Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. BSFL (Hermetia illucens L.)
3. Nutritional Value of BSFL (Hermetia illucens L.)
3.1. Regular Nutrition Facts
3.2. Amino Acid Profile
3.3. Fatty Acid Profile
3.4. Minerals Composition
3.5. Different Factors of Nutritional Value of BSFL (Hermetia illucens L.)
4. Nutrition of BSFL (Hermetia illucens L.) in Poultry
4.1. Growth Performance
4.2. Antioxidants and Immunity
4.3. Meat Quality and Nutritional Content
5. Nutrition of BSFL (Hermetia illucens L.) in Swine
5.1. Growth Performance
5.2. Antioxidants, Immunity, and Meat Quality
6. Challenges of Using BSFL (Hermetia illucens L.)
6.1. Security and Legal Issues
6.2. Consumer Acceptance
6.3. Production and Price
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
References
- Statistics, F.G.F. What Is the Global Feed Industry. International Feed Industry Federation Factsheet; International Feed Industry Federation (IFIF): Wiehl, Germany, 2019; Available online: https://ifif.org/wp-content/uploads/2019/06/IFIF-Fact-Sheet-October-11th-2019.pdf (accessed on 11 October 2019).
- McLeod, A. World Livestock 2011-Livestock in Food Security; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Tiengtam, N.; Paengkoum, P.; Sirivoharn, S.; Phonsiri, K.; Boonanuntanasarn, S. The effects of dietary inulin and Jerusalem artichoke (Helianthus tuberosus) tuber on the growth performance, haematological, blood chemical and immune parameters of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Res. 2017, 48, 5280–5288. [Google Scholar] [CrossRef]
- Paengkoum, P.; Thongpea, S.; Paengkoum, S. Utilization of concentrate supplements containing varying levels of cassava leaf pellet by growing goats fed a basal diet of pangola hay. Indian J. Anim. Res. 2017, 51, 1091–1096. [Google Scholar] [CrossRef]
- Kaewwongsa, W.; Traiyakun, S.; Yuangklang, C.; Wachirapakorn, C.; Paengkoum, P. Protein enrichment of cassava pulp fermentation by Saccharomyces cerevisiae. J. Anim. Vet. Adv. 2011, 10, 2434–2440. [Google Scholar]
- Parisi, G.; Tulli, F.; Fortina, R.; Marino, R.; Bani, P.; Dalle Zotte, A.; De Angelis, A.; Piccolo, G.; Pinotti, L.; Schiavone, A. Protein hunger of the feed sector: The alternatives offered by the plant world. Ital. J. Anim. Sci. 2020, 19, 1204–1225. [Google Scholar] [CrossRef]
- Van Huis, A.; Oonincx, D.G. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Chen, S.; Paengkoum, P.; Xia, X.; Na-Lumpang, P. Effects of dietary protein on ruminal fermentation, nitrogen utilization and crude protein maintenance in growing Thai-indigenous beef cattle fed rice straw as roughage. J. Anim. Vet. Adv. 2010, 9, 2396–2400. [Google Scholar] [CrossRef]
- Allegretti, G.; Talamini, E.; Schmidt, V.; Bogorni, P.C.; Ortega, E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 2018, 171, 403–412. [Google Scholar] [CrossRef]
- Dicke, M. Insects as feed and the Sustainable Development Goals. J. Insects Food Feed 2018, 4, 147–156. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Ciência Agrotecnologia 2020, 44, e012420. [Google Scholar] [CrossRef]
- Purba, R.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2020, 62, 1391–1401. [Google Scholar] [CrossRef]
- Paengkoum, P.; Liang, J.; Jelan, Z.; Basery, M. Utilization of steam-treated oil palm fronds in growing saanen goats: II. Supplementation with energy and urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1623–1631. [Google Scholar] [CrossRef]
- Wanapat, M.; Chumpawadee, S.; Paengkoum, P. Utilization of urea-treated rice straw and whole sugar cane crop as roughage sources for dairy cattle during the dry season. Asian-Australas. J. Anim. Sci. 2000, 13, 474–477. [Google Scholar] [CrossRef]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- Paengkoum, P.; Liang, J.; Jelan, Z.; Basery, M. Utilization of steam-treated oil palm fronds in growing goats: 1. supplementation with dietary urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1305–1313. [Google Scholar] [CrossRef]
- Patra, A.K.; Aschenbach, J.R. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res. 2018, 13, 39–50. [Google Scholar] [CrossRef]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Gasco, L.; Dabbou, S.; Trocino, A.; Xiccato, G.; Capucchio, M.T.; Biasato, I.; Dezzutto, D.; Birolo, M.; Meneguz, M.; Schiavone, A. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J. Anim. Sci. Biotechnol. 2019, 10, 4. [Google Scholar] [CrossRef]
- Oonincx, D.G.; De Boer, I.J. Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef]
- El-Hack, A.; Mohamed, E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-Sagan, A.A. Black soldier fly (Hermetia illucens) meal as a promising feed ingredient for poultry: A comprehensive review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef] [PubMed]
- Bukkens, S.G. The nutritional value of edible insects. Ecol. Food Nutr. 1997, 36, 287–319. [Google Scholar] [CrossRef]
- Tabata, E.; Kashimura, A.; Wakita, S.; Ohno, M.; Sakaguchi, M.; Sugahara, Y.; Kino, Y.; Matoska, V.; Bauer, P.O.; Oyama, F. Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Sci. Rep. 2017, 7, 6662. [Google Scholar] [CrossRef]
- Nyakeri, E.; Ogola, H.; Ayieko, M.; Amimo, F. An open system for farming black soldier fly larvae as a source of proteins for smallscale poultry and fish production. J. Insects Food Feed 2017, 3, 51–56. [Google Scholar] [CrossRef]
- Veldkamp, T.; Bosch, G. Insects: A protein-rich feed ingredient in pig and poultry diets. Anim. Front. 2015, 5, 45–50. [Google Scholar]
- Zuki, N.M.; Ibrahim, N.; Mat, K.; Rusli, N.; Harun, H.; Mahmud, M.; Samat, N.; Al-Amsyar, S. Hybrid treatment of black soldier fly larvae (Hermetia illucens) as a sustainable and efficient protein source in poultry diets. IOP Conf. Series: Earth Environ. Sci. 2021, 756, 012031. [Google Scholar]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.; Bergagna, S.; Dezzutto, D.; Meneguz, M. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef]
- Zhou, F.; Tomberlin, J.K.; Zheng, L.; Yu, Z.; Zhang, J. Developmental and waste reduction plasticity of three black soldier fly strains (Diptera: Stratiomyidae) raised on different livestock manures. J. Med. Entomol. 2013, 50, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Mallin, M.A.; Cahoon, L.B. Industrialized animal production—a major source of nutrient and microbial pollution to aquatic ecosystems. Popul. Environ. 2003, 24, 369–385. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renew. Energy 2012, 41, 75–79. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens)—From a hygiene aspect. Sci. Total Environ. 2013, 458, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Banks, I.J.; Gibson, W.T.; Cameron, M.M. Growth rates of black soldier fly larvae fed on fresh human faeces and their implication for improving sanitation. Trop. Med. Int. Health 2014, 19, 14–22. [Google Scholar] [CrossRef]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, P. Enhanced conjugated linoleic acid and biogas production after ruminal fermentation with Piper betle L. supplementation. Ciência Rural 2020, 50, e20191001. [Google Scholar] [CrossRef]
- Paengkoum, P. Effects of neem (Azadirachta indica) and leucaena (Leucaena leucocephala) fodders on digestibility, rumen fermentation and nitrogen balance of goats fed corn silage. J. Anim. Vet. Adv. 2010, 9, 883–886. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol 2021, 25, 231–240. [Google Scholar]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef]
- James, M.T. The genus Hermetia in the United States (Diptera: Stratiomyidae). Bull. Brooklyn Entomol. Soc 1935, 30, 165–170. [Google Scholar]
- Shumo, M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.; Subramanian, S.; Ekesi, S.; Van Huis, A.; Borgemeister, C. Influence of temperature on selected life-history traits of black soldier fly (Hermetia illucens) reared on two common urban organic waste streams in Kenya. Animals 2019, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Spranghers, T.; Noyez, A.; Schildermans, K.; De Clercq, P. Cold hardiness of the black soldier fly (Diptera: Stratiomyidae). J. Econ. Entomol. 2017, 110, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Woodley, N.E. A world catalog of the Stratiomyidae (Insecta: Diptera): A supplement with revisionary notes and errata. Myia 2011, 12, 379–415. [Google Scholar]
- Singh, A.; Kumari, K. An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. J. Environ. Manag. 2019, 251, 109569. [Google Scholar] [CrossRef]
- Üstüner, T.; Hasbenlí, A.; Rozkošný, R. The first record of Hermetia illucens (Linnaeus, 1758) (Diptera, Stratiomyidae) from the Near East. Studia Dipterol. 2003, 1, 0945-3954. [Google Scholar]
- Chippindale, A.K.; Leroi, A.M.; Kim, S.B.; Rose, M.R. Phenotypic plasticity and selection in Drosophila life-history evolution. I. Nutrition and the cost of reproduction. In Methuselah Flies: A Case Study in the Evolution of Aging; World Scientific: Singapore, 2004; pp. 122–144. [Google Scholar]
- St-Hilaire, S.; Sheppard, C.; Tomberlin, J.K.; Irving, S.; Newton, L.; McGuire, M.A.; Mosley, E.E.; Hardy, R.W.; Sealey, W. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. J. World Aquac. Soc. 2007, 38, 59–67. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Y.; Yu, Z.; Cheng, P. Research progress on the larvae and prepupae of black soldier fly Hermetia illucens used as animal feedstuff. Chin. Bull. Entomol. 2009, 46, 41–45. [Google Scholar]
- Alvarez, L. The Role of Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae) in Sustainable Waste Management in Northern Climates. 2012; Electronic Theses and Dissertations. 402. [Google Scholar]
- Diener, S. Valorisation of Organic Solid Waste Using the Black Soldier Fly, Hermetia illucens, in Low and Middle-Income Countries. Eth Zurich. 2010. [Google Scholar]
- Park, H.H. Black Soldier Fly Larvae Manual. 2016. Available online: http://scholarworks.umass.edu.erişim.tarihi/ (accessed on 1 September 2022).
- Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing methods for the black soldier fly (Diptera: Stratiomyidae). J. Med. Entomol. 2002, 39, 695–698. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste treatment with black soldier fly larvae: Increasing performance through the formulation of biowastes based on protein and carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Dortmans, B.; Diener, S.; Bart, V.; Zurbrügg, C. Black Soldier Fly Biowaste Processing: A Step-by-Step Guide; Eawag: Dübendorf, Switzerland, 2017. [Google Scholar]
- Bortolini, S.; Macavei, L.I.; Saadoun, J.H.; Foca, G.; Ulrici, A.; Bernini, F.; Malferrari, D.; Setti, L.; Ronga, D.; Maistrello, L. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. J. Clean. Prod. 2020, 262, 121289. [Google Scholar] [CrossRef]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar]
- Paengkoum, P.; Chen, S.; Paengkoum, S. Effects of crude protein and undegradable intake protein on growth performance, nutrient utilization, and rumen fermentation in growing Thai-indigenous beef cattle. Trop. Anim. Health Prod. 2019, 51, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Paengkoum, P.; Paengkoum, S. Effects of supplementing rice straw with Leucaena (Leucaena leucocephala) and Madras thorn (Pithecellobium dulce) foliages on digestibility, microbial N supply and nitrogen balance of growing goats. J. Anim. Physiol. Anim. Nutr. 2010, 94, e59–e65. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Yuwono, N.W.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A.; Nagdalian, A. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 2022, 140, 1–13. [Google Scholar] [CrossRef]
- Newton, G.; Sheppard, D.; Watson, D.; Burtle, G.; Dove, C.; Tomberlin, J.; Thelen, E. The black soldier fly, Hermetia illucens, as a manure management/resource recovery tool. In Proceedings of the Symposium on the State of the Science of Animal Manure and Waste Management, San Antonio, TX, USA, 5–7 January 2005; p. 57. [Google Scholar]
- Yildirim-Aksoy, M.; Eljack, R.; Beck, B.H. Nutritional value of frass from black soldier fly larvae, Hermetia illucens, in a channel catfish, Ictalurus punctatus, diet. Aquac. Nutr. 2020, 26, 812–819. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Swine; Natl Acad Press: Washington, DC, USA, 2012. [Google Scholar]
- Onsongo, V.; Osuga, I.; Gachuiri, C.; Wachira, A.; Miano, D.; Tanga, C.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K. Insects for income generation through animal feed: Effect of dietary replacement of soybean and fish meal with black soldier fly meal on broiler growth and economic performance. J. Econ. Entomol. 2018, 111, 1966–1973. [Google Scholar] [CrossRef] [Green Version]
- Tyshko, N.V.; Zhminchenko, V.M.; Nikitin, N.S.; Trebukh, M.D.; Shestakova, S.I.; Pashorina, V.A.; Sadykova, E.O. The comprehensive studies of Hermetia illucens larvae protein’s biological value. Probl. Nutr. 2021, 90, 49–58. [Google Scholar] [CrossRef]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 2007, 26, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Swiatkiewicz, S.; Swiatkiewicz, M.; Arczewska-Wlosek, A.; Jozefiak, D. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shi, B.; Yan, S.; Jin, L.; Guo, Y.; Xu, Y.; Li, T.; Guo, X. Effects of dietary supplementation of chitosan on humoral and cellular immune function in weaned piglets. Anim. Feed Sci. Technol. 2013, 186, 204–208. [Google Scholar] [CrossRef]
- Wang, H.; ur Rehman, K.; Feng, W.; Yang, D.; ur Rehman, R.; Cai, M.; Zhang, J.; Yu, Z.; Zheng, L. Physicochemical structure of chitin in the developing stages of black soldier fly. Int. J. Biol. Macromol. 2020, 149, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef] [PubMed]
- Rawski, M.; Mazurkiewicz, J.; Kierończyk, B.; Józefiak, D. Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals 2020, 10, 2119. [Google Scholar] [CrossRef]
- de Souza Vilela, J.; Alvarenga, T.I.; Andrew, N.R.; McPhee, M.; Kolakshyapati, M.; Hopkins, D.L.; Ruhnke, I. Technological quality, amino acid and fatty acid profile of broiler meat enhanced by dietary inclusion of black soldier fly larvae. Foods 2021, 10, 297. [Google Scholar] [CrossRef]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.-A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 2020, 4, txaa104. [Google Scholar] [CrossRef]
- Müller, A.; Wolf, D.; Gutzeit, H.O. The black soldier fly, Hermetia illucens–a promising source for sustainable production of proteins, lipids and bioactive substances. Z. Nat. C 2017, 72, 351–363. [Google Scholar] [CrossRef]
- Shah, A.A.; Totakul, P.; Matra, M.; Cherdthong, A.; Hanboonsong, Y.; Wanapat, M. Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Anim. Biosci. 2022, 35, 317. [Google Scholar] [CrossRef]
- Romano, N.; Fischer, H.; Kumar, V.; Francis, S.A.; Sinha, A.K. Productivity, conversion ability, and biochemical composition of black soldier fly (Hermetia illucens) larvae fed with sweet potato, spent coffee or dough. Int. J. Trop. Insect Sci. 2022, 42, 183–190. [Google Scholar] [CrossRef]
- Ewald, N.; Vidakovic, A.; Langeland, M.; Kiessling, A.; Sampels, S.; Lalander, C. Fatty acid composition of black soldier fly larvae (Hermetia illucens)–Possibilities and limitations for modification through diet. Waste Manag. 2020, 102, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewicz, T.; Murawska, D.; Kubiak, D.; Han, J. Chemical composition and fatty acid profile of the pectoralis major muscle in broiler chickens fed diets with full-fat black soldier fly (Hermetia illucens) larvae meal. Animals 2022, 12, 464. [Google Scholar] [CrossRef] [PubMed]
- Nayohan, S.; Susanto, I.; Permata, D.; Pangesti, R.T.; Rahmadani, M.; Jayanegara, A. Effect of dietary inclusion of black soldier fly larvae (Hermetia illucens) on broiler performance: A meta-analysis. Proc. E3S Web Conf. 2022, 335, 00013. [Google Scholar] [CrossRef]
- Rabani, V.; Cheatsazan, H.; Davani, S. Proteomics and lipidomics of black soldier fly (Diptera: Stratiomyidae) and blow fly (Diptera: Calliphoridae) larvae. J. Insect Sci. 2019, 19, 29. [Google Scholar] [CrossRef]
- Bulak, P.; Wiącek, D.; Bieganowski, A. Hermetia illucens exhibits bioaccumulative potential for 15 different elements-Implications for feed and food production. Sci. Total Environ. 2020, 723, 138125. [Google Scholar]
- Petlum, A.; Paengkoum, P.; Liang, J.; Vasupen, K.; Paengkoum, S. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. Anim. Prod. Sci. 2019, 59, 2154–2160. [Google Scholar] [CrossRef]
- Smets, R.; Verbinnen, B.; Van De Voorde, I.; Aerts, G.; Claes, J.; Van Der Borght, M. Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste Biomass Valorization 2020, 11, 6455–6466. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [PubMed]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Myers, H.M.; Tomberlin, J.K.; Lambert, B.D.; Kattes, D. Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure. Environ. Entomol. 2014, 37, 11–15. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods on lipid oxidation, colour and microbial load of black soldier fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Robx. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.-H.; Lebeuf, Y.; Vandenberg, G. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed 2022, 8, 45–64. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Leni, G.; Baldassarre, S.; Maistrello, L.; Dossena, A.; Sforza, S. Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Res. Int. 2018, 105, 812–820. [Google Scholar] [CrossRef]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Tanga, C.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K. Moisture adsorption properties and shelf-life estimation of dried and pulverised edible house cricket Acheta domesticus (L.) and black soldier fly larvae Hermetia illucens (L.). Food Res. Int. 2018, 106, 420–427. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Khamis, F.M.; Mohamed, S.A.; Salifu, D.; Sevgan, S.; Fiaboe, K.K.; Niassy, S.; van Loon, J.J.; Dicke, M. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 2018, 13, e0206097. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Adler, P.H.; Myers, H.M. Development of the black soldier fly (Diptera: Stratiomyidae) in relation to temperature. Environ. Entomol. 2009, 38, 930–934. [Google Scholar] [CrossRef]
- Holmes, L. Role of Abiotic Factors on the Development and Life History of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). 2010. Electronic Theses and Dissertations. 285.. Available online: https://scholar.uwindsor.ca/etd/285 (accessed on 1 September 2022).
- Zhang, J.; Huang, L.; He, J.; Tomberlin, J.K.; Li, J.; Lei, C.; Sun, M.; Liu, Z.; Yu, Z. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens. J. Insect Sci. 2010, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.Y.; Chiu, S.L.; Lo, I.M. Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Manag. 2017, 67, 315–323. [Google Scholar] [CrossRef]
- Meneguz, M.; Gasco, L.; Tomberlin, J.K. Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development. PLoS ONE 2018, 13, e0202591. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lei, Y.; Rehman, K.u.; Yu, Z.; Zhang, J.; Li, W.; Li, Q.; Tomberlin, J.K.; Zheng, L. Dynamic effects of initial pH of substrate on biological growth and metamorphosis of black soldier fly (Diptera: Stratiomyidae). Environ. Entomol. 2018, 47, 159–165. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Murawska, D.; Daszkiewicz, T.; Sobotka, W.; Gesek, M.; Witkowska, D.; Matusevičius, P.; Bakuła, T. Partial and Total Replacement of Soybean Meal with Full-Fat Black Soldier Fly (Hermetia illucens L.) Larvae Meal in Broiler Chicken Diets: Impact on Growth Performance, Carcass Quality and Meat Quality. Animals 2021, 11, 2715. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Gai, F.; Biasato, I.; Capucchio, M.T.; Biasibetti, E.; Dezzutto, D.; Meneguz, M.; Plachà, I.; Gasco, L.; Schiavone, A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2018, 9, 49. [Google Scholar] [CrossRef]
- Kawasaki, K.; Hashimoto, Y.; Hori, A.; Kawasaki, T.; Hirayasu, H.; Iwase, S.-i.; Hashizume, A.; Ido, A.; Miura, C.; Miura, T.; et al. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae and Pre-Pupae Raised on Household Organic Waste, as Potential Ingredients for Poultry Feed. Animals 2019, 9, 98. [Google Scholar] [CrossRef]
- Bellezza Oddon, S.; Biasato, I.; Imarisio, A.; Pipan, M.; Dekleva, D.; Colombino, E.; Capucchio, M.T.; Meneguz, M.; Bergagna, S.; Barbero, R. Black Soldier Fly and Yellow Mealworm live larvae for broiler chickens: Effects on bird performance and health status. J. Anim. Physiol. Anim. Nutr. 2021, 105, 10–18. [Google Scholar] [CrossRef]
- Gariglio, M.; Dabbou, S.; Crispo, M.; Biasato, I.; Gai, F.; Gasco, L.; Piacente, F.; Odetti, P.; Bergagna, S.; Plachà, I. Effects of the dietary inclusion of partially defatted black soldier fly (Hermetia illucens) meal on the blood chemistry and tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) histology of muscovy ducks (Cairina moschata domestica). Animals 2019, 9, 307. [Google Scholar] [CrossRef]
- Gariglio, M.; Dabbou, S.; Gai, F.; Trocino, A.; Xiccato, G.; Holodova, M.; Gresakova, L.; Nery, J.; Oddon, S.B.; Biasato, I. Black soldier fly larva in Muscovy duck diets: Effects on duck growth, carcass property, and meat quality. Poult. Sci. 2021, 100, 101303. [Google Scholar] [CrossRef]
- Loponte, R.; Nizza, S.; Bovera, F.; De Riu, N.; Fliegerova, K.; Lombardi, P.; Vassalotti, G.; Mastellone, V.; Nizza, A.; Moniello, G. Growth performance, blood profiles and carcass traits of Barbary partridge (Alectoris barbara) fed two different insect larvae meals (Tenebrio molitor and Hermetia illucens). Res. Vet. Sci. 2017, 115, 183–188. [Google Scholar] [CrossRef]
- Marono, S.; Loponte, R.; Lombardi, P.; Vassalotti, G.; Pero, M.; Russo, F.; Gasco, L.; Parisi, G.; Piccolo, G.; Nizza, S. Productive performance and blood profiles of laying hens fed Hermetia illucens larvae meal as total replacement of soybean meal from 24 to 45 weeks of age. Poult. Sci. 2017, 96, 1783–1790. [Google Scholar] [CrossRef]
- Cullere, M.; Schiavone, A.; Dabbou, S.; Gasco, L.; Dalle Zotte, A. Meat quality and sensory traits of finisher broiler chickens fed with black soldier fly (Hermetia illucens L.) larvae fat as alternative fat source. Animals 2019, 9, 140. [Google Scholar] [CrossRef]
- Moula, N.; Scippo, M.-L.; Douny, C.; Degand, G.; Dawans, E.; Cabaraux, J.-F.; Hornick, J.-L.; Medigo, R.C.; Leroy, P.; Francis, F. Performances of local poultry breed fed black soldier fly larvae reared on horse manure. Anim. Nutr. 2018, 4, 73–78. [Google Scholar] [CrossRef]
- Schiavone, A.; Dabbou, S.; Petracci, M.; Zampiga, M.; Sirri, F.; Biasato, I.; Gai, F.; Gasco, L. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on carcass traits, breast meat quality and safety. Animal 2019, 13, 2397–2405. [Google Scholar] [CrossRef]
- Cullere, M.; Tasoniero, G.; Giaccone, V.; Acuti, G.; Marangon, A.; Dalle Zotte, A. Black soldier fly as dietary protein source for broiler quails: Meat proximate composition, fatty acid and amino acid profile, oxidative status and sensory traits. Animal 2018, 12, 640–647. [Google Scholar] [CrossRef]
- Chia, S.; Tanga, C.; Osuga, I.; Alaru, A.; Mwangi, D.; Githinji, M.; Dubois, T.; Ekesi, S.; Van Loon, J.; Dicke, M. Black soldier fly larval meal in feed enhances growth performance, carcass yield and meat quality of finishing pigs. J. Insects Food Feed 2021, 7, 433–447. [Google Scholar] [CrossRef]
- Driemeyer, H. Evaluation of Black Soldier Fly (Hermetia illucens) Larvae as an Alternative Protein Source in Pig Creep Diets in Relation to Production, Blood and Manure Microbiology Parameters. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016. [Google Scholar]
- Biasato, I.; Renna, M.; Gai, F.; Dabbou, S.; Meneguz, M.; Perona, G.; Martinez, S.; Lajusticia, A.C.B.; Bergagna, S.; Sardi, L. Partially defatted black soldier fly larva meal inclusion in piglet diets: Effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 2019, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Ipema, A.F.; Gerrits, W.J.; Bokkers, E.A.; Kemp, B.; Bolhuis, J.E. Live black soldier fly larvae (Hermetia illucens) provisioning is a promising environmental enrichment for pigs as indicated by feed-and enrichment-preference tests. Appl. Anim. Behav. Sci. 2021, 244, 105481. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Ma, X. Hermetia illucens larvae as a potential dietary protein source altered the microbiota and modulated mucosal immune status in the colon of finishing pigs. J. Anim. Sci. Biotechnol. 2019, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.u.; Hollah, C.; Wiesotzki, K.; Rehman, R.U.; Rehman, A.U.; Zhang, J.; Zheng, L.; Nienaber, T.; Heinz, V.; Aganovic, K. Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Manag. Res. 2022, 0734242X221105441. [Google Scholar] [CrossRef]
- Valdés, F.; Villanueva, V.; Durán, E.; Campos, F.; Avendaño, C.; Sánchez, M.; Domingoz-Araujo, C.; Valenzuela, C. Insects as Feed for Companion and Exotic Pets: A Current Trend. Animals 2022, 12, 1450. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef]
- Veldkamp, T.; Meijer, N.; Alleweldt, F.; Deruytter, D.; Van Campenhout, L.; Gasco, L.; Roos, N.; Smetana, S.; Fernandes, A.; van der Fels-Klerx, H. Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective. Insects 2022, 13, 281. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Gonçalves, A.T.S.; Moura, A.P.; Varela, P.; Cunha, L.M. Insects as food and feed in Portugal and Norway–cross-cultural comparison of determinants of acceptance. Food Qual. Prefer. 2022, 102, 104650. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C.; Gariglio, M.; Gasco, L.; Schiavone, A. How information affects consumers’ purchase intention and willingness to pay for poultry farmed with insect-based meal and live insects. J. Insects Food Feed 2022, 8, 197–206. [Google Scholar] [CrossRef]
- Chung, A.Y.C.; Khen, C.; Unchi, S.; Binti, M. Edible insects and entomophagy in Sabah, Malaysia. Malay. Nat. J. 2002, 56, 131–144. [Google Scholar]
- Purba, R.A.P.; Paengkoum, P.; Paengkoum, S. The links between supplementary tannin levels and conjugated linoleic acid (CLA) formation in ruminants: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0216187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olutegbe, N.S.; Ojuoluwa, O. Overcoming Social Barrier to Adoption of Black Soldier Fly (Hermetia illucens) as a Protein Source for Poultry: How Tall Is the Order? Chem. Proc. 2022, 10, 73. [Google Scholar]
BSFL | CSBM | FM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | FF | DF | DF | FF | FF | FF | FF | FF | DF | ||
Crude protein | 431.0 | 655.0 | 216.0 | 411.0 | 439.0 | 350.0 | 401.0 | 275.4 | 554.2 | 494.4 | 675.3 |
Crude fat | 386.0 | 46.0 | 63.0 | 301.0 | 294.0 | 298.0 | 325.0 | 515.3 | 98.5 | 14.0 | 103.6 |
Crude fiber | 41.0 | 70.0 | 213.0 | 79.0 | 74.0 | 74.3 | 2.6 | ||||
Ash | 27.0 | 93.0 | 93.0 | 93.0 | 132.0 | 53.0 | 104.0 | 65.9 | 81.0 | 71.9 | 171.5 |
Chitin | 67.0 | 69.0 | 38.7 | 72.1 | |||||||
References | [23] | [18] | [65] | [74] | [68] | [75] | [76] | [69] | [69] | [67] | [67] |
BSFL | CSBM | FM | |||||||
---|---|---|---|---|---|---|---|---|---|
Indispensable amino acids | |||||||||
Type | FF | DF | FF | FF | FF | FF | FF | ||
Arginine | 19.9 | 20.7 | 21.1 | 54.7 | 62.0 | 21.9 | 18.7 | 35.7 | 41.0 |
Histidine | 13.8 | 16.3 | 13.5 | 32.5 | 48.0 | 9.8 | 13.7 | 14.2 | 15.4 |
Isoleucine | 19.1 | 24.0 | 17.7 | 47.3 | 48.0 | 19.1 | 20.6 | 22.1 | 27.3 |
Leucine | 30.6 | 36.7 | 27.8 | 78.3 | 77.0 | 32.1 | 29.4 | 38.6 | 47.7 |
Lysine | 23.0 | 25.2 | 28.1 | 68.2 | 74.0 | 27.2 | 25.9 | 31.1 | 48.7 |
Methionine | 7.1 | 8.56 | 8.0 | 21.2 | 6.0 | 6.0 | 7.1 | .6.8 | 18.5 |
Phenylalanine | 16.4 | 21.8 | 16.4 | 77.6 | 62.0 | 18.3 | 18.7 | 25.5 | 26.4 |
Threonine | 16.2 | 21.8 | 16.3 | 44.3 | 45.0 | 26.5 | 16.7 | 19.8 | 27.5 |
Tryptophan | 5.4 | 5.6 | 6.3 | 6.6 | 6.7 | ||||
Valine | 28.2 | 34.5 | 25.0 | 67.9 | 67.0 | 28.7 | 28.8 | 21.7 | 32.7 |
Dispensable amino acids | |||||||||
Alanine | 27.8 | 43.7 | 25.6 | 82.1 | 62.0 | 26.6 | 21.6 | 41.9 | |
Aspartic acid | 36.9 | 48.8 | 38.7 | 73.0 | 103.0 | 35.6 | 55.0 | 57.7 | |
Cysteine | 2.2 | 0.2 | 3.5 | 7.6 | 5.0 | 4.2 | 3.2 | 7.7 | 6.5 |
Glycine | 25.2 | 30.3 | 24.6 | 61.5 | 54.0 | 26.8 | 24.8 | 21.3 | 50.3 |
Glutamic acid | 45.8 | 63.7 | 46.1 | 131.0 | 102.0 | 38.4 | 88.6 | 84.1 | |
Proline | 25.1 | 32.7 | 23.6 | 66.8 | 62.0 | 23.1 | 27.4 | 30.8 | |
Serine | 15.9 | 26.8 | 17.6 | 48.8 | 41.0 | 19.2 | 15.2 | 24.1 | 25.9 |
Tyrosine | 34.1 | 67.1 | 60.0 | 26.5 | 26.9 | 15.5 | 20.1 | ||
References | [23] | [18] | [68] | [75] | [78] | [79] | [80] | [67] | [67] |
Type | FF | FF | FF | FF | FF | FF |
---|---|---|---|---|---|---|
C10:0 | 20.3 | 8.6 | 14.3 | 8.6 | ||
C12:0 | 575.6 | 75.0 | 459.7 | 526 | 468.6 | 407.9 |
C14:0 | 71.4 | 23.0 | 87 | 85.4 | 98.7 | 65.6 |
C15:0 | 1.5 | 143.8 | 1.3 | |||
C16:0 | 10.3 | 192.0 | 122.1 | 109 | 143.8 | 162.7 |
C18:0 | 9.8 | 69.0 | 25.3 | 15.3 | 17.9 | 14.3 |
SFA | 782.9 | 362.0 | 707.2 | 750.0 | 742.4 | 664.2 |
C16:1 | 33.4 | 8.0 | 19.1 | 19.8 | 27.8 | 23.6 |
c9C18:1 | 79.7 | 266.0 | 112.4 | 61.6 | 77.3 | 182.4 |
c11C18:1 | 1.2 | 2.4 | ||||
MUFA | 119.9 | 287.0 | 134.1 | 85.5 | 115.8 | 218.8 |
C18:2n-6 | 78.3 | 314.0 | 38.0 | 116.0 | 127.7 | 100.7 |
n-6 PUFA | 80.0 | 314.0 | 142.2 | 119.0 | 106.0 | 100.9 |
C18:3n-3 | 11.0 | 36.0 | 16.5 | 10.1 | 9.8 | 16.0 |
C18:4n-3 | 0.5 | |||||
C20:5n-3 | 2.3 | 0.2 | ||||
C22:6n-3 | 0.1 | |||||
n-3 PUFA | 14.3 | 36.0 | 16.5 | 10.1 | 9.8 | 16.2 |
MUFA /SFA, % | 15.3 | 79.3 | 18.9 | 11.4 | 15.6 | 32.9 |
n-3 PUFA/ n-6 PUFA, % | 17.9 | 11.5 | 11.6 | 8.5 | 9.0 | 16.1 |
References | [23] | [81] | [82] | [75] | [83] | [84] |
Type | FF | DF | FF | FF | FF |
---|---|---|---|---|---|
Calcium (Ca) | 1.2 | 13.0 | 1.9.0 | 34.6 | 35.7 |
Copper (Cu) | 0.1 | 15.0 | 0.6 | 10.7 | 0.7 |
Iron (Fe) | 0.1 | 125.0 | 2.1 | 191.0 | 14.0 |
Magnesium (Mg) | 2.1 | 3.0 | 1.0 | 3.5 | 3.4 |
Manganese (Mn) | 0.2 | 45.0 | 0.3 | 166.0 | 33.5 |
Phosphorus (P) | 4.1 | 8.0 | 1.0 | 10.3 | 7.0 |
Potassium (K) | 6.0 | 11.0 | 1.7 | 15.4 | 9.2 |
Sodium (Na) | 0.7 | 5.0 | 3.3 | 1.7 | 15.6 |
Zinc (Zn) | 0.7 | 90.0 | 0.9 | 103.0 | 9.0 |
References | [23] | [65] | [74] | [79] | [87] |
References | Breed | Type | Level, % | Age | Performance |
---|---|---|---|---|---|
[104] | Lohmann Selected Leghorn | DF | 50, 100 | 128 days | No difference in feed intake, egg production, yolk and shell weight. No mortality occurred. |
[107] | Laying Hens | FF | 10 | 168 days | No difference in feed intake, BW, liver weight, and the egg-laying rate. No difference in egg yolk weight, egg shell weight, egg shell strength, and Haugh unit. Increases the richness of cecal microbiota. |
[106] | Ross 308 | DF | 5, 10, 15 | 1–35 days | No difference in FCR (days 1–10). Increases the LW, ADG, DFI and FCR (days 10–35). |
[31] | Ross 308 | FF | 50, 100 | 21–48 days | No difference in DWG, DFI and FCR. |
No difference in LW, chilled carcass, breast, thighs, abdominal fat, liver, heart and spleen. | |||||
[68] | Cobb 500 | FF | 5, 10, 15 | 1–79 days | No difference in final weight, DFI and FCR (days 7–28). Increases the final weight (days 28–79). No effects on breast meat weight, abdominal fat content, and internal organ (liver, heart, gizzard, and spleen) weights. |
[108] | Ross 308 | FF | 5 | 1–39 days | No difference in final weight DFI and FCR. No difference in slaughtering performance. |
[105] | Ross 308 | FF | 50, 75, 100 | 1–42 days | Reduces the LW of the whole stage. Decreased ADG (days 1–14, days 14–35). Reduces DFI and FCR in the 100% groups. Reduces carcass weight and muscle weight. Increases abdominal fat deposits. Increases carcass fat content and the proportion of viscera to the total weight. |
[109] | R71 L | FF | 3, 6, 9 | 3–50 days | No difference in LW, ADG, DFI and FCR. Reduces mortality (from 4.16% to 2.08%). |
[110] | Canedins R71 L White | DF | 3, 6, 9 | 3–50 days | No difference in LW, ADG, DFI and FCR. SW, and consequently the HC and CC weights, and abdominal fat showed a quadratic response with the minimum corresponding to the 6% group. |
References | Breed | Type | Level, % | Age | Performance |
---|---|---|---|---|---|
[106] | Ross 308 | DF | 5, 10, 15 | 1–35 days | No difference in erythrocyte, AST, creatinine, triglycerides, cholesterol, H/L, leukocyte, and uric acid. |
Increases the activity of GPx and TAS. | |||||
[31] | Ross 308 | FF | 50, 100 | 21–48 days | No difference in GGT, H/L, ALT, AST, cholesterol, creatinine, erythrocyte, iron, leukocyte, magnesium, phosphorus, total protein, triglycerides, and uric acid. |
[108] | Ross 308 | FF | 5 | 1–39 days | No difference in erythrocyte, ALT, uric acid, Albumin, AST, cholesterol, creatinine. GGT, H/L, HDL, LDL, leukocyte, total protein and triglycerides. |
[109] | R71 L White | FF | 3, 6, 9 | 3–50 days | No difference in erythrocyte, heterophils, lymphocytes, basophils, eosinophils, H/L, leukocyte, monocytes, and total protein. No difference in AST, ALT and GGT. Reduces triglycerides and cholesterol (from 30.23% to 23.86%). No difference in GPx, TAS and MG. Reduces MDA and nitrotyrosine. |
[112] | Lohman Brown Classic laying hens | FF | 100 | 21–45 weeks | Increases cholesterol, globulin and triglycerides. No difference in erythrocyte, eosinophils, basophils, H/L, heterophils, leukocyte, lymphocytes, monocytes and total protein. Reduces albumin. |
[111] | Alectoris barbara | FF | 25, 50 | 7–28 days | Reduces albumin and BUN. No difference in erythrocyte, AST, ALT, total protein and H/L. |
[109] | Canedins R71 L White | DF | 3, 6, 9 | 3–50 days | No difference in AST, ALT and GGT. No difference in GPx, TAS and MG. Reduces MDA. |
References | Breed | Type | Level, % | Age | Performance |
---|---|---|---|---|---|
[113] | Ross 708 | FF | 50, 100 | 21–48 days | No difference in moisture, protein, lipids and ash of meat. No difference in cholesterol and TBARs. No difference in pH, L*, a*, b*, thawing loss and cooking loss. |
Increases the total SFA and n-6/n-3 ratio. Decreases MUFA, PUFA and n-3 PUFA. | |||||
[105] | Ross 308 | FF | 50, 75, 100 | 1–42 days | Increases pH, a* and b*. Reduces cooking losses. No difference in aroma intensity or desirability. |
[114] | Ardennaise | FF | 2 | 30–80 days | Increases total FA (BSF 36.7%, control 33.8%) and C20: 4ω6. No difference in ω6/ω3 ratio. No difference in the protein content of meat (control 24%, BSF 26%). |
[116] | Quails | FF | 10, 15 | 10–28 days | Increases alanine, serine, aspartic acid, glutamic acid, tyrosine and threonine. Increases the SFA (C10: 0, C12: 0, C14: 0, C16: 0 and C20: 0) and n-6/n-3 ratio. |
Decreases PUFA, especially n-3. | |||||
[115] | Ross 308 | FF | 5, 10, 15 | 1–35 days | Increases a*, protein and the FA/ PUFA ratio. Reduces b* and moisture. |
[110] | Canedins R71 L White | DF | 3, 6, 9 | 3–50 days | No difference in pH 24 and the color of the breast and thigh muscles. Increases C12: 0, C14: 0 and α- linolenic acid. No difference in SFA brisket. Decreases C18:3 n-3, the lowest in the 9% group, the ratio of ∑n-6/∑n-3 decreases linearly. |
References | Phase | Type | Level, % | Age | Performance |
---|---|---|---|---|---|
[117] | Weaning swine | FF | 25, 50, 75, 100 | 14 weeks | Increases ADG, FBW, fasted weight and carcass weight. Reduces FCR. |
[118] | Weaned piglets | FF | 3.5 | 10–28 days | No difference in ADG, DMI and digestibility. |
[77] | Weaned piglets | FF | 25, 50 | 7–21 days | Increases body weight at day 7. Reduces ADFI and G: F at days 14–21. |
[119] | Weaned piglets | DF | 5, 10 | 1–61 days | No difference in ADG, ADFI, BW, WG and FCR. |
[120] | Weaned piglets | FF | D 21-25, 75g/day, D 25-35, 150g/day | 24–35 days | No difference in ADG, final body weight, feed efficiency and energy efficiency. |
[121] | Fattening pig | FF | 4, 8 | Initial weight 76 kg, raised for 46 days. | Increased the abundance of lactobacillus, pseudo-butyric vibrio, Rosella, and faecalibacterium of the 4% group. Decreased the abundance of streptococcus. Increased the number of Clostridium cluster XIVa of the 8% group. |
References | Phase | Type | Level, % | Age | Performance |
---|---|---|---|---|---|
[119] | Weaned piglets | DF | 5, 10 | 1–61 days | No difference in white blood cells, lymphocytes, monocytes, neutrophils, eosinophils, basophils, red blood cells, MCV, hematocrit, MCH, GOT, GPT, ALP, total protein, and triglycerides. |
No difference in albumin, alpha globulin, beta globulin, beta globulin and gamma globulin. | |||||
[122] | Fattening pig | FF | 50, 75, 100 | 22–75 kg | Reduced back fat (L*) and all physicochemical parameters were not affected. Increases the PUFA, GLA and C18:2; C12:0 was five times higher. |
[117] | Weaning swine | DF | 25, 50, 75, 100 | 14 weeks | Increases protein, lipids and OM of meat. No difference in moisture. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects 2022, 13, 831. https://doi.org/10.3390/insects13090831
Lu S, Taethaisong N, Meethip W, Surakhunthod J, Sinpru B, Sroichak T, Archa P, Thongpea S, Paengkoum S, Purba RAP, et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects. 2022; 13(9):831. https://doi.org/10.3390/insects13090831
Chicago/Turabian StyleLu, Shengyong, Nittaya Taethaisong, Weerada Meethip, Jariya Surakhunthod, Boontum Sinpru, Thakun Sroichak, Pawinee Archa, Sorasak Thongpea, Siwaporn Paengkoum, Rayudika Aprilia Patindra Purba, and et al. 2022. "Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review" Insects 13, no. 9: 831. https://doi.org/10.3390/insects13090831
APA StyleLu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., Archa, P., Thongpea, S., Paengkoum, S., Purba, R. A. P., & Paengkoum, P. (2022). Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects, 13(9), 831. https://doi.org/10.3390/insects13090831