Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species, Locations and Climate
2.2. Data Analysis and Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumgart, D.; Botham, M.S.; Menéndez, R.; Bell, J.R. Moth declines are most severe in broadleaf woodlands despite a net gain in habitat availability. Insect Conserv. Divers. 2022, 15, 496–509. [Google Scholar] [CrossRef]
- Burner, R.C.; Selås, V.; Kobro, S.; Jacobsen, R.M.; Sverdrup-Thygeson, A. Moth species richness and diversity decline in a 30-year time series in Norway, irrespective of species’ latitudinal range extent and habitat. J. Insect Conserv. 2021, 25, 887–896. [Google Scholar] [CrossRef]
- Cardoso, P.; Barton, P.S.; Birkhofer, K.; Chichorro, F.; Deacon, C.; Fartmann, T.; Fukushima, C.S.; Gaigher, R.; Habel, J.C.; Hallmann, C.A. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 2020, 242, 108426. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [Green Version]
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Roth, N.; Hacker, H.H.; Heidrich, L.; Friess, N.; García-Barros, E.; Habel, J.C.; Thorn, S.; Müller, J. Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests. Ecography 2021, 44, 941–952. [Google Scholar] [CrossRef]
- Wagner, D.L.; Grames, E.M.; Forister, M.L.; Berenbaum, M.R.; Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 2021, 118, e2023989118. [Google Scholar] [CrossRef]
- Braga, M.P.; Janz, N. Host repertoires and changing insect–plant interactions. Ecol. Entomol. 2021, 46, 1241–1253. [Google Scholar] [CrossRef]
- Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 2019, 29, R967–R971. [Google Scholar] [CrossRef]
- Antão, L.H.; Pöyry, J.; Leinonen, R.; Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 2020, 29, 896–907. [Google Scholar] [CrossRef]
- Boyes, D.H.; Fox, R.; Shortall, C.R.; Whittaker, R. Bucking the trend: The diversity of Anthropocene ‘winners’ among British moths. Front. Biogeogr. 2019, 11, e43862. [Google Scholar] [CrossRef] [Green Version]
- Crossley, M.S.; Meier, A.R.; Baldwin, E.M.; Berry, L.L.; Crenshaw, L.C.; Hartman, G.L.; Lagos-Kutz, D.; Nichols, D.H.; Patel, K.; Varriano, S.; et al. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat. Ecol. Evol. 2020, 4, 1368–1376. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Williams, J.H.; Bell, J.R.; Thomas, C.D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 2019, 3, 1645–1649. [Google Scholar] [CrossRef]
- Thomas, C.D.; Jones, T.H.; Hartley, S.E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Chang. Biol. 2019, 25, 1891–1892. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.J.; Fox, R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol. Entomol. 2021, 46, 699–717. [Google Scholar] [CrossRef]
- Betzholtz, P.-E.; Pettersson, L.B.; Ryrholm, N.; Franzén, M. With that diet, you will go far: Trait-based analysis reveals a link between rapid range expansion and a nitrogen-favoured diet. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122305. [Google Scholar] [CrossRef]
- Forsman, A.; Betzholtz, P.-E.; Franzén, M. Faster poleward range shifts in moths with more variable colour patterns. Sci. Rep. 2016, 6, 36265. [Google Scholar] [CrossRef]
- Fox, R.; Oliver, T.H.; Harrower, C.; Parsons, M.S.; Thomas, C.D.; Roy, D.B. Long-term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and land-use changes. J. Appl. Ecol. 2014, 51, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Janzen, D.H.; Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl. Acad. Sci. USA 2021, 118, e2002546117. [Google Scholar] [CrossRef]
- Palmer, G.; Platts, P.J.; Brereton, T.; Chapman, J.W.; Dytham, C.; Fox, R.; Pearce-Higgins, J.W.; Roy, D.B.; Hill, J.K.; Thomas, C.D. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majeed, W.; Rana, N.; de Azevedo Koch, E.B.; Nargis, S. Seasonality and Climatic Factors Affect Diversity and Distribution of Arthropods Around Wetlands. Pak. J. Zool. 2020, 52, 2135–2144. [Google Scholar] [CrossRef]
- Lindström, L.; Lehmann, P. Climate change effects on agricultural insect pests in Europe. Clim. Chang. Insect Pests 2015, 8, 136. [Google Scholar]
- Fält-Nardmann, J.J.; Tikkanen, O.-P.; Ruohomäki, K.; Otto, L.-F.; Leinonen, R.; Pöyry, J.; Saikkonen, K.; Neuvonen, S. The recent northward expansion of Lymantria monacha in relation to realised changes in temperatures of different seasons. For. Ecol. Manag. 2018, 427, 96–105. [Google Scholar] [CrossRef]
- De Boer, J.G.; Harvey, J.A. Range-expansion in processionary moths and biological control. Insects 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Betzholtz, P.-E.; Forsman, A.; Franzén, M. Inter-individual variation in colour patterns in noctuid moths characterizes long-distance dispersers and agricultural pests. J. Appl. Entomol. 2019, 143, 992–999. [Google Scholar] [CrossRef]
- Merckx, T.; Feber, R.E.; Dulieu, R.L.; Townsend, M.C.; Parsons, M.S.; Bourn, N.A.; Riordan, P.; MacDonald, D.W. Effect of field margins on moths depends on species mobility: Field-based evidence for landscape-scale conservation. Agric. Ecosyst. Environ. 2009, 129, 302–309. [Google Scholar] [CrossRef]
- Leinonen, R.; Söderman, G.; Itämies, J.; Rytkonen, S.; Rutanen, I. Intercalibration of different light-traps and bulbs used in moth monitoring in northern Europe. Entomol. Fenn. 1998, 9, 37–51. [Google Scholar] [CrossRef]
- Aarvik, L.; Bengtsson, B.Å.; Elven, H.; Ivinskis, P.; Jürivete, U.; Karsholt, O.; Mutanen, M.; Savenkov, N. Nordic-Baltic Checklist of Lepidoptera. Nor. J. Entomol. 2017, 1–237. [Google Scholar]
- SMHI. Ölands Klimat. 2022. Available online: https://www.smhi.se/kunskapsbanken/klimat/klimatet-i-sveriges-landskap/olands-klimat-SMHI (accessed on 1 February 2022).
- SMHI. Meteorologiska Observationer. 2021. Available online: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=all,stationid=66110 (accessed on 3 May 2021).
- Pöyry, J.; Leinonen, R.; Söderman, G.; Nieminen, M.; Heikkinen, R.K.; Carter, T.R. Climate-induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 2011, 20, 289–298. [Google Scholar] [CrossRef]
- Brooks, M.E.; Kristensen, K.; Van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Machler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical, R version 4.2.2; R Core Team, R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Hällfors, M.H.; Pöyry, J.; Heliölä, J.; Kohonen, I.; Kuussaari, M.; Leinonen, R.; Schmucki, R.; Sihvonen, P.; Saastamoinen, M. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 2021, 24, 1619–1632. [Google Scholar] [CrossRef]
- Fox, R.; Dennis, E.; Harrower, C.; Blumgart, D.; Bell, J.; Cook, P.; Davis, A.; Evans-Hill, L.; Haynes, F.; Hill, D. The State of Britain’s Larger Moths 2021. 2021. Available online: https://butterfly-conservation.org/sites/default/files/2021-03/StateofMothsReport2021.pdf (accessed on 1 November 2022).
- Thomsen, P.F.; Jørgensen, P.S.; Bruun, H.H.; Pedersen, J.; Riis-Nielsen, T.; Jonko, K.; Słowińska, I.; Rahbek, C.; Karsholt, O. Resource specialists lead local insect community turnover associated with temperature–analysis of an 18-year full-seasonal record of moths and beetles. J. Anim. Ecol. 2016, 85, 251–261. [Google Scholar] [CrossRef]
- Groenendijk, D.; Ellis, W. The state of the Dutch larger moth fauna. J. Insect Conserv. 2010, 15, 95–101. [Google Scholar] [CrossRef]
- Bowler, D.E.; Hof, C.; Haase, P.; Kröncke, I.; Schweiger, O.; Adrian, R.; Baert, L.; Bauer, H.-G.; Blick, T.; Brooker, R.W. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 2017, 1, 67. [Google Scholar] [CrossRef] [Green Version]
- Schimanke, S.; Joelsson, M.; Andersson, S.; Carlund, T.; Wern, L.; Hellström, S.; Kjellström, E. Observerad Klimatförändring i Sverige 1860–2021; Klimatologi, Nr 69; SMHI: Norrköping, Sweden, 2022. [Google Scholar]
- Chen, I.C.; Hill, J.K.; Ohlemueller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Altermatt, F. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. Biol. Sci. 2010, 277, 1281–1287. [Google Scholar] [CrossRef] [Green Version]
- Sunday, J.M.; Bates, A.E.; Dulvy, N.K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2012, 2, 686–690. [Google Scholar] [CrossRef]
- Betzholtz, P.E.; Franzén, M. Mobility is related to species traits in noctuid moths. Ecol. Entomol. 2011, 136, 369–376. [Google Scholar] [CrossRef]
- Forsman, A. Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc. Natl. Acad. Sci. USA 2014, 111, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Forsman, A.; Betzholtz, P.-E.; Franzén, M. Variable coloration is associated with dampened population fluctuations in noctuid moths. Proc. R. Soc. B. 2015, 282, 20142922. [Google Scholar] [CrossRef]
- Eide, W.; Ahrné, K.; Bjelke, U.; Nordström, S.; Ottosson, E.; Sandström, J.; Sundberg, S. Tillstånd och trender för arter och deras livsmiljöer: Rödlistade arter i Sverige 2020. In SLU Artdatabanken Rapporterar 24; SLU Artdatabanken: Uppsala, Sweden, 2020. [Google Scholar]
- Hydén, N. Nationalnyckeln till Sveriges flora och Fauna. Fjärilar. Ädelspinnare-Tofsspinnare: Lepidoptera: Lasiocampidae-Lymantriidae; Artdatabanken, SLU: Uppsala, Sweden, 2007. [Google Scholar]
- Ahola, M.; Silvonen, K. Larvae of Northern European Noctuidae; Apollo Booksellers: Vester Skerninge, Denmark, 2011; Volume 3. [Google Scholar]
- Caselli, A.; Petacchi, R. Climate Change and Major Pests of Mediterranean Olive Orchards: Are We Ready to Face the Global Heating? Insects 2021, 12, 802. [Google Scholar] [CrossRef]
- Jeffries, M.; Lawton, J. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 1984, 23, 269–286. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Menéndez, R.; Lewis, O.T.; Shaw, M.R.; Thomas, C.D. Escape from natural enemies during climate-driven range expansion: A case study. Ecol. Entomol. 2008, 33, 413–421. [Google Scholar] [CrossRef]
- Audusseau, H.; Ryrholm, N.; Stefanescu, C.; Tharel, S.; Jansson, C.; Champeaux, L.; Shaw, M.R.; Raper, C.; Lewis, O.T.; Janz, N. Rewiring of interactions in a changing environment: Nettle-feeding butterflies and their parasitoids. Oikos 2021, 130, 624–636. [Google Scholar] [CrossRef]
Predictor | Estimate | SE | p-Value |
---|---|---|---|
(Intercept) | 2.175 | 0.682 | 0.01 |
Recording year (t) | 0.035 | 0.006 | <0.001 |
Temperature during recording year (t, °C) | 0.048 | 0.03 | 0.112 |
Temperature during previous year (t − 1, °C) | 0.024 | 0.029 | 0.406 |
Predictor | Estimate | SE | p-Value |
---|---|---|---|
(Intercept) | −6.517 | 0.357 | <0.001 |
Recording year (t) | 0.136 | 0.002 | <0.001 |
Temperature during recording year (t, °C) | 0.146 | 0.007 | <0.001 |
Temperature during previous year (t − 1, °C) | 0.167 | 0.006 | <0.001 |
Predictor | Estimate | SE | p-Value |
---|---|---|---|
(Intercept) | −1.054 | 0.711 | 0.138 |
Years since colonisation | −2.574 | 0.799 | 0.003 |
Years since colonisation (squared) Temperature during recording year (t, °C) | −0.664 0.132 | 0.836 0.029 | 0.427 <0.001 |
Temperature during previous year (t − 1, °C) | 0.030 | 0.029 | 0.308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betzholtz, P.-E.; Forsman, A.; Franzén, M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects 2023, 14, 55. https://doi.org/10.3390/insects14010055
Betzholtz P-E, Forsman A, Franzén M. Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects. 2023; 14(1):55. https://doi.org/10.3390/insects14010055
Chicago/Turabian StyleBetzholtz, Per-Eric, Anders Forsman, and Markus Franzén. 2023. "Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment" Insects 14, no. 1: 55. https://doi.org/10.3390/insects14010055
APA StyleBetzholtz, P. -E., Forsman, A., & Franzén, M. (2023). Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects, 14(1), 55. https://doi.org/10.3390/insects14010055