Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Material, DNA Data and Phylogenetic Analyses
2.2. Morphological Study
3. Results
3.1. Phylogeny, Genetic Diversity and Distribution
3.2. Taxonomy
- Family Lycidae
- Tribe Dictyopterini Houlbert, 1922
- Dictyopterini Houlbert, 1922: 338. [53]
3.2.1. Differential Diagnosis
3.2.2. Intraspecific Variability
3.2.3. Biology
3.2.4. Distribution
- Dictyoptera aurora (Herbst, 1784)
- Pyrochroa aurora Herbst, 1784: 105 [58] (Type locality Germany).
- =Lampyris coccinea Linnaeus, 1767: 646 [59] (Type locality Sweden?).
- =Dictyopterus hybridus Mannerheim, 1843: 88 [60] (Type locality Finland).
- =Dictyoptera aurora limbaticollis Pic, 1914: 50 [61] (Type locality Italy).
- =Cantharis sanguineus sensu Linnaeus, 1761: 202 [62] (Type locality Denmark)
- =Dictyopterus superbus Motschulsky, 1860: 115 [63] (Type locality Russian Far East: Amur).
- =Dictyoptera aurora caprai Pupin, 1974: 40 [64] (Type locality Italy).
3.2.5. Description of Second Instar Larva
3.2.6. Measurements
3.2.7. Material Examined
3.2.8. Note
3.2.9. Biology
3.2.10. Distribution
3.2.11. Taxonomic Decision
4. Discussion
4.1. Morphological and Genetic Differentiation
4.2. Genetic Diversity in European Populations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Biol. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Hendrich, L.; Moriniere, J.; Haszprunar, G.; Hebert, P.D.N.; Hausmann, A.; Kohler, F.; Balke, M. A comprehensive DNA barcode database for Central European beetles with a focus on Germany: Adding more than 3500 identified species to BOLD. Mol. Ecol. Res. 2015, 15, 795–818. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Oliver, P. Count cryptic species in biodiversity tally. Nature 2016, 534, 621. [Google Scholar] [CrossRef] [PubMed]
- DeSalle, R.; Goldstein, P. Review and Interpretation of Trends in DNA Barcoding. Front. Ecol. Evol. 2019, 7, 302. [Google Scholar] [CrossRef]
- Dinca, V.; Dapporto, L.; Somervuo, P.; Voda, R.; Cuvelier, S.; Gascoigne-Pees, M.; Huemer, P.; Mutanen, M.; Hebert, P.D.N.; Vila, R. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 2021, 4, 315. [Google Scholar] [CrossRef] [PubMed]
- Huemer, P.; Karsholt, O.; Aarvik, L.; Berggren, K.; Bidzilya, O.; Junnilainen, J.; Landry, J.F.; Mutanen, M.; Nupponen, K.; Segerer, A.; et al. DNA barcode library for European Gelechiidae (Lepidoptera) suggests greatly underestimated species diversity. Zookeys 2020, 921, 141–157. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, G.A.; Dutoit, L.; Craw, D.; Kroos, G.C.; Waters, J.M. Genomics Reveals Exceptional Phylogenetic Diversity Within a Narrow-Range Flightless Insect. Ins. Syst. Divers. 2022, 6, 5. [Google Scholar] [CrossRef]
- Andujar, C.; Arribas, P.; Ruzicka, F.; Crampton-Platt, A.; Timmermans, M.J.T.N.; Vogler, A.P. Phylogenetic community ecology of soil biodiversity using mitochondrial metagenomics. Mol. Ecol. 2015, 24, 3603–3617. [Google Scholar] [CrossRef] [PubMed]
- Crampton-Platt, A.; Yu, D.W.; Zhou, X.; Vogler, A.P. Mitochondrial metagenomics: Letting the genes out of the bottle. Gigascience 2016, 5, 15. [Google Scholar] [CrossRef]
- Wang, W.Y.; Srivathsan, A.; Foo, M.; Yamane, S.K.; Meier, R. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: Validating a reverse workflow for specimen processing. Mol. Ecol. Res. 2018, 18, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.; Puniamoorthy, J.; Ngiam, R.W.J.; Meier, R. Towards holomorphology in entomology: Rapid and cost-effective adult-larva matching using NGS barcodes. Syst. Entomol. 2018, 43, 678–691. [Google Scholar] [CrossRef]
- Bray, T.C.; Bocak, L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 2016, 6, 33579. [Google Scholar] [CrossRef] [PubMed]
- Bocek, M.; Kusy, D.; Motyka, M.; Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 2019, 16, 38. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.H.; Burns, J.M.; Cong, Q.; Hallwachs, W.; Dapkey, T.; Manjunath, R.; Hajibabaei, M.; Hebert, P.D.N.; Grishin, N.V. Nuclear genomes distinguish cryptic species suggested by their DNA barcodes and ecology. Proc. Natl. Acad. Sci. USA 2017, 114, 8313–8318. [Google Scholar] [CrossRef]
- Ahrens, D.; Fujisawa, T.; Krammer, H.J.; Eberle, J.; Fabrizi, S.; Vogler, A.P. Rarity and Incomplete Sampling in DNA-Based Species Delimitation. Syst. Biol. 2016, 65, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Polaszek, A.; Fusu, L.; Viggiani, G.; Hall, A.; Hanson, P.; Polilov, A.A. Revision of the World Species of Megaphragma Timberlake (Hymenoptera: Trichogrammatidae). Insects 2022, 13, 561. [Google Scholar] [CrossRef] [PubMed]
- Masek, M.; Motyka, M.; Kusy, D.; Bocek, M.; Li, Y.; Bocak, L. Molecular Phylogeny, Diversity and Zoogeography of Net-Winged Beetles (Coleoptera: Lycidae). Insects 2018, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Kusy, D.; Motyka, M.; Bocek, M.; Masek, M.; Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 2019, 44, 911–925. [Google Scholar] [CrossRef]
- Green, J.W. The Lycidae of the United States and Canada. III. The Tribe Platerodini (In Part) (Coleoptera). Trans. Am. Entomol. Soc. 1951, 77, 1–20. [Google Scholar]
- Miller, R.S. Lycidae. In American Beetles; Arnett, R.H., Thomas, M.C., Frank, H., Skelley, P.E., Eds.; CRC Press: Washington, DC, USA, 2002; Volume 2, pp. 174–178. [Google Scholar]
- Kazantsev, S.V. An Annotated Checklist of Cantharoidea (Coleoptera) of Russia and Adjacent Territories. Russ. Entomol. J. 2012, 20, 387–410. [Google Scholar] [CrossRef]
- Stevens, G.C. The latitudinal gradients in geographical range: How so many species co-exist in the tropics. Am. Natl. 1989, 133, 240–256. Available online: https://www.jstor.org/stable/2462300 (accessed on 14 August 2022). [CrossRef]
- Stauffer, D.; Rohde, K. Simulation of Rapoport’s rule for latitudinal species spread. Theor. Biosci. 2006, 125, 55–65. [Google Scholar] [CrossRef]
- Green, J.W. The Lycidae of the United States and Canada. I. The tribe Lycini (Coleoptera). Trans. Am. Entomol. Soc. 1949, 75, 53–70. [Google Scholar]
- Green, J.W. The Lycidae of the United States and Canada. IV. The tribe Calopterini (Coleoptera). Trans. Am. Entomol. Soc. 1952, 78, 1–19. [Google Scholar]
- Pérez-Hernández, C.X.; Zaragoza-Caballero, S.; Romo-Galicia, A. Checklist of net-winged beetles (Coleoptera: Lycidae) from Mexico. Zootaxa 2019, 4623, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gunter, N.; Pang, H.; Bocak, L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 2015, 175, 59–72. [Google Scholar] [CrossRef]
- Jiruskova, A.; Motyka, M.; Bocek, M.; Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 2019, 7, e6511. [Google Scholar] [CrossRef]
- Motyka, M.; Kusy, D.; Bocek, M.; Bilkova, R.; Vogler, A.P.; Bocak, L. Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis. eLife 2021, 10, e71895. [Google Scholar] [CrossRef] [PubMed]
- Kusy, D.; Motyka, M.; Fusek, L.; Li, Y.; Bocek, M.; Bilkova, R.; Ruskova, M.; Bocak, L. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae). Zool. J. Linn. Soc. 2021, 191, 902–927. [Google Scholar] [CrossRef]
- Kazantsev, S.V.; Nikitsky, N.B. Larvae of net-winged beetles (Lycidae: Coleoptera) of the European part of Russia and the Caucasus. Cauc. Entomol. Bull. 2011, 7, 129–134. [Google Scholar] [CrossRef]
- Kusy, D.; Sklenarova, K.; Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 2018, 57, 25–39. [Google Scholar] [CrossRef]
- Hewitt, G. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999, 68, 87–112. [Google Scholar] [CrossRef]
- Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 2000, 405, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, G.; Brandefelt, J.; Kjellström, E.; Smith, B. High-resolution regional simulation of last glacial maximum climate in Europe. Tellus A Dyn. Meteorol. Oceanogr. 2011, 63, 107–125. [Google Scholar] [CrossRef]
- Krivolutskaya, G.O. Entomofauna of the Kuril Islands: Principal Features and Origin; Izdatel’stvo Nauka, Leningrad, Division: Leningrad, Russia, 1973; p. 315. [Google Scholar]
- Kleine, R. Pars 123: Lycidae. Coleopterorum Catalogus auspiciis et auxilio W. Junk editus a Schenkling; Conchology, Inc.: Lapu-Lapu City, Philippines, 1933; p. 145. [Google Scholar]
- Motyka, M.; Masek, M.; Bocak, L. Congruence between morphology and molecular phylogeny: The reclassification of Calochromini (Coleoptera: Lycidae) and their dispersal history. Zool. J. Linn. Soc. 2017, 180, 47–65. [Google Scholar] [CrossRef]
- Bocek, M.; Bocak, L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae). Zookeys 2016, 593, 15–35. [Google Scholar] [CrossRef]
- Bocek, M.; Bocak, L. The origins and dispersal history of the trichaline net-winged beetles in South East Asia, Wallacea, New Guinea and Australia. Zool. J. Linn. Soc. 2019, 185, 1079–1094. [Google Scholar] [CrossRef]
- Ferreira, V.S.; Solodovnikov, A.; Ivie, M.A.; Kundrata, R. Dominican Amber Net-Winged Beetles suggest stable Paleoenvironment as a driver for Conserved Morphology in a Paedomorphic lineage. Sci. Rep. 2022, 12, 5820. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Bininda-Emonds, O.R.P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 2005, 6, 156. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmid, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Chernomor, O.; von Haeseler, A.; Minh, B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Clement, M.; Posada, M.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef]
- Leigh, J.W.; Bryant, D.; Nakagawa, S. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Motyka, M.; Kusy, D.; Masek, M.; Bocek, M.; Li, Y.; Bilkova, R.; Kapitán, J.; Yagi, T.; Bocak, L. Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions. Sci. Rep. 2021, 11, 5961. [Google Scholar] [CrossRef]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef]
- Houlbert, C. Les coléoptères d’Europe France et régions voisines. Anatomie générale; classification et tableaux génériques illustrés. In Encyclopédie Scientifique; Toulouse, D., Ed.; Tome Second. G. Doin: Paris, France, 1922; pp. 340+xii. [Google Scholar]
- Latreille, P.A. Crustacés, arachnides et partie des insectes. In Le Règne Animal Distribué D’après Son Organisation Pour Servir de Base à L’histoire Naturelle des Animaux et D’introduction à L ’Anatomie Compare; Cuvier, G., Ed.; Avec Figures Dessinées D’après Nature. Nouvelle Édition, Revue et Augmentee; Tome IV; Déterville: Paris, France, 1829; p. xxvii+584. [Google Scholar]
- Mulsant, E. Tableaux synoptique des Lycides, ou des especesdu genre Lycus, qui se rencontrent dans les environs de Lyon. Ann. Sci. Phys. Natur. d’Agric. et d’Industr. 1838, 1, 77–81. [Google Scholar]
- Say, T. Descriptions of new North American Coleopterous Insects., and observations on some already described. Boston J. Nat. Hist. 1835, 1, 151–202. [Google Scholar]
- Schaeffer, C. New Coleoptera and miscellaneous notes. J. N. Y. Entomol. Soc. 1911, 19, 113–126. [Google Scholar]
- Herbst, J.F.W. Kritisches Verzichniss meiner Insectensammluyng. Arch. Insectengesch. 1784, 5, 73–151, pls. 24–30. [Google Scholar]
- Linnaeus, C. Systema Naturae, per Regna Tria Naturae, Secundum Classes, Ordines, Genera. Species Cum Characteribus, Differentiis, Synonimis, Locis. Tomus, I. Editio Duodecima. Tomus I., Pars II; Laurentii Salvii: Holmiae, Turkey, 1767; pp. 533–1327. [Google Scholar]
- Mannerheim, C.G.v. Description de quelques autres Nouvelles espèces de coléoptères de Finnlande. Bull. Soc. Nat. Moscou 1843, 16, 88–89.62. [Google Scholar]
- Pic, M. Notes diverses, descriptions et diagnoses. L’Echange 1914, 30, 49–56. [Google Scholar]
- Linnaeus, C. Fauna Suecica sistens Animalia Sueciae Regni: Mammalia, Ayes, Amphibia, Pisces, Insecta, Vermes. Distributa per Classes et Ordines, Genera et Species, Cum Differentiis Specierum, Synonymis Auctorum, Nominibus Incolarum, Locis Natalium, Descriptionibus Insectorum. Editio Altera, Auction; Laurentii Salvii: Stockholmiae, Sweden, 1761; 48 + 578, 2 pls. [Google Scholar]
- Motschulsky, V.D. Coleopteres rapportes de la Siberie orientate et notamment des pays situes sur les bords du fleuve Amour par MM. Schrenck, Maack, Ditmar, Voznessenski etc. pp. 77–257 + [1], pls 6–11, 1 map. In Reisen und Forschungen im Amur-Lande in den Jahren 1854-1856 im Auftrage der Kaiserl. Akademie der Wissenschaften zu St. Peterburg ausgefuhrt und in Verbindung mit mehreren Gelehrten herausgegeben von Dr.Leopold Schrenck; Schrenck, P.L., Ed.; Band II. Zweite Lieferung. Coleopteren; Kaiserliche Akademie der Wissenschaften: St. Peterburg, Russia, 1860; p. 976. [Google Scholar]
- Pupin, O. Dictyoptera aurora caprai n. subsp. ed illustazioni di altri Dictyopterini. Boll. Soc. Entomol. Ital. 1974, 106, 40–46. [Google Scholar]
- Nakane, T. Fauna Japonica. Lycidae (Insecta: Coleoptera); Academic Press of Japan: Tokyo, Japan, 1969; p. 224. [Google Scholar]
- Bergsten, J.; Bilton, D.T.; Fujisawa, T.; Elliott, M.; Monaghan, M.T.; Balke, M.; Hendrich, L.; Geijer, J.; Herrmann, J.; Foster, G.N.; et al. The Effect of Geographical Scale of Sampling on DNA Barcoding. Syst. Biol. 2012, 61, 851–869. [Google Scholar] [CrossRef]
- LeConte, J. The Complete writings of Thomas Say on the Entomology of North America; Bailliere Bros: New York, NY, USA, 1859; Volume 2. [Google Scholar]
- International Commission on Zoological Nomenclature (ICZN). International Code of Zoological Nomenclature; The International Trust for Zoological Nomenclature: London, UK, 1999. [Google Scholar]
- Ikeda, H.; Nishikawa, M.; Sota, T. Loss of flight promotes beetle diversification. Nat. Commun. 2012, 3, 648. [Google Scholar] [CrossRef]
- Eldredge, N.; Thompson, J.N.; Brakefield, P.M.; Gavrilets, S.; Jablonski, D.; Jackson, J.B.C.; Lenski, R.E.; Lieberman, B.S.; McPeek, M.A.; Miller, W. The dynamics of evolutionary stasis. Paleobiology 2005, 31, 133–145. [Google Scholar] [CrossRef]
- Davis, C.C.; Chaefer, H.; Xi, Z.; Baum, D.A.; Donoghue, M.J.; Harmon, L.J. Long-term morphological stasis maintained by a plant-polinator mutualism. Proc. Natl. Acad. Sci. USA 2014, 111, 5914–5919. [Google Scholar] [CrossRef] [PubMed]
- Kazantsev, S.V. Phylogeny of the tribe Erotini (Coleoptera, Lycidae), with descriptions of new taxa. Zootaxa 2004, 496, 1–48. [Google Scholar] [CrossRef]
- Kazantsev, S.V. New taxa of Helcophorus Fairmaire, 1891, with a key to species of the genus (Coleoptera: Lycidae). In Biodiversität und Naturausstattung im Himalaya; Hartmann, M., Weipert, J., Eds.; Band 5. Verein der Freunde & Förderer des Naturkundemuseums Erfurt e.V.: Erfurt, Germany, 2015; pp. 383–389. [Google Scholar]
- Motyka, M.; Kampova, L.; Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 2018, 8, 3744. [Google Scholar] [CrossRef] [PubMed]
- Motyka, M.; Bocek, M.; Kusy, D.; Bocak, L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 2020, 10, 11193. [Google Scholar] [CrossRef] [PubMed]
- Lukhtanov, V.A.; Kandul, N.P.; Plotkin, J.B.; Dantchenko, A.V.; Haig, D.; Pierce, N.E. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature 2005, 436, 385–389. [Google Scholar] [CrossRef]
- Bocak, L.; Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in South East Asia. Evolution 2010, 64, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Kazantsev, S.V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron 2005, 19, 49–226. [Google Scholar]
- Kazantsev, S.V. New and little known taxa of neotenic Lycidae (Coleoptera), with discussion of their phylogeny. Russ. Entomol. J. 2013, 22, 9–31. [Google Scholar] [CrossRef]
- Gould, S.J. Ontogeny and Phylogeny; Harvard University Press: Cambridge, MA, USA, 1977. [Google Scholar]
- Raup, D.M.; Sepkoski, J.J., Jr. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. USA 1984, 81, 801–805. [Google Scholar] [CrossRef] [PubMed]
- Malohlava, V.; Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 2010, 19, 4800–4811. [Google Scholar] [CrossRef]
- Masek, M.; Palata, V.; Bray, T.C.; Bocak, L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PLoS ONE 2015, 10, e0123855. [Google Scholar] [CrossRef] [PubMed]
- Poinar, G., Jr.; Poinar, R. The Amber Forest: A Reconstruction of a Vanished World; Princeton University Press: Princeton, NJ, USA, 1999; p. 239. [Google Scholar]
- Kleine, R. Eine Lycidae aus dem Baltischen Bernstein. Entomol. Bl. 1940, 36, 179–180. [Google Scholar]
- Winkler, J.R. Three new genera of fossil Lycidae from Baltic Amber. Mitt. Münch. Entomol. Ges. 1987, 77, 61–78. [Google Scholar]
- Kazantsev, S.V.; Perkovsky, E.E. Imprint of a Helcophorus Fairmaire, 1881: The first net-winged beetle (Coleoptera: Lycidae) from Rovno amber. Zootaxa 2022, 5128, 84–90. [Google Scholar] [CrossRef]
- Chang, H.; Kirejtshuk, A.; Ren, D. New Fossil Elaterids (Coleoptera: Polyphaga: Elateridae) from the Jehol Biota in China. Ann. Entomol. Soc. Am. 2010, 103, 866–874. Available online: http://www.bioone.org/doi/full/10.1603/AN09076 (accessed on 14 August 2022). [CrossRef]
- Muona, J.; Chang, H.; Ren, D. The Clicking Elateroidea from Chinese Mesozoic Deposits (Insecta, Coleoptera). Insects 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Tihelka, E.; Huang, D.Y.; Cai, C. A new genus and tribe of Cretaceous net-winged beetles from Burmese amber (Coleoptera: Elateroidea: Lycidae). Palaeoentomology 2019, 2, 262–270. [Google Scholar] [CrossRef]
- Bocak, L.; Li, Y.; Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 2019, 99, 149–155. [Google Scholar] [CrossRef]
- Li, Y.D.; Tihelka, E.; Huang, D.Y.; Cai, C.Y. Murcybolus gen. nov., a new net-winged beetle genus from mid-Cretaceous Burmese amber (Coleoptera: Lycidae: Burmolycini). Zootaxa 2021, 4966, 76–83. [Google Scholar] [CrossRef]
- Kazantsev, S.V. A new fossil genus of net-winged beetles, with a brief review of amber Lycidae (Insecta: Coleoptera). Zootaxa 2013, 3608, 94–100. [Google Scholar] [CrossRef]
- Kazantsev, S.V. Protolycus gedaniensis gen. n., sp. n., the first Baltic amber representative of Lycini (Coleoptera, Lycidae, Lycinae). Palaeoentomology 2019, 3, 327–332. [Google Scholar] [CrossRef]
- Molino-Olmedo, F.; Ferreira, V.S.; Branham, M.A.; Ivie, M.A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. 2020, 111, 104452. [Google Scholar] [CrossRef]
- Yamamoto, S. Fossil evidence of elytra reduction in ship-timber beetles. Sci. Rep. 2019, 9, 493. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.D.; Peris, D.; Yamamoto, S.; Hsiao, Y.; Newton, A.F.; Cai, C.Y. Revisiting the Raractocetus Fossils from Mesozoic and Cenozoic Amber Deposits (Coleoptera: Lymexylidae). Insects 2022, 13, 768. [Google Scholar] [CrossRef]
- Yamamoto, S.; Takahashi, Y.; Parker, J. Evolutionary stasis in enigmatic jacobsoniid beetles. Gond. Res. 2017, 45, 275–281. [Google Scholar] [CrossRef]
- Hörnschemeyer, T.; Wedmann, S.; Poinar, G.O. How long can insect species exist? Evidence from extant and fossil Micromalthus beetles. Zool. J. Linn. Soc. 2010, 158, 300–311. [Google Scholar] [CrossRef]
- Ross, A.J. Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology 2019, 2, 22–84. [Google Scholar] [CrossRef]
- Zhang, S.Q.; Che, L.H.; Li, Y.; Dan, L.; Pang, H.; Ślipiński, A.; Zhang, P. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 2018, 9, 205. [Google Scholar] [CrossRef]
- McKenna, D.D.; Shin, S.; Ahrens, D.; Balke, M.; Beza-Beza, C.; Clarke, D.J.; Donath, A.; Escalona, H.E.; Letsch, H.; Liu, S.; et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 24729–24737. [Google Scholar] [CrossRef]
- Dering, M.; Kosinski, P.; Wyka, T.P.; Pers-Kamczyc, E.; Boratynski, A.; Boratynska, K.; Reich, P.B.; Romo, A.; Zadworny, M.; Zytkowiak, R.; et al. Tertiary remnants and Holocene colonizers: Genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Divers. Distr. 2017, 23, 540–555. [Google Scholar] [CrossRef]
- Hedenas, L. Rhytidium rugosum (Bryophyta) colonized Scandinavia from at least two glacial refugial source populations. Bot. J. Linn. Soc. 2015, 179, 635–657. [Google Scholar] [CrossRef]
- Markova, S.; Hornikova, M.; Lanier, H.C.; Henttonen, H.; Searle, J.B.; Weider, L.J.; Kotlik, P. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol. Ecol. 2020, 29, 1730–1744. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motyka, M.; Kusy, D.; Bilkova, R.; Bocak, L. Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring. Insects 2022, 13, 817. https://doi.org/10.3390/insects13090817
Motyka M, Kusy D, Bilkova R, Bocak L. Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring. Insects. 2022; 13(9):817. https://doi.org/10.3390/insects13090817
Chicago/Turabian StyleMotyka, Michal, Dominik Kusy, Renata Bilkova, and Ladislav Bocak. 2022. "Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring" Insects 13, no. 9: 817. https://doi.org/10.3390/insects13090817
APA StyleMotyka, M., Kusy, D., Bilkova, R., & Bocak, L. (2022). Analysis of the Holarctic Dictyoptera aurora Complex (Coleoptera, Lycidae) Reveals Hidden Diversity and Geographic Structure in Müllerian Mimicry Ring. Insects, 13(9), 817. https://doi.org/10.3390/insects13090817