Cytochrome P450 Genes Expressed in Phasmatodea Midguts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, W.; Meng, Q.S.; Wu, Q.J.; Wang, S.L.; Yang, X.; Yang, N.N.; Li, R.M.; Jiao, X.G.; Pan, H.P.; Liu, B.M.; et al. Pyrosequencing the Bemisia tabaci transcriptome reveals a highly diverse bacterial community and a robust system for insecticide resistance. PLoS ONE 2012, 7, e35181. [Google Scholar] [CrossRef]
- Shi, H.; Pei, L.; Gu, S.; Zhu, S.; Wang, Y.; Zhang, Y.; Li, B. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 2012, 100, 327–335. [Google Scholar] [CrossRef]
- Yu, L.; Tang, W.; He, W.; Ma, X.; Vasseur, L.; Baxter, S.W.; Yang, G.; Huang, S.; Song, F.; You, M. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci. Rep. 2015, 5, 8952. [Google Scholar] [CrossRef]
- Scott, J.G.; Liu, N.; Wen, Z. Insect cytochromes P450: Diversity, insecticide resistance and tolerance to plant toxins. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1998, 121, 147–155. [Google Scholar] [CrossRef]
- Xing, X.; Yan, M.; Pang, H.; Wu, F.a.; Wang, J.; Sheng, S. Cytochrome P450s Are Essential for Insecticide Tolerance in the Endoparasitoid Wasp Meteorus pulchricornis (Hymenoptera: Braconidae). Insects 2021, 12, 651. [Google Scholar] [CrossRef]
- Werck-Reichhart, D.; Feyereisen, R. Cytochromes P450: A success story. Genome Biol. 2000, 1, REVIEWS3003. [Google Scholar] [CrossRef]
- Marsh, K.J.; Wallis, I.R.; Andrew, R.L.; Foley, W.J. The Detoxification Limitation Hypothesis: Where Did it Come From and Where is it Going? J. Chem. Ecol. 2006, 32, 1247–1266. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Bush, D.S.; Liao, L.-H. Cytochrome P450-mediated mycotoxin metabolism by plant-feeding insects. Curr. Opin. Insect Sci. 2021, 43, 85–91. [Google Scholar] [CrossRef]
- Scott, J.G.; Wen, Z. Cytochromes P450 of insects: The tip of the iceberg. Pest Manag. Sci. 2001, 57, 958–967. [Google Scholar] [CrossRef]
- Calla, B. Signatures of selection and evolutionary relevance of cytochrome P450s in plant-insect interactions. Curr. Opin. Insect Sci. 2021, 43, 92–96. [Google Scholar] [CrossRef]
- Nelson, D.R. Cytochrome P450 Nomenclature, 2004. In Cytochrome P450 Protocols; Springer: Totowa, NJ, USA, 2006; pp. 1–10. [Google Scholar]
- Feyereisen, R. Insect P450 Enzymes. Annu. Rev. Entomol. 1999, 44, 507–533. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Michel, A. Expansion of cytochrome P450 and cathepsin genes in the generalist herbivore brown marmorated stink bug. BMC Genom. 2018, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R.; Goldstone, J.V.; Stegeman, J.J. The cytochrome P450 genesis locus: The origin and evolution of animal cytochrome P450s. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 2013, 368, 20120474. [Google Scholar] [CrossRef] [PubMed]
- Strode, C.; Wondji, C.S.; David, J.-P.; Hawkes, N.J.; Lumjuan, N.; Nelson, D.R.; Drane, D.R.; Karunaratne, S.H.P.P.; Hemingway, J.; Black, W.C.; et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 2008, 38, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.A. P450s in plant–insect interactions. Biochim. Biophys. Acta (Bba)—Proteins Proteom. 2011, 1814, 36–45. [Google Scholar] [CrossRef]
- Yang, J.; McCart, C.; Woods, D.J.; Terhzaz, S.; Greenwood, K.G.; Ffrench-Constant, R.H.; Dow, J.A. A Drosophila systems approach to xenobiotic metabolism. Physiol. Genom. 2007, 30, 223–231. [Google Scholar] [CrossRef]
- Shelomi, M.; Lo, W.S.; Kimsey, L.S.; Kuo, C.H. Analysis of the gut microbiota of walking sticks (Phasmatodea). BMC Res. Notes 2013, 6, 368. [Google Scholar] [CrossRef]
- Shelomi, M.; Sitepu, I.R.; Boundy-Mills, K.L.; Kimsey, L.S. Review of the Gross Anatomy and Microbiology of the Phasmatodea Digestive Tract. J. Orthoptera Res. 2015, 24, 29–40. [Google Scholar] [CrossRef]
- Baker, E. The worldwide status of phasmids (Insecta: Phasmida) as pests of agriculture and forestry, with a generalised theory of phasmid outbreaks. Agric. Food Secur. 2015, 4, 1–19. [Google Scholar] [CrossRef]
- Deesh, A.; Joshi, R.; Jokhan, A.; Khan, M.; Jerard Bosco, A. Biological Studies on the Natural Enemies in Suppression of Coconut Stick Insect, Graeffea crouanii (Le Guillou) in Fiji. Asia Pac. J. Sustain. Agric. Food Energy 2020, 8, 1–14. [Google Scholar]
- Liu, H. Biology and ecology of the Northern walkingstick, Diapheromera femorata (Say) (Phasmatodea: Diapheromerinae): A review. J. Appl. Entomol. 2021, 145, 635–647. [Google Scholar] [CrossRef]
- Ohmart, C.P.; Edwards, P.B. Insect Herbivory on Eucalyptus. Annu. Rev. Entomol. 1991, 36, 637–657. [Google Scholar] [CrossRef]
- Cooper, P.D. What physiological processes permit insects to eat Eucalyptus leaves? Austral Ecol. 2001, 26, 556–562. [Google Scholar] [CrossRef]
- Shelomi, M.; Jasper, W.C.; Atallah, J.; Kimsey, L.S.; Johnson, B.R. Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut. Bmc Genom. 2014, 15, 917. [Google Scholar] [CrossRef] [PubMed]
- Apweiler, R.; Martin, M.J.; O’Donovan, C.; Magrane, M.; Alam-Faruque, Y.; Alpi, E.; Antunes, R.; Arganiska, J.; Casanova, E.B.; Bely, B.; et al. Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res. 2013, 41, D43–D47. [Google Scholar] [CrossRef]
- Benson, D.A.; Karsch-Mizrachi, I.; Clark, K.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2012, 40, D48–D53. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Aparicio-Puerta, E.; Lebrón, R.; Rueda, A.; Gómez-Martín, C.; Giannoukakos, S.; Jaspez, D.; Medina, J.M.; Zubkovic, A.; Jurak, I.; Fromm, B.; et al. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 2019, 47, W530–W535. [Google Scholar] [CrossRef]
- Moktali, V.; Park, J.; Fedorova-Abrams, N.D.; Park, B.; Choi, J.; Lee, Y.-H.; Kang, S. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genom. 2012, 13, 525. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Liu, X.; Zeng, B.; He, B. Genome-Wide Analysis of the Cytochromes P450 Gene Family in Cordyceps militaris. J. Phys. Conf. Ser. 2020, 1549, 032069. [Google Scholar] [CrossRef]
- Ai, J.; Zhu, Y.; Duan, J.; Yu, Q.; Zhang, G.; Wan, F.; Xiang, Z.-H. Genome-wide analysis of cytochrome P450 monooxygenase genes in the silkworm, Bombyx mori. Gene 2011, 480, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. Clustal omega. Curr. Protoc. Bioinform. 2014, 48, 3.13.1–13.13.16. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Felsenstein, J. PHYLIP (Phylogeny Inference Package), Version 3.6; Department of Genome Sciences, University of Washington: Seattle, WA, USA, 2005.
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Shelomi, M. De novo transcriptome analysis of the excretory tubules of Carausius morosus (Phasmatodea) and possible functions of the midgut ‘appendices’. PLoS ONE 2017, 12, e0174984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, S.; Letsch, H.; Bank, S.; Buckley, T.R.; Donath, A.; Liu, S.; Machida, R.; Meusemann, K.; Misof, B.; Podsiadlowski, L.; et al. Old World and New World Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf Insects. Front. Ecol. Evol. 2019, 7, 345. [Google Scholar] [CrossRef]
- Forni, G.; Plazzi, F.; Cussigh, A.; Conle, O.; Hennemann, F.; Luchetti, A.; Mantovani, B. Phylomitogenomics provides new perspectives on the Euphasmatodea radiation (Insecta: Phasmatodea). Mol. Phylogenet. Evol. 2021, 155, 106983. [Google Scholar] [CrossRef]
- Song, N.; Li, X.; Na, R. Mitochondrial genomes of stick insects (Phasmatodea) andg phylogenetic considerations. PLoS ONE 2020, 15, e0240186. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.-K.; Chen, Q.-P.; Ayivi, S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, D.-N.; Zhang, J.-Y. Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny. Insects 2021, 12, 779. [Google Scholar] [CrossRef]
- Scully, E.D.; Hoover, K.; Carlson, J.E.; Tien, M.; Geib, S.M. Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genom. 2013, 14, 850. [Google Scholar] [CrossRef]
- Wen, Z.; Scott, J.G. Cloning of two novel P450 cDNAs from German cockroaches, Blattella germanica (L.): CYP6K1 and CYP6J1. Insect Mol. Biol. 2001, 10, 131–137. [Google Scholar] [CrossRef]
- Nelson, D.R. The cytochrome p450 homepage. Hum Genom. 2009, 4, 59–65. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, J.; Wu, H.; Zhang, H.; Zhang, J.; Ma, E. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria. Chemosphere 2019, 223, 48–57. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wang, L.; Liu, S.; Wu, S.; Yang, Y.; Feyereisen, R.; Wu, Y. CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 2018, 9, 4820. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, Q.; Li, Q.; Wang, R.; Xu, C.; Wang, H.; Ran, C.; Song, Y.; Zeng, R. Identification of a cytochrome P450 CYP6AB60 gene associated with tolerance to multi-plant allelochemicals from a polyphagous caterpillar tobacco cutworm (Spodoptera litura). Pestic. Biochem. Physiol. 2019, 154, 60–66. [Google Scholar] [CrossRef]
- Lu, K.-H.; Bradfield, J.Y.; Keeley, L.L. Juvenile hormone inhibition of gene expression for cytochrome P4504C1 in adult females of the cockroach, Blaberus discoidalis. Insect Biochem. Mol. Biol. 1999, 29, 667–673. [Google Scholar] [CrossRef]
- Helvig, C.; Koener, J.F.; Unnithan, G.C.; Feyereisen, R. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. USA 2004, 101, 4024–4029. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, C.; Ishii, F.; Washidu, Y.; Ichikawa, A.; Tanaka, T.; Miura, K.; Shinoda, T. Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. J. Insect Physiol. 2015, 80, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Dejong, C.A.; Wilson, J.Y. The Cytochrome P450 Superfamily Complement (CYPome) in the Annelid Capitella teleta. PLoS ONE 2014, 9, e107728. [Google Scholar] [CrossRef]
- Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [Google Scholar] [CrossRef]
- Ngo, S.N.T.; McKinnon, R.A.; Stupans, I. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 CYP4A15. Gene 2006, 376, 123–132. [Google Scholar] [CrossRef]
- Jones, B.R.; El-Merhibi, A.; Ngo, S.N.T.; Stupans, I.; McKinnon, R.A. Hepatic cytochrome P450 enzymes belonging to the CYP2C subfamily from an Australian marsupial, the koala (Phascolarctos cinereus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 230–237. [Google Scholar] [CrossRef]
- Landero-Valenzuela, N.; Alonso-Hernández, N.; Lara-Viveros, F.; Gómez-Domínguez, N.S.; Juárez-Pelcastre, J.; Aguado-Rodríguez, J.; Luna-Cruz, A.; Lagunez-Rivera, L.; Aguilar-Pérez, L.A.; Hinojosa-Garro, D.; et al. Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae). Agriculture 2022, 12, 554. [Google Scholar] [CrossRef]
- Konno, K.; Hirayama, C.; Yasui, H.; Okada, S.; Sugimura, M.; Yukuhiro, F.; Tamura, Y.; Hattori, M.; Shinbo, H.; Nakamura, M. GABA, β-Alanine and Glycine in the Digestive Juice of Privet-Specialist Insects: Convergent Adaptive Traits Against Plant Iridoids. J. Chem. Ecol. 2010, 36, 983–991. [Google Scholar] [CrossRef]
- Shelomi, M.; Heckel, D.G.; Pauchet, Y. Ancestral Gene Duplication Enabled the Evolution of Multifunctional Cellulases in Stick Insects (Phasmatodea). Insect Biochem. Mol. Biol. 2016, 71, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandlin, E.A.; Willig, M.R. Effects of Age, Sex, Prior Experience, and Intraspecific Food Variation on Diet Composition of a Tropical Folivore (Phasmatodea: Phasmatidae). Environ. Entomol. 1993, 22, 625–633. [Google Scholar] [CrossRef]
Isogroups (Isotigs) | |||||||
---|---|---|---|---|---|---|---|
CYP450 Clan | Family | Aa | Et | Me | Ps | Ra | Ss * |
Mito. Clan | 44 | 1 (1) | 0 | 1 (1) | 1 (1) | 1 (1) | 0 |
49A1 | 1 (1) | 1 (1) | 0 | 0 | 1 (1) | 0 | |
302A1 | 1 (1) | 0 | 1 (1) | 0 | 0 | 0 | |
314A1 | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 0 | |
315A1 | 1 (1) | 0 | 0 | 0 | 1 (1) | 0 | |
Clan 2 | 304A1 | 1 (1) | 1 (2) | 1 (1) | 0 | 1 (1) | 1 (1) |
307A1 | 1 (1) | 0 | 0 | 0 | 1 (1) | 1 (1) | |
15A1 | 3 (8) | 3 (5) | 4 (9) | 3 (3) | 3 (4) | 1 (6) | |
Clan 3 | 6J1 | 5 (6) | 8 (15) | 7 (24) | 4 (16) | 10 (25) | 6 (6) |
6A13/14 | 5 (6) | 4 (5) | 4 (6) | 3 (3) | 7 (10) | 4 (6) | |
6K1 | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | 1 (1) | |
9E2 | 1 (1) | 1 (1) | 1 (6) | 1 (3) | 0 | 1 (1) | |
Clan 4 | 4AA1 | 0 | 1 (1) | 2 (2) | 0 | 0 | 0 |
4C1 | 6 (7) | 6 (7) | 6 (9) | 4 (4) | 5 (5) | 4 (5) | |
4G102 | 0 | 0 | 1 (1) | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelomi, M. Cytochrome P450 Genes Expressed in Phasmatodea Midguts. Insects 2022, 13, 873. https://doi.org/10.3390/insects13100873
Shelomi M. Cytochrome P450 Genes Expressed in Phasmatodea Midguts. Insects. 2022; 13(10):873. https://doi.org/10.3390/insects13100873
Chicago/Turabian StyleShelomi, Matan. 2022. "Cytochrome P450 Genes Expressed in Phasmatodea Midguts" Insects 13, no. 10: 873. https://doi.org/10.3390/insects13100873
APA StyleShelomi, M. (2022). Cytochrome P450 Genes Expressed in Phasmatodea Midguts. Insects, 13(10), 873. https://doi.org/10.3390/insects13100873