The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Maize Zea mays L. (Poales, Poaceae) Flour Preparation
2.2. Tribolium castaneum Mass Rearing
2.3. Aspergillus flavus Suspension
2.4. Insect/Fungi Interaction Assays
2.5. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drott, M.T.; Lazzaro, B.P.; Brown, D.L.; Carbone, I.; Milgroom, M.G. Balancing selection for aflatoxin in Aspergillus flavus is maintained through interference competition with, and fungivory by insects. Proc. R. Soc. B Biol. Sci. 2017, 284, 20172408. [Google Scholar] [CrossRef] [Green Version]
- Arlian, L.G. Arthropod allergens and human health. Annu. Rev. Entomol. 2002, 47, 395–433. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Stejskal, V.; Athanassiou, C.G.; Throne, J.E. Health hazards associated with arthropod infestation of stored products. Annu. Rev. Entomol. 2018, 63, 553–573. [Google Scholar] [CrossRef]
- Hedayati, M.T.; Pasqualotto, A.C.; Warn, P.A.; Bowyer, P.; Denning, D.W. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology 2007, 153, 1677–1692. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd ed.; Westerdijk Fungal Biodiversity Institute: Utrecht, The Netherlands, 2010. [Google Scholar]
- Mannaa, M.; Kim, K.D. Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Nováková, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklen, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Mahato, D.K.; Lee, K.E.; Kamle, M.; Devi, S.; Dewangan, K.N.; Kumar, P.; Kang, S.G. Aflatoxins in food and feed: An overview on prevalence, detection and control strategies. Front. Microbiol. 2019, 10, 2266. [Google Scholar] [CrossRef]
- Klich, M.A. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience 2007, 48, 71–80. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Subramanyam, B.H. Stored-Product Insect Resource; AACC International Press: St. Paul, MN, USA, 2009. [Google Scholar]
- Tribolium Genome Sequencing Consortium. The genome of the model beetle Tribolium castaneum. Nature 2008, 452, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Loconti, J.D.; Roth, L.M. Composition of the odorous secretion of Tribolium castaneum. Ann. Entomol. Soc. Am. 1953, 46, 281–289. [Google Scholar] [CrossRef]
- Unruh, L.M.; Xu, R.; Kramer, K.J. Benzoquinone levels as a function of age and gender of the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 1998, 28, 969–977. [Google Scholar] [CrossRef]
- Villaverde, M.L.; Juárez, M.P.; Mijailovsky, S. Detection of Tribolium castaneum (Herbst) volatile defensive secretions by solid phase microextraction–capillary gas chromatography (SPME-CGC). J. Stored Prod. Res. 2007, 434, 540–545. [Google Scholar] [CrossRef]
- Yezerski, A.; Ciccone, C.; Rozitski, J.; Volingavage, B. The effects of a naturally produced benzoquinone on microbes common to flour. J. Chem. Ecol. 2007, 33, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N.; Ortiz-Urquiza, A.; Huarte-Bonnet, C.; Fan, Y.; Juárez, M.P.; Keyhani, N.O. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc. Natl. Acad. Sci. USA 2015, 112, E3651–E3660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafaluk-Mohra, C.; Wagner, S.; Joopa, G. Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J. Invertebr. Pathol. 2018, 152, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zettler, L.J. Pesticide resistance in Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae) from flour mills in the United States. J. Econ. Entomol. 1991, 84, 763–767. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Opit, G.P.; Phillips, T.W.; Aikins, M.J.; Hasan, M.M. Phosphine resistance in Tribolium castaneum and Rhyzopertha dominica from stored wheat in Oklahoma. J. Econ. Entomol. 2012, 105, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.G.; Opit, G.P. Phosphine resistance in eggs of Tribolium castaneum and Plodia interpunctella from almond storage facilities in the Central Valley of California. IOBC/WPRS Bull. 2015, 111, 41–49. [Google Scholar]
- Upadhyay, N.; Dwivedy, A.K.; Kumar, M.; Prakash, B.; Dubey, N.K. Essential oils as eco-friendly alternatives to synthetic pesticides for the control of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Essent. Oil-Bear Plants 2018, 21, 282–297. [Google Scholar] [CrossRef]
- Agrafioti, P.; Brabec, D.L.; Morrison III, W.R.; James, F.; Campbell, J.F.; Athanassiou, C.G. Scaling recovery of susceptible and resistant stored product insects after short exposures to phosphine by using automated video-tracking software. Pest Manag. Sci. 2020, 77, 1245–1255. [Google Scholar] [CrossRef]
- Wang, K.; Liu, M.; Wang, Y.; Song, W.; Tang, P. Identification and functional analysis of cytochrome P450 CYP346 family genes associated with phosphine resistance in Tribolium castaneum. Pestic. Biochem. Phys. 2020, 168, 104622. [Google Scholar] [CrossRef] [PubMed]
- Beti, J.A.; Phillips, T.W.; Smalley, E.B. Effects of maize weevils (Coleoptera: Curculionidae) on production of aflatoxin B1 by Aspergillus flavus in stored corn. J. Econ. Entomol. 1995, 88, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Pfohl, K.; Karlovsky, P.; Dehne, H.W.; Altincicek, B. Dissemination of Fusarium proliferatum by mealworm beetle Tenebrio molitor. PLoS ONE 2018, 13, e0204602. [Google Scholar] [CrossRef]
- Riudavets, J.; Pons, M.J.; Messeguer, J.; Gabarra, R. Effect of CO2 modified atmosphere packaging on aflatoxin production in maize infested with Sitophilus zeamais. J. Stored Prod. Res. 2018, 77, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Widstrom, N.W. The role of insects and other plant pests in aflatoxin contamination of cor, cotton, and peanuts—A review. J. Environ. Qual. 1979, 8, 5–11. [Google Scholar] [CrossRef]
- Nesci, A.; Montemarani, A.; Passone, M.A.; Etcheverry, M. Insecticidal activity of synthetic antioxidants, natural phytochemicals, and essential oils against an Aspergillus section Flavi vector (Oryzaephilus surinamensis L.) in microcosm. J. Pestic. Sci. 2011, 84, 107–115. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Payne, G.A. Process of contamination by aflatoxin-producing fungi and their impact on crops. In Mycotoxins in Agriculture and Food Safety; Sinha, K.K., Bhatnagar, D., Eds.; Marcel Decker Inc.: New York, NY, USA, 1998. [Google Scholar]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef] [PubMed]
- Battilani, P.; Toscano, P.; Van der Fels-Klerx, H.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef] [Green Version]
- Vasudeva, R.; Sutter, A.; Sales, K.; Dickinson, M.E.; Lumley, A.J.; Gage, M.J. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 2019, 1, e49452. [Google Scholar] [CrossRef] [PubMed]
- Haines, C. Insects and Arachnids of Tropical Stored Products: Their Biology and Identification: A Training Manual, 2nd ed.; Natural Resources Institute: Chatham, UK, 1991. [Google Scholar]
- Duarte, S.; Limão, J.; Barros, G.; Bandarra, N.M.; Roseiro, L.C.; Gonçalves, H.; Martins, L.L.; Mourato, M.P.; Carvalho, M.O. Nutritional and chemical composition of different life stages of Tribolium castaneum (Herbst). J. Stored Prod. Res. 2021, 93, 101826. [Google Scholar] [CrossRef]
- Goughenour, K.D.; Balada-Llasat, J.-M.; Rappleye, C.A. Quantitative microplate-based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. J. Clin. Microbiol. 2015, 53, 3286–3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, I.F.; Guillén, E.G.; Fuente, J.M.; Silva, F.; Mitchell, S.G. Preventing fungal growth on heritage paper with antifungal and cellulase inhibiting magnesium oxide nanoparticles. J. Mater. Chem. B 2019, 7, 6412–6419. [Google Scholar] [CrossRef] [PubMed]
- CEN-European Committee for Standardization. EN 15851-Foodstuffs-Determination of Aflatoxin B1 in Cereal Based Foods for Infants and Young Children-HPLC Method with Immunoaffinity Column Cleanup and Fluorescence Detection; CEN-European Committee for Standardization: Brussels, Belgium, 2010. [Google Scholar]
- Martins, C.; Assunção, R.; Cunha, S.; Fernandes, J.; Jager, A.; Petta, T.; Oliveira, C.; Alvito, P. Assessment of multiple mycotoxins in breakfast cereals available in the Portuguese market. Food Chem. 2017, 239, 132–140. [Google Scholar] [CrossRef] [PubMed]
- RStudio Team. RStudio: Integrated Development for R.; RStudio, Inc.: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 18 January 2021).
- OJEC. Commission Regulation (EC) No 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs (Text with EEA Relevance); Official Journal of the European Union: Luxembourg, 2006; pp. L364/5–L364/24. [Google Scholar]
- Mbow, C.; Rosenzweig, L.G.; Barioni, T.G.; Benton, M.; Herrero, M.; Krishnapillai, E.; Liwenga, P.; Pradhan, M.G.; Rivera-Ferre, T.; Sapkota, F.N.; et al. Food Security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: London, UK, 2019. [Google Scholar]
- Kim, S.H.; Byeon, D.H.; Jung, J.M.; Jung, S.; Lee, W.H. Spatiotemporal evaluation of red flour beetle (Tribolium castaneum) dispersion under the effect of climate and topography in South Korea. J. Stored Prod. Res. 2020, 89, 101735. [Google Scholar] [CrossRef]
- Misiou, O.; Koutsoumanis, K. Climate change and its implications for food safety and spoilage. Trends Food Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Baazeem, A.; Rodriguez, A.; Medina, A.; Magan, N. Impacts of climate change interacting abiotic factors on growth, aflD and aflR gene expression and aflatoxin B1 production by Aspergillus flavus strains in vitro and on pistachio nuts. Toxins 2021, 13, 385. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Fields, P.G.; Li, H. Effect of aflatoxin B1 on development, survival and fecundity of Ahasverus advena (Waltl). J. Stored Prod. Res. 2018, 77, 225–230. [Google Scholar] [CrossRef]
- Manu, N.; Opit, G.P.; Osekre, E.A.; Arthur, F.H.; Mbata, G.; Armstrong, P.; Danso, J.K.; McNeill, S.G.; Campbell, J.F. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J. Stored Prod. Res. 2019, 80, 10–20. [Google Scholar] [CrossRef]
- Hardin, G. The competitive exclusion principle. Science 1960, 131, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Padin, S.B.; Dal Bello, G.M.; Vasicek, A.L. Pathogenicity of Beauveria bassiana for adults of Tribolium castaneum (Col.: Tenebrionidae) in stored grains. Entomophaga 1997, 42, 569–574. [Google Scholar] [CrossRef]
- Akbar, W.; Lord, J.C.; Nechols, J.R.; Howard, R.W. Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J. Econ. Entomol. 2004, 97, 273–280. [Google Scholar] [CrossRef]
- Lord, J.C. Enhanced efficacy of Beauveria bassiana for the red flour beetle, Tribolium castaneum, with reduced moisture. J. Econ. Entomol. 2007, 100, 171–175. [Google Scholar] [CrossRef]
- Azam, M.S.; Ahmed, S.; Islam, M.N.; Maitra, P.; Islam, M.M.; Yu, D. Critical assessment of mycotoxins in beverages and their control measures. Toxins 2021, 13, 323. [Google Scholar] [CrossRef] [PubMed]
Assays | Moisture Content (%) | Water Activity (Aw) and Temperature (°C) | ||||
---|---|---|---|---|---|---|
Initial | Final | Initial Aw | Temp. | Final Aw | Temp. | |
Control | 8.27 ± 1.00 | 9.13 ± 0.30 | 0.60 ± 0.01 | 23.03 ± 0.15 | 0.48 ± 0.00 | 22.9 ± 0.06 |
Insects | 15.30 ± 0.42 | 0.69 ± 0.08 | 22.7 ± 0.56 | |||
Fungi | 21.80 ± 0.56 | 0.83 ± 0.03 | 22.8 ± 0.38 |
Assays | AFB1 | AFB2 | AFG1 | AFG2 |
---|---|---|---|---|
Control | 0.018 ± 0.006 a | <0.004 a | <0.007 | <0.004 |
Insects | <0.011 a | <0.004 a | <0.007 | <0.004 |
Fungi | 4.306 ± 1.698 b | 0.344 ± 0.139 a | <0.007 | <0.004 |
Insects + Fungi | 18.883 ± 14.160 c | 0.838 ± 0.584 a | <0.007 | <0.004 |
Limit of Detection, LOD (μg/kg) | 0.011 | 0.004 | 0.007 | 0.004 |
Limit of Quantification, LOQ (μg/kg) | 0.038 | 0.013 | 0.023 | 0.014 |
Maximum AFB1 Content for Maize in EU * | 5.000 | |||
Maximum Sum of Aflatoxins (B1, B2, G1, G2) Content for Maize in EU * | 10.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, S.; Magro, A.; Tomás, J.; Hilário, C.; Alvito, P.; Ferreira, R.B.; Carvalho, M.O. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. Insects 2021, 12, 730. https://doi.org/10.3390/insects12080730
Duarte S, Magro A, Tomás J, Hilário C, Alvito P, Ferreira RB, Carvalho MO. The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour. Insects. 2021; 12(8):730. https://doi.org/10.3390/insects12080730
Chicago/Turabian StyleDuarte, Sónia, Ana Magro, Joanna Tomás, Carolina Hilário, Paula Alvito, Ricardo Boavida Ferreira, and Maria Otília Carvalho. 2021. "The Interaction between Tribolium castaneum and Mycotoxigenic Aspergillus flavus in Maize Flour" Insects 12, no. 8: 730. https://doi.org/10.3390/insects12080730