Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Study Sites and Population
2.2. Entomological Collections
2.3. Laboratory Processing of Mosquitoes and Detection of Malaria Parasites
2.4. Identification of Sibling Species by Molecular Methods
2.5. Blood Meal Analysis for Identification of Host Preference of the Vectors
2.6. Data Analysis
3. Results:
3.1. Species Diversity, Seasonal, and Ecotype-Wise Abundance of Anophelines in the Study Sites
3.2. Vector Incrimination
3.3. Sibling Species Distribution in the Study Sites
3.4. Host Preference of An. culicifacies and An. fluviatilis
3.5. Anopheline Fauna Composition of Breeding Sites
3.6. Status of Susceptibility to Insecticides in An. culicifacies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. World Malaria Report. 2020. Available online: https://www.who.int/publications/i/item/9789240015791 (accessed on 27 January 2021).
- National Vector Borne Disease Control Programme (NVBDCP). Malaria Situation in India 2019. Available online: https://nvbdcp.gov.in/WriteReadData/l892s/63783729891610104793.pdf (accessed on 28 January 2021).
- Bharti, P.K.; Chandel, H.S.; Ahmad, A.; Krishna, S.; Udhayakumar, V.; Singh, N. Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India. PLoS ONE 2016, 11, e0157949. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Mishra, A.K.; Chand, S.K.; Bharti, P.K.; Singh, M.P.; Nanda, N.; Singh, O.P.; Sodagiri, K.; Udhyakumar, V. Relative Abundance and Plasmodium Infection Rates of Malaria Vectors in and around Jabalpur, a malaria Endemic Region in Madhya Pradesh State, Central India. PLoS ONE 2015, 10, e0126932. [Google Scholar] [CrossRef]
- Subbarao, S.K.; Nanda, N.; Rahi, M.; Raghavendra, K. Biology and bionomics of malaria vectors in India: Existing information and what more needs to be known for strategizing elimination of malaria. Malar. J. 2019, 18, 396. [Google Scholar] [CrossRef] [PubMed]
- Dev, V.; Sharma, V.P. The dominant mosquito vectors of human malaria in India. Anopheles mosquitoes- New insights into new malaria vectors. IntechOpen 2013, 239–271. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Das, B.; Patra, A.P.; Tripathy, H.K.; Mohapatra, N.; Kar, S.K.; Hazra, R.K. Anopheles culicifacies sibling species in Odisha, eastern India: First appearance of Anopheles culicifacies E and its vectorial role in malaria transmission. Trop. Med. Int. Health 2013, 18, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Nanda, N.; Bhatt, R.M.; Sharma, S.N.; Rana, P.K.; Kar, N.P.; Sharma, A.; Adak, T. Prevalence and incrimination of Anopheles fluviatilis species S (Diptera: Culicidae) in a malaria endemic forest area of Chhattisgarh state, central India. Parasites Vectors 2012, 5, 215. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Chand, S.K.; Bharti, P.K.; Singh, M.P.; Chand, G.; Mishra, A.K.; Shukla, M.M.; Mahulia, M.M.; Sharma, R.K. Dynamics of forest malaria transmission in Balaghat district, Madhya Pradesh, India. PLoS ONE 2013, 8, e73730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhuarya, S.K.; Chaudhary, J.L.; Manikandan, N.; Khalkho, D. Spatial Analysis of Rainfall and Rainy Days in Chhattisgarh State, India. J. Agric. Phys. 2015, 15, 140–149. [Google Scholar]
- District Highlights and Important Statistics. Census District Korea 2011. Available online: https://cdn.s3waas.gov.in/s37750ca3559e5b8e1f44210283368fc16/uploads/2016/09/2018041066.pdf (accessed on 24 June 2019).
- About District. Bastar Government. Available online: https://bastar.gov.in/en/ (accessed on 24 June 2019).
- Krishna, S.; Bhandari, S.; Bharti, P.K.; Basak, S.; Singh, N. A rare case of quadruple malaria infection from the highly malaria-endemic area of Bastar, Chhattisgarh, India. PLoSNegl Trop. Dis. 2017, 11, e0005558. [Google Scholar] [CrossRef] [Green Version]
- WHO. Manual on Practical Entomology in Malaria; Part II; World Health Organization offset publication: Geneva, Switzerland, 1975; p. 13. [Google Scholar]
- WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Christophers, S.R.; Sinton, J.A.; Covell, G. Synoptic Table for the Identification of the Anopheline Mosquitoes of India, 2nd ed.; Health Bulletin No. 10; Malaria Burease No. 2; Government of India Press: Calcutta, India, 1931; p. 31.
- Coen, E.S.; Thoday, J.M.; Dover, G. Rate of turnover of structural variants in the rDNA gene family of Drosophila melanogaster. Nature 1982, 295, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Snounou, G.; Viriyakosol, S.; Zhu, X.P.; Jarra, W.; Pinheiro, L.; do Rosario, V.E.; Thaithong, S.; Brown, K.N. High sensitivity of detection of human malaria parasites by use of nested polymerase chain reaction amplification. Mol. Biochem. Parasitol. 1993, 61, 315–320. [Google Scholar] [CrossRef]
- Singh, O.P.; Goswami, G.; Nanda, N.; Raghavendra, K.; Chandra, D.; Subbarao, S.K. An allele-specific polymerase chain reaction assay for the differentiation of members of the Anopheles culicifacies complex. J. Biosci. 2004, 29, 275–280. [Google Scholar] [CrossRef]
- Manonmani, A.M.; Sadanandane, C.; Sahu, S.S.; Mathivanan, A.; Jambulingam, P. rDNA-ITS2-PCR assay for grouping the cryptic species of Anopheles culicifacies complex (Diptera: Culicidae). Acta Trop. 2007, 104, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Goswami, G.; Singh, O.P.; Nanda, N.; Raghavendra, K.; Gakhar, S.K.; Subbarao, S.K. Identification of all members of the Anopheles culicifacies complex using allele-specific polymerase chain reaction assays. Am. J. Trop. Med. Hyg. 2006, 75, 454–460. [Google Scholar] [CrossRef] [Green Version]
- Singh, O.P.; Chandra, D.; Nanda, N.; Raghavendra, K.; Sunil, S.; Sharma, S.K.; Dua, V.K.; Subbarao, S.K. Differentiation of members of the Anopheles fluviatilisspecies complex by an allele-specific polymerase chain reaction based on 28S ribosomal DNA sequences. Am. J. Trop. Med. Hyg. 2004, 70, 27–32. [Google Scholar] [CrossRef]
- Collins, R.T.; Dash, B.K.; Agarwala, R.S.; Dhal, K.B. An adaptation of the gel diffusion technique for identifying the source of mosquito blood meals. Indian J. Malariol. 1986, 23, 81–89. [Google Scholar] [PubMed]
- Mishra, A.K.; Bharti, P.K.; Vishwakarma, A.; Nisar, S.; Rajvanshi, H.; Sharma, R.K.; Saha, K.B.; Shukla, M.M.; Jayswar, H.; Das, A.; et al. A study of malaria vector surveillance as part of the Malaria Elimination Demonstration Project in Mandla, Madhya Pradesh. Malar. J 2020, 19, 447. [Google Scholar] [CrossRef] [PubMed]
- Chand, G.; Chaudhary, N.K.; Soan, V.; Kaushal, L.S.; Sharma, R.K.; Singh, N. Transmission dynamics & epidemiology of malaria in two tribal districts in Madhya Pradesh, India. Indian J. Med. Res. 2015, 141, 556–566. [Google Scholar]
- Beier, J.C.; Killeen, G.F.; Githure, J.I. Entomological inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 1999, 61, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Hay, S.I.; Guerra, C.A.; Tatem, A.J.; Atkinson, P.M.; Snow, R.W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 2005, 3, 81–90. [Google Scholar] [CrossRef]
- Robert, V.; Le Goff, G.; Andrianaivolambo, L.; Randimby, F.M.; Domarle, O.; Randrianarivelojosia, M.; Raharimanga, V.; Raveloson, A.; Ravaonjanahary, C.; Ariey, F. Moderate transmission but high prevalence of malaria in Madagascar. Int. J. Parasitol. 2006, 36, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Arez, A.P.; Lopes, D.; Pinto, J.; Franco, A.S.; Snounou, G.; do Rosário, V.E. Plasmodium sp.: Optimal protocols for PCR detection of low parasite numbers from mosquito (Anopheles sp.) samples. Exp. Parasitol. 2000, 94, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Kona, M.P.; Kamaraju, R.; Donnelly, M.J.; Bhatt, R.M.; Nanda, N.; Chourasia, M.K.; Swain, D.K.; Suman, S.; Uragayala, S.; Kleinschmidt, I.; et al. Characterization and monitoring of deltamethrin-resistance in Anopheles culicifacies in the presence of a long-lasting insecticide-treated net intervention. Malar. J. 2018, 17, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, R.M.; Sharma, S.N.; Barik, T.K.; Raghavendra, K. Status of insecticide resistance in malaria vector, Anopheles culicifacies in Chhattisgarh state, India. J. Vector Borne Dis. 2012, 49, 36–38. [Google Scholar]
- Trape, J.F.; Tall, A.; Diagne, N.; Ndiath, O.; Ly, A.B.; Faye, J.; Dieye-Ba, F.; Roucher, C.; Bouganali, C.; Badiane, A.; et al. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: A longitudinal study. Lancet Infect. Dis. 2011, 11, 925–932. [Google Scholar] [CrossRef]
- Maharaj, R.; Mthembu, D.J.; Sharp, B.L. Impact of DDT re-introduction on malaria transmission in KwaZulu-Natal. S. Afr. Med. J. 2005, 95, 871–874. [Google Scholar] [PubMed]
- Waite, J.L.; Swain, S.; Lynch, P.A.; Sharma, S.K.; Haque, M.A.; Montgomery, J.; Thomas, M.B. Increasing the potential for malaria elimination by targeting zoophilic vectors. Sci. Rep. 2017, 7, 40551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Bastar | Korea | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Indoor Resting (HD) | Indoor Resting (CS) | PMHD IRC (HD+ CS) | LT | PSSC | Indoor Resting (HD) | Indoor Resting (CS) | PMHD IRC (HD +CS) | LT | PSSC | ||
An. culicifacies | 130 | 2342 | 4.7 | 14 | 79 | 126 | 2798 | 6.2 | 66 | 113 | 5668 |
An. fluviatilis | 1 | 113 | 0.2 | 0 | 0 | 16 | 508 | 1.1 | 15 | 8 | 661 |
An. subpictus | 210 | 2065 | 4.3 | 23 | 58 | 70 | 1212 | 2.7 | 101 | 62 | 3801 |
An. jeyporiensis | 0 | 3 | 0.006 | 0 | 0 | 22 | 568 | 1.25 | 1 | 2 | 596 |
An. varuna | 56 | 303 | 0.68 | 17 | 30 | 19 | 54 | 0.15 | 6 | 29 | 514 |
An. annularis | 13 | 337 | 0.67 | 17 | 2 | 21 | 520 | 1.14 | 43 | 4 | 957 |
Other Anophelines | 27 | 558 | 1.11 | 15 | 4 | 7 | 360 | 0.77 | 17 | 1 | 989 |
Total | 437 | 5721 | 11.7 | 86 | 173 | 281 | 6020 | 13.3 | 249 | 219 | 13186 |
Site | Ecotype | Season | An. culicifacies (no. of Mosquito Positive/no. of Mosquito Tested) | An. fluviatilis no. of Mosquito Positive/no. of Mosquito Tested) | Total no. of Mosquito Positive/no. of Mosquito Tested) |
---|---|---|---|---|---|
Bastar | Forest | Summer | 0/39 | 0 | 0/39 |
Monsoon | 0/50 | 0 | 0/50 | ||
Post Monsoon | 0/18 | 0/3 | 0/21 | ||
Winter | 0/16 | 0/3 | 0/19 | ||
Spring | 0/58 | 0 | 0/58 | ||
Foothill | Summer | 0/27 | 0 | 0/27 | |
Monsoon | 0/102 | 0/3 | 0/105 | ||
Post Monsoon | 0/30 | 0/5 | 0/35 | ||
Winter | 0/14 | 0/2 | 0/16 | ||
Spring | 0/39 | 0/2 | 0/41 | ||
Plain | Summer | 0/511 | 0/2 | 0/513 | |
Monsoon | 0/528 | 0/3 | 0/531 | ||
Post Monsoon | 0/228 | 0/41 | 0/269 | ||
Winter | 0/458 | 0/45 | 0/503 | ||
Spring | 1/447 | 0/5 | 1/452 | ||
Total (Bastar) | 1/2565 | 0/114 | 1/2679 | ||
Korea | Forest | Summer | 2/227 | 0/21 | 2/248 |
Monsoon | 0/485 | 0/4 | 0/489 | ||
Post Monsoon | 0/185 | 0/50 | 0/235 | ||
Winter | 0/238 | 0/115 | 0/353 | ||
Spring | 0/362 | 0/108 | 0/470 | ||
Foothill | Summer | 2/223 | 0/14 | 2/237 | |
Monsoon | 1/298 | 0/2 | 0/300 | ||
Post Monsoon | 0/141 | 0/35 | 0/176 | ||
Winter | 0/117 | 0/43 | 0/160 | ||
Spring | 0/186 | 0/44 | 0/230 | ||
Plain | Summer | 0/126 | 0/4 | 0/130 | |
Monsoon | 0/142 | 0 | 0/142 | ||
Post Monsoon | 0/119 | 0/15 | 0/134 | ||
Winter | 0/129 | 0/23 | 0/152 | ||
Spring | 0/125 | 0/69 | 0/194 | ||
Total (Korea) | 4/3103 | 0/547 | 4/3650 | ||
Total (Korea and Bastar) | 5/5668 | 0/661 | 5/6329 |
District | Year | % Mortality (R/S) | |||
DDT (4%) | Malathion (5%) | Alphacypermethrin (0.05%) | Deltamethrin (0.05%) | ||
Bastar | 2014 | 6.6 (R) | 76.2(R) | 88.1 (PR) | 86.4 (PR) |
2015 | Nd | Nd | 78(R) | 73.7(R) | |
Korea | 2014 | 12.9 (R) | 73.4 (R) | 100 (S) | 92.7 (PR) |
2015 | Nd | Nd | 98.6 (S) | 91.5 (PR) | |
2016 | 15 (R) | 65.8(R) | 100 (S) | 97.4 (S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kareemi, T.I.; Nirankar, J.K.; Mishra, A.K.; Chand, S.K.; Chand, G.; Vishwakarma, A.K.; Tiwari, A.; Bharti, P.K. Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India. Insects 2021, 12, 284. https://doi.org/10.3390/insects12040284
Kareemi TI, Nirankar JK, Mishra AK, Chand SK, Chand G, Vishwakarma AK, Tiwari A, Bharti PK. Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India. Insects. 2021; 12(4):284. https://doi.org/10.3390/insects12040284
Chicago/Turabian StyleKareemi, Tazeen Iram, Jitendra K. Nirankar, Ashok K. Mishra, Sunil K. Chand, Gyan Chand, Anup K. Vishwakarma, Archana Tiwari, and Praveen K. Bharti. 2021. "Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India" Insects 12, no. 4: 284. https://doi.org/10.3390/insects12040284
APA StyleKareemi, T. I., Nirankar, J. K., Mishra, A. K., Chand, S. K., Chand, G., Vishwakarma, A. K., Tiwari, A., & Bharti, P. K. (2021). Population Dynamics and Insecticide Susceptibility of Anopheles culicifacies in Malaria Endemic Districts of Chhattisgarh, India. Insects, 12(4), 284. https://doi.org/10.3390/insects12040284