Pollen Diet—Properties and Impact on a Bee Colony
Abstract
:Simple Summary
Abstract
1. Introduction
2. Flower Pollen
3. Digestion of Pollen
4. The Influence of the Pollen Diet on the Physiology and Histology of the Middle Intestine of a Honey Bee
Type of Pollen/Parameter | Rubus | Castanea sp. | Asparagus sp. | Asteraceae | Zea mays | Trifolium sp. | Vicia faba | Phoenix dactylifera | Erica |
---|---|---|---|---|---|---|---|---|---|
pharyngeal glands | ↑ | ↑ | ↑ | ||||||
survivability | ↓ | ||||||||
plasmocyte | ↑ | ↓ | |||||||
coagulocyte | ↑ | ||||||||
prohemocyte | ↑ | ||||||||
oenocitoid | ↑ | ||||||||
binucleated cells | ↑ | ||||||||
total protein | ~ | ~ | ~ | ||||||
glucose | ↑ | ||||||||
lipids | ↑ | ↑ | ↑ | ↑ | |||||
phenol oxidase (PO) | ↑ |
5. The Influence of the Pollen Diet on the Composition of the Hemolymph
6. The Influence of the Pollen Diet on Immunity
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Frias, B.E.D.; Barbosa, C.D.; Laurenco, A.P. Pollen nutrition in honey bees (Apis mellifera): Impact on adult health. Apidologie 2016, 47, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Filipiak, M.; Kuszewska, K.; Asselman, M.; Denisow, B.; Stawiarz, E.; Woyciechowski, M.; Weiner, J. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE 2017, 12, e0183236. [Google Scholar] [CrossRef]
- Somerville, D. Fat Bees Skiny Bees—A Manual on Honey Bee Nutrition for Beekeepers; Rural Industries Research and Development Corporation: Goulburn, Australia, 2005; pp. 9–84. [Google Scholar]
- Flores, J.M.; Gámiz, V.; Jiménez-Marín, A.; Flores-Cortés, A.; Gil-Lebrero, S.; Garrido, J.J.; Hermando, M.D. Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Res. Vet. Sci. 2021, 135, 85–89. [Google Scholar] [CrossRef]
- Ellis, J.D.; Evans, J.D.; Pettis, J. Colony losses, managed colony population decline, and colony collapse disorder in the United States. J. Apic. Res. 2010, 49, 1–4. [Google Scholar] [CrossRef]
- Kumar, R.; Agrawal, O.P. Comarative performance of honeybee colonies fed with artificial diets in Gwalior and Panchkula region. J. Entomol. Zool. 2014, 2, 104–107. [Google Scholar]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Brunet, J.-L.; Alaux, C. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Bayo, F.; Goka, K. Pesticide residues and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [Green Version]
- Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. 2009, 142, 2369–2372. [Google Scholar] [CrossRef]
- Tosi, S.; Nieh, J.C.; Sgolastra, F.; Cabbri, R.; Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. R. Soc. B 2017, 284, 20171711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belsky, J.; Joshi, N.K. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. Insects 2019, 10, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Grundel, R.; Jean, R.P.; Frohnapple, K.J.; Glowacki, G.A.; Scott, P.E.; Pavlovic, N.B. Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. Ecol. Appl. 2010, 20, 1678–1692. [Google Scholar] [CrossRef] [PubMed]
- Rands, S.A.; Whitney, H.M. Effects of pollinator density-dependent preferences on field margin visitations in the midst of agricultural monocultures: A modelling approach. Ecol. Model. 2010, 221, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Jauker, F.; Peter, F.; Wolters, V.; Diekötter, T. Early reproductive benefits of mass-flowering crops to the solitary bee Osmia rufa outbalance post-flowering disadvantages. Basic Appl. Ecol. 2012, 13, 268–276. [Google Scholar] [CrossRef]
- Todd, K.J.; Gardiner, M.M.; Lindquist, E.D. Mass flowering crops as a conservation resource for wild pollinators (Hymenoptera: Apoidea). J. Kansas Entomol. Soc. 2016, 89, 158–167. [Google Scholar] [CrossRef]
- Dolezal, A.G.; Carrillo-Tripp, J.; Judd, T.M.; Allen Miller, W.; Bonning, B.C.; Toth, A.L. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. 2019, 6, 181803. [Google Scholar] [CrossRef] [Green Version]
- De Grandi-Hoffman, G.; Chen, Y.; Huang, E.; Huang, M.H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. 2010, 56, 1184–1191. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol. Ecol. 2002, 16, 49–65. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. Pollen nutritional content and digestibility for animals. Plant Syst. Evol. 2000, 222, 187–209. [Google Scholar] [CrossRef]
- Somerville, D.C.; Nicol, H.I. Crude protein and amino acid composition of honeybee-collected pollen pellets from south-east Australia and a note a laboratory disparity. Aust. J. Exp. Agric. 2006, 46, 141–149. [Google Scholar] [CrossRef]
- Mohammad, S.M.; Mohamud-Ab-Rashid, N.-K.; Zawawi, N. Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from Malaysia. J. Food Qual. 2020, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Somerville, D.C. Value of Bee Collected Pollens; NSW Agriculture: Castle Hill, Australia, 2001; pp. 11–164. [Google Scholar]
- Cook, S.M.; Awmack, C.S.; Murray, D.A.; Williams, I.H. Are honey bees’ foraging preferences affected by pollen amino acid composition? Ecol. Entomol. 2003, 28, 622–627. [Google Scholar] [CrossRef]
- Wilde, J. Encyklopedia Pszczelarska; Powszechne Wydawnictwo Rolne i Leśne: Warszawa, Poland, 2013; p. 335. [Google Scholar]
- Howis, M.; Chorbiński, P.; Nowakowski, P. Aktywność enzymatyczna jelita środkowego robotnic Apis mellifera carnica po ekspozycji rodzin na kwasy organiczne. In Proceedings of the Materiały XLVIII Naukowej Konferencji Pszczelarskiej, Pszczyna, Poland, 5–7 April 2011; p. 51. [Google Scholar]
- Strachecka, A.; Łoś, A.; Filipczuk, J.; Schulz, M. Indywidualne i społeczne mechanizmy odporności pszczoły miodnej. Med. Wet. 2018, 74, 426–433. [Google Scholar]
- Gajda, A. Nosema ceranae w rodzinach pszczoły miodnej. Życie Weter. 2010, 85, 140–143. [Google Scholar]
- Hartwig, A. Badania Cytochemiczne nad Jelitem Środkowym Pszczół Robotnic Zdrowych, Zakażonych Pasożytem Nosema apis Zander oraz Zakażonych i Poddanych Leczeniu Preparatem Fumagillin DCH. Pszczel. Zesz. Nauk. 1970, 14, 75–107. [Google Scholar]
- Crailsheim, K. The protein balance of the honey bee Wolker. Apidologie 1992, 21, 417–429. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.T.; Hang, X.B.; Yang, W.R.; Liu, F.; Xu, B.H. Digestion of protein of two pollen types in China by the honeybee (Apis mellifera L.). Apidologie 2014, 45, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Mortiz, B.; Crailsheim, K. Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). J. Insect Physiol. 1987, 33, 923–931. [Google Scholar] [CrossRef]
- Ricigliano, V.A.; Fitz, W.; Copeland, D.C.; Mott, B.M.; Maes, P.; Floyd, A.S.; Dockstader, A.; Anderson, K.E. The impact of pollen consumption on honey bee (Apis mellifera) digestive physiology and carbohydrate metabolism. Arch. Insect Biochem. Physiol. 2017, 96, e21406. [Google Scholar] [CrossRef]
- Somerville, D. Forestry Plantations and Honeybees; Rural Industries Research and Development Corporation: Goulburn, Australia, 2010; p. 11. [Google Scholar]
- Tasei, J.N.; Aupinel, P. Nutritive value of 15 single pollens and pollen mixes tested on larvae produced by bumblebee workers (Bombus terrestris, Hymenoptera: Apidae). Apidologie 2008, 39, 4. [Google Scholar] [CrossRef] [Green Version]
- Mazzeo, G.; Bella, S.; Seminara, A.R.; Longo, S. Bumblebees in natural and agro-ecosystems at different altitudes from Mount Etna, Sicily (Hymenoptera Apidae Bombinae): Long-term faunistic and ecological observations. Redia 2015, 98, 123–131. [Google Scholar]
- Omar, E.; Abd-Ella, A.A.; Khodairy, M.M.; Mooseckhofer, R.; Crailsheim, K.; Brodschneider, R. Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera). Apidologie 2016, 48, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Alaux, C.; Ducloz, F.; Crauser, D.; Conte, Y.L. Diet effects on honeybee immunocompetence. Biol. Lett. 2010, 6, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z. Pollen nutrition affects honey bee stress resistance. Terr. Arthropod Rev. 2012, 5, 175–189. [Google Scholar] [CrossRef] [Green Version]
- El Mohandes, S.S.; Nafea, E.A.; Fawzy, A.M. Effect of different feeding diets on the haemolymph of the newly emerged honeybee workers Apis melliferaL. Egypt. Acad. J. Biol. Sciences. A Entomol. 2010, 3, 213–220. [Google Scholar]
- Harmon-Threatt, A.; Kremen, C. Bumble bees selectively use native and exotic species to maintain nutritional intake across highly variable and invaded local floral resource pools: Bee nutrition in invaded landscapes. Ecol. Entomol. 2015, 40, 4. [Google Scholar] [CrossRef] [Green Version]
- Szymaś, B.; Łangowska, A.; Kazimierczak-Baryczko, M. Histological structure of the midgut of honey beed (Apis mellifera L.) fed pollen substitutes fortified with probiotics. J. Apic. Sci. 2012, 56, 5–12. [Google Scholar]
- Erban, T.; Jedelsky, P.J.; Titera, D. Two-dimensional proteomic analysis of honeybee, Apis mellifera, winter worker hemolymph. Apidologie 2013, 44, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A. Nutrition of the adult honey bee. In The Hive and the Honey Bee; Atkins, E.L., Grout, R.A., Eds.; Dadant & Sons: Carthage, IL, USA, 1975; pp. 125–156. [Google Scholar]
- Almeida-Dias, J.M.; Morais, M.M.; Pereira, R.A.; De Jong, D. Fermentation of a pollen substitute diet with beebread microorganisms increases diet consumption and hemolymph protein levels of honey bees (Hymenoptera: Apidae). Sociobiology 2018, 65, 760–765. [Google Scholar] [CrossRef]
- Li, J.; Heerman, M.C.; Evans, J.D.; Rose, R.; Li, W.; Rodriguez-Garcia, C.; DeGrandi-Hoffman, G.; Zhao, Y.; Huang, S.; Li, Z.; et al. Pollen reverses decreased life spam, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. J. Exp. Biol. 2019, 222, 1–29. [Google Scholar]
- Arien, Y.; Dag, A.; Yona, S.; Tietel, Z.; Cohen, T.L.; Shafir, S. Effect of diet lipids and omega-6:3 ratio on honey bee brood development, adult survival and body composition. J. Exp. Biol. 2020, 124, 104074. [Google Scholar] [CrossRef] [PubMed]
- Migdał, P.; Murawska, A.; Strachecka, A.; Bieńkowski, P.; Roman, A. Honey bee proteolytic system and behavior parameters under the influence of an electric field at 50 Hz and variable intensities for a long exposure time. Animals 2021, 11, 863. [Google Scholar] [CrossRef] [PubMed]
- Łoś, A.; Strachecka, A. Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution. Sensors 2018, 18, 1494. [Google Scholar] [CrossRef] [Green Version]
- Strachecka, A.; Krauze, M.; Olszewski, K.; Borsuk, G.; Paleolog, J.; Merska, M.; Chobotow, J.; Bajda, M.; Grzywnowicz, K. Unexpectedly strong effect of coffeine on the vitality of western honeybees (Apis mellifera). Biochemistry 2014, 79, 1192–1201. [Google Scholar]
- Bogdanov, S. Nature and origin of the antibacterial substances in honey. Lebensm. Wiss. Technol. 1997, 30, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Bucekova, M.; Valachova, I.; Kohutova, L.; Porchazka, E.; Klaudiny, J.; Majtan, J. Honeybee glucose oxidase—Its expression in honeybee workers and comparative analyses of its content and H2O2-mediated antibacterial activity in natural honeys. Naturwissenschaften 2014, 101, 661–670. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bryś, M.S.; Skowronek, P.; Strachecka, A. Pollen Diet—Properties and Impact on a Bee Colony. Insects 2021, 12, 798. https://doi.org/10.3390/insects12090798
Bryś MS, Skowronek P, Strachecka A. Pollen Diet—Properties and Impact on a Bee Colony. Insects. 2021; 12(9):798. https://doi.org/10.3390/insects12090798
Chicago/Turabian StyleBryś, Maciej Sylwester, Patrycja Skowronek, and Aneta Strachecka. 2021. "Pollen Diet—Properties and Impact on a Bee Colony" Insects 12, no. 9: 798. https://doi.org/10.3390/insects12090798
APA StyleBryś, M. S., Skowronek, P., & Strachecka, A. (2021). Pollen Diet—Properties and Impact on a Bee Colony. Insects, 12(9), 798. https://doi.org/10.3390/insects12090798