134. [Google Scholar] [CrossRef]
- Mortimer, S.R.; Hollier, J.A.; Brown, V.K. Interactions between plant and insect diversity in the restoration of lowland calcareous grasslands in southern Britain. Appl. Veg. Sci. 1998, 1, 101–114. [Google Scholar] [CrossRef]
- Wheater, C.P.; Cullen, W.R.; Bell, J.R. Spider communities as tools in monitoring reclaimed limestone quarry landforms. Landsc. Ecol. 2000, 15, 401–406. [Google Scholar] [CrossRef]
- Smith DiCarlo, L.A.; DeBano, S.J. Spider community responses to grassland restoration: Balancing tradeoffs between abundance and diversity. Restor. Ecol. 2019, 27, 210–219. [Google Scholar] [CrossRef]
- Halaj, J.; Ross, D.W.; Moldenke, A.R. Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. J. Arachnol. 1998, 26, 203–220. [Google Scholar]
- Niwa, C.G.; Peck, R.W. Influence of prescribed fire on carabid beetle (Carabidae) and spider (Araneae) assemblages in forest litter in southwestern Oregon. Environ. Entomol. 2002, 31, 785–796. [Google Scholar] [CrossRef]
- James, D.G.; Seymour, L.; Lauby, G.; Buckley, K. Identity and seasonal abundance of beneficial arthropods associated with big sagebrush (Artemisia tridentata) in central Washington State, USA. Insects 2018, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Miliczky, E.; Horton, D.R. Natural enemy fauna (Insecta, Araneae) found on native sagebrush steppe plants in eastern Washington with reference to species also found in adjacent apple and pear orchards. Pan Pac. Entomol. 2007, 83, 50–65. [Google Scholar] [CrossRef]
- Smith, L.J.; Smith DiCarlo, L.J.; DeBano, S.J. Ground crab spiders (Thomisidae: Xysticus) more abundant in cheatgrass (Bromus tectorum L.) invaded grasslands. Biol. Invasions 2019, 21, 1473–1479. [Google Scholar] [CrossRef]
- Smith DiCarlo, L.A.; DeBano, S.J.; Burrows, S.K. Short-term response of two beneficial invertebrate groups to wildfire in an arid grassland system, United States. Rangel. Ecol. Manag. 2019, 72, 551–560. [Google Scholar] [CrossRef]
- Richardson, M.L.; Hanks, L.M. Effects of grassland succession on communities of orb-weaving spiders. Environ. Entomol. 2009, 38, 1595–1599. [Google Scholar] [CrossRef] [PubMed]
- Cristofoli, S.; Mahy, G.; Kekenbosch, R.; Lambeets, K. Spider communities as evaluation tools for wet heathland restoration. Ecol. Indic. 2010, 10, 773–780. [Google Scholar] [CrossRef]
- Nemec, K.; Allen, C.R.; Danielson, S.D.; Helzer, C.J. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations. Agric. Ecosyst. Environ. 2014, 183, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Hacala, A.; Le Roy, M.; Sawtschuk, J.; Pétillon, J. Comparative responses of spiders and plants to maritime heathland restoration. Biodivers. Conserv. 2020, 29, 229–249. [Google Scholar] [CrossRef]
- Bell, J.R.; Cullen, W.R.; Wheater, C.P. The structure of spider communities in limestone quarry environments. In Proceedings of the 17th European Colloquium of Arachnology; Seldon, P., Ed.; Burnham Beeches; British Arachnological Society: Edinburgh, UK, 1998. [Google Scholar]
- Déri, E.; Magura, T.; Horvath, R.; Kisfali, M.; Ruff, G.; Lengyel, S.; Tóthmérész, B. Measuring the short-term success of grassland restoration: The use of habitat affinity indices in ecological restoration. Restor. Ecol. 2011, 19, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Lafage, D.; Pétillon, J. Relative importance of management and natural flooding on spider, carbid and plant assemblages in extensively used grasslands along the Loire. Basic Appl. Ecol. 2016, 17, 535–545. [Google Scholar] [CrossRef]
- Snazell, R.; Clark, R. The colonization of an area of restored chalk downland by spiders (Araneae). Ekol. Bratisl. 2000, 19, 263–271. [Google Scholar]
- Perner, J.; Malt, S. Assessment of changing agricultural land use: Response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric. Ecosyst. Environ. 2003, 98, 169–181. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I. Importance of habitat area and landscape context for species richness of bees and wasps in fragmented orchard meadows. Conserv. Biol. 2003, 17, 1036–1044. [Google Scholar] [CrossRef]
- Schmidt, M.H.; Roschewitz, I.; Thies, C.; Tscharntke, T. Differential effects of landscape and management on diversity and density of ground-dwelling farmland spiders. J. Appl. Ecol. 2005, 42, 281–287. [Google Scholar] [CrossRef]
- Grman, E.; Bassett, T.; Brudvig, L.A. Confronting contingency in restoration: Management and site history determine outcomes of assembling prairies, but site characteristics and landscape context have little effect. J. Appl. Ecol. 2013, 50, 1234–1243. [Google Scholar] [CrossRef]
- Bell, J.R.; Wheater, C.P.; Culled, W.R. The implications of grassland and heathland management for the conservation of spider communities: A review. J. Zool. 2001, 255, 377–387. [Google Scholar] [CrossRef]
- Lafage, D.; Djoudi, E.A.; Perrin, G.; Gallet, S.; Pétillon, J. Responses of ground-dwelling spider assemblages to changes in vegetation from wet oligotrophic habitats of Western France. Arthropod Plant Interact. 2019, 13, 653–662. [Google Scholar] [CrossRef] [Green Version]
- Bartuszevige, A.M.; Kennedy, P.L.; Taylor, R.V. Sixty-seven years of landscape change in the last, large remnant of the Pacific Northwest bunchgrass prairie. Nat. Areas J. 2012, 32, 166–170. [Google Scholar] [CrossRef]
- US Climate Data. Climate Boardman-Oregon. 2017. Available online: http://www.usclimatedata.com/climate/boardman/oregon/united-states/usor0036 (accessed on 15 April 2018).
- Hall, D.W. The environmental hazard of ethylene glycol in insect pit-fall traps. Coleopt. Bull. 1991, 45, 193–194. [Google Scholar]
- Martin, J.E.H. The Insects and Arachnids of Canada Part 1: Collecting, Preparing, and Preserving Insects, Mites, and Spiders; Biosystemics Research Institute: Ottawa, ON, Canada, 1978. [Google Scholar]
- Otoshi, M.D.; Bichier, P.; Philpott, S.M. Local and landscape correlates of spider activity density and species richness in urban gardens. Environ. Entomol. 2015, 44, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples, Version 9.1.0.; User’s Guide and Application; 2013. Available online: http://purl.oclc.org/estimates (accessed on 15 March 2021).
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015. [Google Scholar]
- McCune, B.; Mefford, M.J. PC-ORD; Version 7.287; Multivariate Analysis of Ecological Data; MjM Software: Gleneden Beach, OR, USA, 2015. [Google Scholar]
- McCune, B.; Grace, J. Analysis of Ecological Communities; MjM Software: Gleneden Beach, OR, USA, 2002. [Google Scholar]
- De’ath, G.; Fabricius, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Systat Software. SYSTAT v. 13; Systat Software: San Jose, CA, USA, 2009. [Google Scholar]
- Rypstra, A.L.; Carter, P.E.; Balfour, R.A.; Marshall, S.D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 1999, 27, 371–377. [Google Scholar]
- Jimenez-Valverde, A.; Lobo, J.M. Determinants of local spider (Araneidae and Thomisidae) species richness on a regional scale: Climate and altitude vs. habitat structure. Ecol. Entomol. 2007, 32, 114–122. [Google Scholar] [CrossRef]
- Belnap, J.; Phillips, S.L. Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 2001, 11, 1261–1275. [Google Scholar] [CrossRef]
- Uetz, G.W. Gradient analysis of spider communities in a streamside forest. Oecologia 1976, 22, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Finch, O.D.; Blick, T.; Schuldt, A. Macroecological patterns of spider species richness across Europe. Biodivers. Conserv. 2008, 17, 2849–2868. [Google Scholar] [CrossRef]
- Weeks, R.D.; Holtzer, T.O. Habitat and season in structuring ground-dwelling spider (Araneae) communities in a shortgrass steppe ecosystem. Environ. Entomol. 2000, 29, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Oxbrough, A.G.; Gittings, T.; O’Halloran, J.; Giller, P.S.; Kelly, T.C. Biodiversity of the ground-dwelling spider fauna of afforestation habitats. Agric. Ecosyst. Environ. 2007, 120, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Opell, B.D.; Beatty, J.A. The Nearctic Hahniidae (Arachnida: Araneae). Bull. Mus. Comp. Zool. 1976, 147, 393–433. [Google Scholar]
- Graham, A.K.; Buddle, C.M.; Spence, J.R. Habitat affinities of spiders living near a freshwater pond. J. Arachnol. 2003, 31, 78–89. [Google Scholar] [CrossRef]
- Hendrixson, B.E.; Bond, J.E. Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Mol. Phylogenet. Evol. 2007, 42, 738–755. [Google Scholar] [CrossRef] [PubMed]
- Levi, H.W. The spider genus Latrodectus (Araneae, Theridiidae). Trans. Am. Microsc. Soc. 1959, 78, 7–43. [Google Scholar] [CrossRef]
- Gomez, J.E.; Lohmiller, J.; Joern, A. Importance of vegetation structure to the assembly of an aerial web-building spider community in North American open grassland. J. Arachnol. 2016, 44, 28–35. [Google Scholar] [CrossRef]
Location | Coordinates | Size (ha) | Total Number of Sites (Passively Restored, Actively Restored, Native) | Average Annual Precipitation (cm) | Average Annual Temperature (low–high °C) | Common Native Grasses * | Common Invasive Grasses * | Actively Restored Sites | Elevation (m) | Year Seeded | Type of Restoration |
---|---|---|---|---|---|---|---|---|---|---|---|
UNWR | 45.905256° N, −119.584475° W | 3604 | 6 (3, 3, 0) | 22 | 5–18 | PSSPS; POSE; ELELE; HECOC8 | BRTE; TACA8 | 1 | 86 | 2007 | Herbicide + Burn |
2 | 83 | 2013 | Herbicide | ||||||||
3 | 84 | 2015 | Herbicide + Burn | ||||||||
TNC-B | 45.636738° N, −119.860457° W | 9163 | 18 (6, 6, 6) | 19 | 5–18 | PSSPS; POSE; ELELE; HECOC8 | BRTE; TACA8 | 1 | 267 | 2006 | Herbicide |
2 | 272 | 2008 | Herbicide | ||||||||
3 | 274 | 2009 | Herbicide | ||||||||
4 | 281 | 2010 | Herbicide | ||||||||
5 | 245 | 2011 | Herbicide | ||||||||
6 | 256 | 2012 | Herbicide | ||||||||
TNC-Z | 45.555802° N, −116.958538° W | 13,354 | 6 (2, 2, 2) | 48 | −1–16 | PSSPS; POSE; FEID; KOMA | VEDU; THIN6; AGCR | 1 | 1352 | 2010 | Herbicide + Burn |
2 | 1379 | 2010 | Herbicide + Burn |
Dependent Variable | TNC-B | UNWR | TNC-Z | Location Effect |
---|---|---|---|---|
Spider Abundance | 2.47 ± 0.20 | 2.08 ± 0.21 | 2.21 ± 0.28 | F(2) = 0.70, p = 0.51 |
Spider Richness | 3.37 ± 0.58 a | 6.38 ± 0.86 a | 16.9 ± 6.17 b | F(2) = 8.83, p < 0.01 |
Spider Diversity | 0.28 ± 0.05 a | 0.60 ± 0.06 b | 0.80 ± 0.13 b | F(2) = 14.9, p < 0.01 |
Invasive Grasses | 25.9 ± 4.68 a | 21.8 ± 6.33 a,b | 3.65 ± 1.64 b | F(2) = 3.78, p = 0.04 |
Litter | 69.9 ± 6.29 | 60.7 ± 3.33 | 75.3 ± 5.34 | F(2) = 0.68, p = 0.52 |
Biological Soil Crust | 6.69 ± 2.62 | 1.66 ± 1.01 | 1.10 ± 0.80 | F(2) = 1.28, p = 0.29 |
Forbs | 1.31 ± 0.34 a | 6.45 ± 0.61 b | 5.84 ± 0.73 b | F(2) = 36.1, p < 0.01 |
Max Veg Height | 29.4 ± 3.52 a | 34.7 ± 1.22 a,b | 48.6 ± 3.88 b | F(2) = 5.23, p = 0.01 |
Elevation | 252.5 ± 3.52 a | 86.7 ± 2.12 b | 1362.8 ± 6.73 c | F(2) = 16,551.7, p < 0.01 |
Axis 1 | Axis 2 | Axis 3 | |||||
---|---|---|---|---|---|---|---|
R | R2 | R | R2 | R | R2 | ||
Environmental Variables | Elevation | 0.82 | 0.66 | 0.17 | 0.03 | 0.24 | 0.06 |
Invasive Grass Cover | −0.50 | 0.25 | 0.55 | 0.31 | 0.03 | 0.00 | |
Litter Cover | 0.08 | 0.01 | 0.64 | 0.40 | −0.19 | 0.04 | |
BSC Cover | −0.23 | 0.06 | −0.47 | 0.22 | 0.07 | 0.01 | |
Max Veg Height | 0.30 | 0.09 | 0.46 | 0.21 | 0.05 | 0.00 | |
Forb Cover | 0.36 | 0.13 | −0.13 | 0.02 | 0.02 | 0.00 | |
Spider Families | Agelenidae | −0.08 | 0.01 | −0.05 | 0.00 | 0.10 | 0.01 |
Amaurobiidae | −0.08 | 0.01 | −0.01 | 0.00 | 0.10 | 0.01 | |
Antrodiaetidae | 0.39 | 0.15 | −0.13 | 0.02 | 0.61 | 0.37 | |
Corinnidae | 0.38 | 0.15 | −0.07 | 0.00 | −0.10 | 0.01 | |
Gnaphosidae | 0.51 | 0.26 | −0.27 | 0.06 | −0.59 | 0.35 | |
Hahniidae | 0.52 | 0.27 | −0.11 | 0.01 | −0.03 | 0.00 | |
Linyphiidae | 0.23 | 0.05 | −0.27 | 0.07 | −0.21 | 0.04 | |
Lycosidae | 0.75 | 0.56 | 0.52 | 0.27 | −0.09 | 0.01 | |
Mimetidae | −0.01 | 0.00 | −0.13 | 0.02 | 0.01 | 0.00 | |
Philodromidae | 0.66 | 0.43 | −0.10 | 0.01 | −0.45 | 0.20 | |
Pholcidae | −0.19 | 0.04 | −0.03 | 0.00 | 0.06 | 0.00 | |
Salticidae | −0.01 | 0.00 | −0.43 | 0.18 | −0.62 | 0.38 | |
Theridiidae | −0.76 | 0.58 | 0.53 | 0.28 | −0.09 | 0.01 | |
Thomisidae | −0.23 | 0.05 | 0.71 | 0.51 | −0.03 | 0.00 |
Dependent Variable | Passively Restored | Actively Restored | Restoration Effect |
---|---|---|---|
Spider Abundance | 2.53 ± 0.26 | 2.59 ± 0.17 | F(1) = 0.02, p = 0.90 |
Spider Richness | 6.44 ± 2.32 | 5.37 ± 0.63 | F(1) = 0.23, p = 0.63 |
Spider Diversity | 0.47 ± 0.09 | 0.49 ± 0.05 | F(1) = 0.10, p = 0.76 |
Invasive Grasses | 26.1 ± 4.89 | 27.19 ± 6.17 | F(1) = 0.03, p = 0.86 |
Litter | 82.9 ± 4.84 | 69.39 ± 4.95 | F(1) = 6.60, p = 0.02 |
Biological Soil Crust | 0.91 ± 0.57 | 0.36 ± 0.16 | F(1) = 1.04, p = 0.32 |
Max Veg Height | 33.15 ± 3.78 | 40.54 ± 2.49 | F(1) = 3.51, p = 0.08 |
Forbs | 3.45 ± 0.99 | 3.57 ± 0.71 | F(1) = 0.03, p = 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith DiCarlo, L.A.; DeBano, S.J. Spider Community Variability and Response to Restoration in Arid Grasslands of the Pacific Northwest, USA. Insects 2021, 12, 249. https://doi.org/10.3390/insects12030249
Smith DiCarlo LA, DeBano SJ. Spider Community Variability and Response to Restoration in Arid Grasslands of the Pacific Northwest, USA. Insects. 2021; 12(3):249. https://doi.org/10.3390/insects12030249
Chicago/Turabian StyleSmith DiCarlo, Lauren A., and Sandra J. DeBano. 2021. "Spider Community Variability and Response to Restoration in Arid Grasslands of the Pacific Northwest, USA" Insects 12, no. 3: 249. https://doi.org/10.3390/insects12030249
APA StyleSmith DiCarlo, L. A., & DeBano, S. J. (2021). Spider Community Variability and Response to Restoration in Arid Grasslands of the Pacific Northwest, USA. Insects, 12(3), 249. https://doi.org/10.3390/insects12030249