Comparison of Accumulated Degree-Days and Entomological Approaches in Post Mortem Interval Estimation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Accumulated Degree-Days Analysis
2.2. Entomological Analysis
2.3. PMI Estimation and Statistical Analysis
3. Results
3.1. Accumulated Degree-Days Estimate
3.2. Entomological Estimate
3.3. Comparison
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Henssge, C.; Madea, B. Estimation of the time since death in the early post-mortem period. Forensic Sci. Int. 2004, 144, 167–175. [Google Scholar] [CrossRef]
- Maile, A.E.; Inoue, C.G.; Barksdale, L.E.; Carter, D.O. Toward a universal equation to estimate postmortem interval. Forensic Sci. Int. 2017, 272, 150–153. [Google Scholar] [CrossRef]
- Gill-King, H. Chemical and ultrastructural aspects of decomposition. In Forensic Taphonomy: The Postmortem Fate of Human Remains; CRC Press: New York, NY, USA, 1997; pp. 93–104. [Google Scholar]
- Vass, A.A.; Barshick, S.A.; Sega, G.; Caton, J.; Skeen, J.T.; Love, J.C.; Synstelien, J.A. Decomposition chemistry of human remains: A new methodology for determining the postmortem interval. J. Forensic Sci. 2002, 47, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Galloway, A.; Birkby, W.H.; Jones, A.M.; Henry, T.E.; Parks, B.O. Decay rates of human remains in an arid environment. J. Forensic Sci. 1989, 34, 607–616. [Google Scholar] [CrossRef]
- Goff, M.L.; Lord, W.D. Insect as toxicological indicator and the impact of drugs and toxin on insect development. In Forensic Entomology the Utility of Arthropods in Legal Investigations, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 427–434. [Google Scholar]
- Rivers, D.B.; Dahlem, G.A. Postmortem decomposition of human remains and vertebrate carrion. In The Science of Forensic Entomology; Wiley Blackwell: Hoboken, NJ, USA, 2014; pp. 184–187. [Google Scholar]
- Vass, A. The elusive universal post-mortem interval formula. Forensic Sci. Int. 2011, 204, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef]
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J. Forensic Sci. 2005, 50, 618–626. [Google Scholar] [CrossRef]
- Kelly, J.A.; Van der Linde, T.C.; Anderson, G.S. The influence of clothing and wrapping on carcass decomposition and arthropod succession during the warmer seasons in central South Africa. J. Forensic Sci. 2009, 54, 1105–1112. [Google Scholar] [CrossRef]
- Pakosh, C.M.; Rogers, T.L. Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags. J. Forensic Sci. 2009, 54, 1223–1228. [Google Scholar] [CrossRef]
- Simmons, T.; Adlam, R.E.; Moffat, C. Debugging decomposition data–comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 2010, 55, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Byard, R.W. Factors and processes causing accelerated decomposition in human cadavers–an overview. J. Forensic Leg. Med. 2011, 18, 6–9. [Google Scholar] [CrossRef]
- Matuszewski, S.; Konwerski, S.; Frątczak, K.; Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Legal Med. 2014, 128, 1039–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.J.R.; Whitaker, A.; Richards, C. Forensic entomology. In Forensic Ecology Handbook: From Crime Scene to Court; Màrquez-Grant, R., Ed.; John Wiley and Sons Limited: Chichester, UK, 2012; pp. 111–140. [Google Scholar]
- Tuccia, F.; Zurgani, E.; Bortolini, S.; Vanin, S. 2019 Experimental evaluation on the applicability of necrobiome analysis in Forensic Veterinary Science. MicrobiologyOpen 2019, 12, 828. [Google Scholar]
- Nafte, M. Flesh and Bone an Introduction to Forensic Anthropology; Carolina Academic Press: Durham, NC, USA, 2000. [Google Scholar]
- Cattaneo, C.; Gibelli, D. PMI determination of remains. In Handbook of Forensic Medicine; Madea, B., Ed.; Wiley Blackwell (UK): Oxford, UK, 2014; pp. 175–176. [Google Scholar]
- Galloway, A. The process of decomposition: A model from the Arizona-Sonoran Desert. In Forensic Taphonomy; Haglund, H., Sorg, M., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 139–150. [Google Scholar]
- Mann, R.W.; Bass, W.M.; Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myburgh, J.; L’Abbé, E.N.; Steyn, M.; Becker, P.J. Estimating the postmortem interval (PMI) using accumulated degree-days (ADD) in a temperate region of South Africa. Forensic Sci. Int. 2013, 229, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Simmons, T.; Cross, P.A.; Adlam, R.E.; Moffatt, C. The influence of insects on decomposition rate in buried and surface remains. J. Forensic Sci. 2010, 55, 889–892. [Google Scholar] [CrossRef]
- Nawrocka, M.; Frątczak, K.; Matuszewski, S. Inter-Rater Reliability of Total Body Score-A Scale for Quantification of Corpse Decomposition. J. Forensic Sci. 2016, 61, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Dabbs, G.R.; Connor, M.; Bytheway, J.A. Interobserver Reliability of the Total Body Score System for Quantifying Human Decomposition. J. Forensic Sci. 2016, 61, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Adlam, R.E.; Simmons, T. The effect of repeated physical disturbance on soft tissue decomposition–are taphonomic studies an accurate reflection of decomposition? J. Forensic Sci. 2007, 52, 1007–1014. [Google Scholar] [CrossRef]
- Cross, P.; Simmons, T. The influence of penetrative trauma on the rate of decomposition. J. Forensic Sci. 2010, 55, 295–301. [Google Scholar] [CrossRef]
- De Donno, A.; Campobasso, C.P.; Santoro, V.; Leonardi, S.; Tafuri, S.; Introna, F. Bodies in sequestered and non-sequestered aquatic environments: A comparative taphonomic study using decompositional scoring system. Sci. Justice 2014, 54, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Cockle, D.L.; Bell, L.S. Human decomposition and the reliability of a ‘Universal’ model for postmortem interval estimations. Forensic Sci. Int. 2015, 253, 1–9. [Google Scholar] [CrossRef]
- Suckling, J.K. A longitudinal study on human outdoor decomposition in Central Texas. J. Forensic Sci. 2016, 61, 19–25. [Google Scholar] [CrossRef]
- Bugelli, V.; Gherardi, M.; Focardi, M.; Pinchi, V.; Vanin, S.; Campobasso, C.P. Decomposition pattern and insect colonization in two cases of suicide by hanging. Forensic Sci. Res. 2018, 3, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelderman, H.T.; Boer, L.; Naujocks, T.; IJzermans, A.C.M.; Duijst, W.L.J.M. The development of a post-mortem interval estimation for human remains found on land in The Netherlands. Int. J. Leg. Med. 2018, 132, 863–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiel, M. Using Accumulate Degree Days for Estimating the Postmortem Interval: A Re-evaluation of Megyesi’s Regression Formulae. Master’s Thesis, University of Indianapolis, Indianapolis, IN, USA, 2008. [Google Scholar]
- The Postmortem Interval: A Systematic Study of Pig Decomposition in West Cenral Montana. Master’s Thesis, University of Montana, Missoula, MT, USA, 2009.
- Suckling, J.K. A Longitudinal Study on the Outdoor Human Decomposition Sequence in Central Texas. Master’s Thesis, University of Montana, Missoula, MT, USA, 2009. [Google Scholar]
- Marhoff-Beard, S.J.; Forbes, S.L.; Green, H. The validation of ‘universal’ PMI methods for the estimation of time since death in temperate Australian climates. Forensic Sci. Int. 2018, 291, 158–166. [Google Scholar] [CrossRef]
- Michaud, J.P.; Moreau, G. A statistical approach based on accumulated degree-days to predict decomposition-related processes in forensic studies. J. Forensic Sci. 2011, 56, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Tantawi, T.I.; Greenberg, B. The effect of killing and preservative solutions on estimates of maggot age in forensic cases. J. Forensic Sci. 1993, 38, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.D.; Kurahashi, H. Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) development: Rate, variation and the implications for forensic entomology. Jpn. J. Sanit. Zool. 1994, 45, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Adams, Z.J.; Hall, M.J. Methods used for the killing and preservation of blowfly larvae, and their effect on post-mortem larval length. Forensic Sci. Int. 2003, 138, 50–61. [Google Scholar] [CrossRef]
- Charabidze, D.; Hedouin, V. Temperature: The weak point of forensic entomology. Int. J. Legal Med. 2019, 133, 633–639. [Google Scholar] [CrossRef]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 379–392. [Google Scholar] [CrossRef]
- Introna, F.; Campobasso, C.P.; Goff, M.L. Entomotoxicology. Forensic Sci. Int. 2001, 120, 42–47. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Gherardi, M.; Caligara, M.; Sironi, L.; Introna, F. Drug analysis in blowfly larvae and in human tissues: A comparative study. Int. J. Legal Med. 2004, 118, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Campobasso, C.P.; Linville, J.G.; Wells, J.D.; Introna, F. Forensic genetic analysis of insect gut contents. Am. J. Forensic Med. Pathol. 2005, 26, 161–165. [Google Scholar]
- Slone, D.; Gruner, S. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). Med Vet. Entomol. 2007, 11, 38–44. [Google Scholar] [CrossRef]
- Kotzé, Z.; Villet, M.H.; Weldon, C.W. Heat accumulation and development rate of massed maggots of the sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Insect Physiol. 2016, 95, 98–104. [Google Scholar] [CrossRef]
- Podhorna, J.; Aubernon, C.; Borkovcova, M.; Boulay, J.; Hedouin, V.; Charabidze, D. To eat or get heat: Behavioral trade-offs between thermoregulation and feeding in gregarious necrophagous larvae. Insect Sci. 2018, 25, 883–893. [Google Scholar] [CrossRef]
- Hart, A.J.; Hall, M.J.R.; Whitaker, A.P. The use of forensic entomology in criminal investigations: How it can be of benefit to SIOs. J. Homicide Major Incid. Investig. 2008, 4, 37–47. [Google Scholar]
- Hofer, I.M.J.; Hart, A.J.; Martín-Vega, D.; Hall, M.J.R. Optimising crime scene temperature collection for forensic entomology casework. Forensic Sci. Int. 2017, 270, 129–138. [Google Scholar] [CrossRef]
- Amendt, J.; Campobasso, C.P.; Gaudry, E.; Reiter, C.; LeBlanc, H.N.; Hall, M.J. European Association for Forensic Entomology. Best practice in forensic entomology–standards and guidelines. Int. J. Legal Med. 2007, 121, 90–104. [Google Scholar] [CrossRef]
- Protocollo Nazionale per il Prelievo di Campioni Entomologici a Fini Forensi (Versione 3.0_Gief–Discusso ed Approvato dall’assemblea GIEF, 17.12.2016). In Linee Guida Nazionali per le Autopsie a Scopo Forense in Medicina Veterinaria; Ministero della Salute: Rome, Italy, 2018; Volume 19, pp. 60–65.
- Giordani, G.; Grzywacz, A.; Vanin, S. Characterization and Identification of Puparia of Hydrotaea Robineau-Desvoidy, 1830 (Diptera: Muscidae) From Forensic and Archaeological Contexts. J. Med. Entomol. 2019, 8, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Szpila, K. Key for the identification of third instars of European Blowflies (Diptera: Calliphoridae) of forensic importance. In Current Concepts in Forensic Entomology; Amendt, J., Campobasso, C.P., Goff, M.L., Grassberger, M., Eds.; Springer Science+Business Media: Berlin, Germany, 2010; pp. 43–56. [Google Scholar]
- Tuccia, F.; Giordani, G.; Vanin, S. A combined protocol for identification of maggots of forensic interest. Sci. Justice 2016, 56, 264–268. [Google Scholar] [CrossRef]
- Hebert, P.D.; Ratnasingham, S.; DeWaard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. Biol. Sci. 2003, 270, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Grassberger, M.; Reiter, C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen- and isomorphen-diagram. Forensic Sci. Int. 2000, 120, 32–36. [Google Scholar] [CrossRef]
- Grassberger, M.; Reiter, C. Effect of temperature on development of Liopygia (= Sarcophaga) argyrostoma (Robineau-Desvoidy) (Diptera: Sarcophagidae) and its forensic implications. J. Forensic Sci. 2002, 47, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Grassberger, M.; Friedrich, E.; Reiter, C. The blowfly Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae) as a new forensic indicator in Central Europe. Int. J. Legal Med. 2003, 117, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.E.; Hall, M.J.; Turner, B.D.; Moncrieff, C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006, 20, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Cicchetti, D.V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol. Assess. 1994, 6, 284–290. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, W.C. Decomposition of buried and submerged bodies. In Forensic Taphonomy: The Post-Mortem Fate of Human Remains; Haglund, W.D., Sorg, M.A., Eds.; CRC Press: Boston, MA, USA, 1997; pp. 459–464. [Google Scholar]
- Matuszewski, S.; Mądra, A. Factors affecting quality of temperature models for the pre-appearance interval of forensically useful insects. Forensic Sci. Int. 2015, 247, 28–35. [Google Scholar] [CrossRef]
- Anderson, G.S. Comparison of decomposition rates and faunal colonization of carrion in indoor and outdoor environments. J. Forensic Sci. 2011, 56, 136–142. [Google Scholar] [CrossRef]
- Archer, M.S. Annual variation in arrival and departure times of carrion insects at carcasses: Implications for succession studies in forensic entomology. Aust. J. Zool. 2004, 51, 569–576. [Google Scholar] [CrossRef]
- Archer, M. Comparative analysis of insect succession data from Victoria (Australia) using summary statistics versus preceding mean ambient temperature models. J. Forensic Sci. 2014, 59, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Bhadra, P.; Hart, A.J.; Hall, M.J. Factors affecting accessibility to blowflies of bodies disposed in suitcases. Forensic Sci. Int. 2014, 239, 62–72. [Google Scholar] [CrossRef]
- Aubernon, C.; Boulay, J.; Hédouin, V.; Charabidzé, D. Thermoregulation in gregarious dipteran larvae: Evidence of species-specific temperature selection. Entomol. Exp. Appl. 2016, 160, 101–180. [Google Scholar] [CrossRef]
- Bugelli, V.; Forni, D.; Bassi, L.A.; Di Paolo, M.; Marra, D.; Lenzi, S.; Toni, C.; Giusiani, M.; Domenici, R.; Gherardi, M.; et al. Forensic entomology and the estimation of the minimum time since death in indoor cases. J. Forensic Sci. 2015, 60, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Singh, P.; Tuccia, F.; Pradelli, J.; Giordani, G.; Vanin, S. DNA characterization from gut content of larvae of Megaselia scalaris (Diptera, Phoridae). Sci. Justice 2019, 59, 654–659. [Google Scholar] [CrossRef]
- Charabidze, D.; Bourel, B.; Gosset, D. Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci. Int. 2011, 211, 61–66. [Google Scholar] [CrossRef]
- Parks, C.L. A study of the human decomposition sequence in central Texas. J. Forensic Sci. 2011, 56, 19–22. [Google Scholar] [CrossRef] [PubMed]
Case | Month and Year of Discovery | Environmental Temperature (Average ± SD, °C) | Stage of Decomposition | |||
---|---|---|---|---|---|---|
Head/Neck Score | Trunk Score | Limbs Score | TBS | |||
1 | X.2016 | 16.5 ± 1.0 | 4 | 3 | 2 | 9 |
2 | III.2017 | 8.0 ± 2.0 | 6 | 3 | 4 | 13 |
3 | II.2017 | 7.5 ± 1.5 | 4 | 3 | 3 | 10 |
4 | V.2017 | 20.5 ± 3.0 | 5 | 3 | 4 | 12 |
5 | IV2017 | 14.0 ± 1.5 | 4 | 3 | 4 | 11 |
6 | III.2017 | 8.5 ± 2.5 | 4 | 4 | 4 | 12 |
7 | X.2017 | 14.5 ± 1.5 | 4 | 3 | 3 | 10 |
8 | I.2018 | 6.0 ± 2.5 | 4 | 4 | 3 | 11 |
9 | II.2018 | 4.0 ± 2.5 | 5 | 3 | 4 | 12 |
10 | II.2018 | 5.5 ± 1.0 | 5 | 4 | 4 | 13 |
11 | XII.2018 | 3.5 ± 2.5 | 5 | 4 | 4 | 13 |
12 | VII.2016 | 28.5 ± 1.5 | 5 | 4 | 3 | 12 |
13 | VIII.2016 | 28.5 ± 1.5 | 5 | 4 | 3 | 12 |
14 | VIII.2017 | 28.5 ± 2.5 | 5 | 3 | 4 | 12 |
15 | IV.2018 | 18.0 ± 2.5 | 5 | 4 | 3 | 12 |
16 | VIII.2018 | 27.0 ± 2.0 | ||||
17 | IV.2016 | 20.5 ± 1.0 | 4 | 3 | 2 | 9 |
18 | X.2018 | 16.5 ± 2.0 | 8 | 3 | 3 | 14 |
19 | VII2018 | 26.0 ± 2.5 | 6 | 4 | 3 | 13 |
20 | X.2016 | 20.0 ± 4.0 | 5 | 3 | 3 | 11 |
21 | VIII.2018 | 29.0 ± 1.0 | 6 | 4 | 3 | 13 |
22 | VII.2018 | 29.0 ± 1.0 | 7 | 5 | 4 | 16 |
23 | VII.2018 | 26.0 ± 2.0 | 4 | 3 | 3 | 10 |
24 | VIII.2016 | 26.0 ± 20 | 5 | 4 | 4 | 13 |
25 | VIII.2018 | 29.0± 0.5 | 5 | 5 | 3 | 13 |
26 | VII.2018 | 28.0± 1.5 | 7 | 5 | 3 | 15 |
27 | IV.2017 | 15.0 ± 3.0 | 2 | 3 | 2 | 7 |
28 | VIII.2017 | 25.5 ± 2.0 | 6 | 5 | 4 | 15 |
29 | VI.2017 | 28.5 ± 2.5 | 5 | 3 | 4 | 12 |
30 | VII.2018 | 26.5 ± 1.5 | 6 | 4 | 3 | 13 |
Taxon | Case Number | PMI from Circumstantial Data | TBS PMI Estimation | Entomological min PMI Estimation | |||
---|---|---|---|---|---|---|---|
C. vicina | 1 | 120 | 144 | 120 | 144 | 120 | 270 |
2 | 168 | 192 | 168 | 192 | 120 | 200 | |
3 | 120 | 144 | 120 | 144 | 96 | 170 | |
4 | 120 | 144 | 120 | 144 | 96 | 180 | |
5 | 144 | 168 | 144 | 168 | 120 | 180 | |
6 | 144 | 168 | 144 | 168 | 96 | 144 | |
7 | 96 | 120 | 144 | 168 | 96 | 170 | |
8 | 96 | 120 | 144 | 168 | 96 | 170 | |
9 | 144 | 168 | 144 | 168 | 120 | 200 | |
10 | 96 | 120 | 168 | 192 | 72 | 110 | |
11 | 168 | 192 | 168 | 192 | 110 | 180 | |
L. sericata | 12 | 72 | 96 | 96 | 120 | 48 | 72 |
13 | 72 | 96 | 96 | 120 | 48 | 72 | |
14 | 72 | 96 | 96 | 120 | 48 | 72 | |
15 | 168 | 192 | 168 | 192 | 84 | 180 | |
16 | 72 | 96 | - | - | 48 | 84 | |
17 | 96 | 120 | 96 | 120 | 78 | 108 | |
18 | 192 | 216 | 240 | 264 | 132 | 204 | |
19 | 96 | 120 | 168 | 192 | 54 | 90 | |
20 | 168 | 192 | 168 | 192 | 96 | 216 | |
21 | 48 | 72 | 72 | 96 | 48 | 54 | |
22 | 48 | 72 | 72 | 96 | 48 | 54 | |
23 | 216 | 240 | 96 | 120 | 48 | 84 | |
24 | 216 | 240 | 96 | 120 | 54 | 84 | |
25 | 48 | 72 | 144 | 168 | 48 | 60 | |
26 | 48 | 72 | 144 | 168 | 48 | 60 | |
27 | 144 | 168 | 120 | 144 | 168 | 204 | |
C. albiceps | 28 | 144 | 168 | 144 | 168 | 84 | 144 |
29 | 72 | 96 | 96 | 120 | 60 | 108 | |
30 | 96 | 120 | 120 | 144 | 60 | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franceschetti, L.; Pradelli, J.; Tuccia, F.; Giordani, G.; Cattaneo, C.; Vanin, S. Comparison of Accumulated Degree-Days and Entomological Approaches in Post Mortem Interval Estimation. Insects 2021, 12, 264. https://doi.org/10.3390/insects12030264
Franceschetti L, Pradelli J, Tuccia F, Giordani G, Cattaneo C, Vanin S. Comparison of Accumulated Degree-Days and Entomological Approaches in Post Mortem Interval Estimation. Insects. 2021; 12(3):264. https://doi.org/10.3390/insects12030264
Chicago/Turabian StyleFranceschetti, Lorenzo, Jennifer Pradelli, Fabiola Tuccia, Giorgia Giordani, Cristina Cattaneo, and Stefano Vanin. 2021. "Comparison of Accumulated Degree-Days and Entomological Approaches in Post Mortem Interval Estimation" Insects 12, no. 3: 264. https://doi.org/10.3390/insects12030264