Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mosquito Collection
2.2. Molecular Identification of Mosquitoes
2.3. Preparation of Mosquitoes for MALDI-TOF MS Analysis
2.3.1. MALDI-TOF MS Identification of Mosquitoes
2.3.2. MALDI-TOF MS Identification of Blood Meal Sources
2.4. MALDI-TOF MS Parameters
2.5. Spectral Analysis and Database Creation
2.6. Blind Tests to Identify Mosquitoes and Blood Meals
3. Results
3.1. Mosquito Collection
3.2. Molecular Identification of Mosquitoes and Blood Meals
3.3. MALDI-TOF MS Identification of Mosquitoes
3.4. MALDI-TOF MS Identification of Blood Meals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Becker, N. Mosquitoes and Their Control, 2nd ed.; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- World Health Organization. Vector-Borne Diseases. 2020. Available online: https://www.who.int/fr/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 26 September 2022).
- Tandina, F.; Doumbo, O.; Yaro, A.S.; Traoré, S.F.; Parola, P.; Robert, V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit. Vectors. 2018, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2021, Key Messages. December 2021. Available online: https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2021-global-briefing-kit-fre.pdf (accessed on 26 September 2022).
- Moncayo, A.C.; Fernandez, Z.; Ortiz, D.; Diallo, M.; Sall, A.; Hartman, S.; Davis, C.T.; Coffey, L.; Mathiot, C.C.; Tesh, R.B.; et al. Dengue Emergence and Adaptation to Peridomestic Mosquitoes. Emerg. Infect. Dis. 2004, 10, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Khetarpal, N.; Khanna, I. Dengue Fever: Causes, Complications, and Vaccine Strategies. J. Immunol. Res. 2016, 2016, 6803098. [Google Scholar] [CrossRef]
- Ndiaye, E.H.; Boukhary, A.O.M.S.; Diallo, M.; Diallo, D.; Labbo, R.; Boussès, P.; Le Goff, G.; Robert, V. Moustiques, distribution et richesse spécifique dans huit pays d’Afrique: Cap-Vert Mauritanie, Sénégal, Gambie, Mali, Burkina Faso, Niger et Tchad. Médecine Trop. Santé Int. Bull. 2021, 1, mtsibulletin.2021.109. [Google Scholar]
- Programme Nationale de Lutte contre le Paludisme. Bulletin epidemiologique Annuel 2019 du paludisme au Sénégal. 2020. Available online: https://pnlp.sn/wp-content/uploads/2020/11/Bulletin-Epidemiologique-ANNUEL-2019-du-Paludisme-au-SENEGAL-VFinale.pdf (accessed on 26 September 2022).
- Yssouf, A.; Almeras, L.; Raoult, D.; Parola, P. Emerging tools for identification of arthropod vectors. Future Microbiol. 2016, 11, 549–566. [Google Scholar] [CrossRef]
- Hervy, J.P.; Le Goff, G.; Geoffroy, B.; Hervé, J.P.; Manga, L.; Brunhes, J. The Anopheline Mosquitoes of the Afrotropical Region: An Identification and Training Software; ORSTOM: Paris, France, 1998; Available online: http://www.documentation.ird.fr/hor/fdi:010014161 (accessed on 26 September 2022).
- Robert, V.; Ndiaye, E.H.; Rahola, N.; Le Goff, G.; Boussès, P.; Diallo, D.; Le Goff, V.; Mariame, L.; Diallo, M. Clés Dichotomiques Illustrées D’identification des Femelles et des Larves de Moustiques (Diptera: Culicidae) du Burkina Faso, Cap-Vert, Gambie, Mali, Mauritanie, Niger, Sénégal et Tchad; IRD: Montpellier, France, 2022; 181p. [Google Scholar]
- Kent, R.J.; Deus, S.; Williams, M.; Savage, H.M. Development of a Multiplexed Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) Assay to Identify Common Members of the Subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala. Am. J. Trop. Med. Hyg. 2010, 83, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Ngo, K.A.; Kramer, L.D. Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J. Med. Entomol. 2003, 40, 215–222. [Google Scholar] [CrossRef]
- Higa, Y.; Toma, T.; Tsuda, Y.; Miyagi, I. A multiplex PCR-based molecular identification of five morphologically related, medically important subgenus Stegomyia mosquitoes from the genus Aedes (Diptera: Culicidae) found in the Ryukyu Archipelago, Japan. Jpn. J. Infect. Dis. 2010, 63, 312–316. [Google Scholar] [CrossRef]
- Tempelis, C.H. Host-Feeding Patterns of Mosquitoes, with a Review of Advances in Analysis of Blood Meals by Serology2. J. Med. Entomol. 1975, 11, 635–653. [Google Scholar] [CrossRef]
- Fyodorova, M.V.; Savage, H.M.; Lopatina, J.V.; Bulgakova, T.A.; Ivanitsky, A.V.; Platonova, O.V.; Platonov, A.E. Evaluation of Potential West Nile Virus Vectors in Volgograd Region, Russia, 2003 (Diptera: Culicidae): Species Composition, Bloodmeal Host Utilization, and Virus Infection Rates of Mosquitoes. J. Med. Entomol. 2006, 43, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de la Puente, J.; Ruiz, S.; Soriguer, R.; Figuerola, J. Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malar. J. 2013, 12, 109. [Google Scholar] [CrossRef] [PubMed]
- Seng, P.; Rolain, J.M.; Fournier, P.E.; La Scola, B.; Drancourt, M.; Raoult, D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol. 2010, 5, 1733–1754. [Google Scholar] [CrossRef] [PubMed]
- Niare, S.; Berenger, J.-M.; Dieme, C.; Doumbo, O.; Raoult, D.; Parola, P.; Almeras, L. Identification of blood meal sources in the main African malaria mosquito vector by MALDI-TOF MS. Malar. J. 2016, 15, 87. [Google Scholar] [CrossRef]
- Tandina, F.; Niaré, S.; Laroche, M.; Koné, A.K.; Diarra, A.Z.; Ongoiba, A.; Berenger, J.M.; Doumbo, O.K.; Raoult, D.; Parola, P. Using MALDI-TOF MS to identify mosquitoes collected in Mali and their blood meals. Parasitology 2018, 145, 1170–1182. [Google Scholar] [CrossRef]
- Diarra, A.Z.; Laroche, M.; Berger, F.; Parola, P. Use of MALDI-TOF MS for the Identification of Chad Mosquitoes and the Origin of Their Blood Meal. Am. J. Trop. Med. Hyg. 2019, 100, 47–53. [Google Scholar] [CrossRef]
- Sevestre, J.; Diarra, A.Z.; Laroche, M.; Almeras, L.; Parola, P. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: An emerging tool for studying the vectors of human infectious diseases. Future Microbiol. 2021, 16, 323–340. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Möhlmann, T.W.R.; Melsen, D.; Favia, G.; Wennergren, U.; Koenraadt, C.J.M. Latitudinal Diversity of Culex pipiens Biotypes and Hybrids in Farm, Peri-Urban, and Wetland Habitats in Europe. PLoS ONE. 2016, 11, e0166959. [Google Scholar] [CrossRef]
- Choumara, R.; Hamon, J.; Ricosse, J.; Bailly, H.; Adam, D. Le paludisme dans la zone de Bobo Dioulasso Haute-Volta; ORSTOM: Paris, France, 1959. [Google Scholar]
- Diagne, N.; Fontenille, D.; Konate, L.; Faye, O.; Lamizana, M.T.; Legros, F.; Molez, J.F.; Trape, J.F. Anopheles of Senegal. An annotated and illustrated list. Bull. Soc. Pathol. Exot. 1994, 87, 267–277. [Google Scholar]
- Edwards, F.W. Mosquitoes of the Ethiopian Region. III.-Culicine Adults and Pupae. Ann. Entomol. Soc. Am. 1942, 35, 475. [Google Scholar]
- Townzen, J.S.; Brower, A.V.Z.; Judd, D.D. Identification of mosquito bloodmeals using mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. Med. Vet. Entomol. 2008, 22, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Nebbak, A.; Willcox, A.C.; Bitam, I.; Raoult, D.; Parola, P.; Almeras, L. Standardization of sample homogenization for mosquito identification using an innovative proteomic tool based on protein profiling. Proteomics 2016, 16, 3148–3160. [Google Scholar] [CrossRef]
- Ngoy, S.; Diarra, A.Z.; Laudisoit, A.; Gembu, G.-C.; Verheyen, E.; Mubenga, O.; Mbalitini, S.G.; Baelo, P.; Laroche, M.; Parola, P. Using MALDI-TOF mass spectrometry to identify ticks collected on domestic and wild animals from the Democratic Republic of the Congo. Exp. Appl. Acarol. 2021, 84, 637–657. [Google Scholar] [CrossRef]
- Laroche, M.; Almeras, L.; Pecchi, E.; Bechah, Y.; Raoult, D.; Viola, A.; Parola, P. MALDI-TOF MS as an innovative tool for detection of Plasmodium parasites in Anopheles mosquitoes. Malar. J. 2017, 16, 5. [Google Scholar] [CrossRef]
- El Hamzaoui, B.; Laroche, M.; Almeras, L.; Bérenger, J.M.; Raoult, D.; Parola, P. Detection of Bartonella spp. in fleas by MALDI-TOF MS. PLoS Negl. Trop. Dis. 2018, 12, e0006189. [Google Scholar] [CrossRef] [PubMed]
- Yssouf, A.; Socolovschi, C.; Flaudrops, C.; Ndiath, M.O.; Sougoufara, S.; Dehecq, J.-S.; Lacour, G.; Berenger, J.-M.; Sokhna, C.S.; Raoult, D.; et al. Matrix-assisted laser desorption ionization--time of flight mass spectrometry: An emerging tool for the rapid identification of mosquito vectors. PLoS ONE. 2013, 8, e72380. [Google Scholar] [CrossRef]
- Diallo, M. Dynamique Comparée des Populations de Culicidae à Kédougou (zone soudanoguinéenne) et à Barkédji (zone de savane sahélienne): Conséquences dans la Transmission des Arbovirus. Fdi:010010415-Horizon. Available online: https://www.documentation.ird.fr/hor/fdi:010010415 (accessed on 18 September 2023).
- Dia, I.; Diallo, D.; Duchemin, J.B.; Ba, Y.; Konate, L.; Costantini, C.; Diallo, M. Comparisons of Human-Landing Catches and Odor-Baited Entry Traps for Sampling Malaria Vectors in Senegal. J. Med. Entomol. 2005, 42, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Konate, L.; Diop, A. Entomological profile of malaria in Senegal. Senegal Natl. Malar. Control. Program 2011, 39, 47. [Google Scholar]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasites Vectors 2012, 5, 69. [Google Scholar] [CrossRef]
- Fall, A.G.; Diaïté, A.; Lancelot, R.; Tran, A.; Soti, V.; Etter, E.; Konaté, L.; Faye, O.; Bouyer, J. Feeding behaviour of potential vectors of West Nile virus in Senegal. Parasites Vectors 2011, 4, 99. [Google Scholar] [CrossRef]
- Fall, G.; Loucoubar, C.; Diallo, M.; Sall, A.A.; Faye, O. Vector Competence of Culex neavei and Culex quinquefasciatus (Diptera: Culicidae) from Senegal for Lineages 1, 2, Koutango and a Putative New Lineage of West Nile Virus. Am. J. Trop. Med. Hyg. 2014, 90, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, E.H.; Fall, G.; Gaye, A.; Bob, N.S.; Talla, C.; Diagne, C.T.; Diallo, D.; Ba, Y.; Dia, I.; Kohl, A.; et al. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasit. Vectors 2016, 9, 94. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.; Ba, Y.; Dia, I.; Mathiot, C.; Sall, A.A.; Diallo, M. Aedes aegypti in Senegal: Genetic diversity and genetic structure of domestic and sylvatic populations. Am. J. Trop. Med. Hyg. 2008, 79, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Diagne, C.T.; Diallo, D.; Faye, O.; Ba, Y.; Faye, O.; Gaye, A.; Dia, I.; Weaver, S.C.; Sall, A.A.; Diallo, M. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect. Dis. 2015, 15, 492. [Google Scholar] [CrossRef]
- Diallo, D.; Diouf, B.; Gaye, A.; Ndiaye, E.H.; Sene, N.M.; Dia, I.; Diallo, M. Dengue vectors in Africa: A review. Heliyon. 2022, 8, e09459. [Google Scholar] [CrossRef]
- Diallo, M.; Nabeth, P.; Ba, K.; Sall, A.A.; Ba, Y.; Mondo, M.; Girault, L.; Abdalahi, M.O.; Mathiot, C. Mosquito vectors of the 1998-1999 outbreak of Rift Valley Fever and other arboviruses (Bagaza, Sanar, Wesselsbron and West Nile) in Mauritania and Senegal. Med. Vet-Entomol. 2005, 19, 119–126. [Google Scholar] [CrossRef]
- Ba, Y.; Sall, A.A.; Diallo, D.; Mondo, M.; Girault, L.; Dia, I.; Diallo, M. Re-Emergence of Rift Valley Fever Virus in Barkedji (Senegal, West Africa) in 2002–2003: Identification of New Vectors and Epidemiological Implications. J. Am. Mosq. Control. Assoc. 2012, 28, 170–178. [Google Scholar] [CrossRef]
- Carnevale, P.; Robert, V. Anopheles: Biology, Transmission of Plasmodium and Vectorcontrol. IRD Éditions. 2009. Available online: http://books.openedition.org/irdeditions/10374 (accessed on 26 September 2022).
- Tandina, F.; Niare, S.; Almeras, L.; Davoust, B.; Doumbo, O.K.; Raoult, D.; Parola, P.; Laroche, M. Identification of Mixed and Successive Blood Meals of Mosquitoes Using MALDI-TOF MS Protein Profiling. Parasitology 2020, 147, 329–339. [Google Scholar] [CrossRef]
Method of Collection | RMF | BG—SENTINEL | Total Specimens Collected RMF/BG- Sentinel | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collection Sites | Bandafassi | Boundoucoundi | Indar | Silling | Ngari | Dambakoye | Kédougou | Bandafassi | Dambakoye | Indar | Silling | Ngari | |
Anopheles gambiae | 6 | 18 | 17 | 12 | 21 | 127 | 6 | 201/6 | |||||
Anopheles rufipes | 1 | 1 | 1/1 | ||||||||||
Anopheles funestus | 1 | 4 | 3 | 3 | 11/- | ||||||||
Anopheles nili | 1 | -/1 | |||||||||||
Anopheles ziemanni | 1 | 2 | -/3 | ||||||||||
Mansonia uniformis | 3 | 9 | 12 | -/24 | |||||||||
Culex sp. | 1 | 5 | 3 | 136 | 6 | 33 | 72 | 122 | 13 | 9/382 | |||
Aedes sp. | 5 | -/5 | |||||||||||
Total | 9 | 22 | 17 | 20 | 21 | 133 | 151 | 6 | 42 | 73 | 136 | 14 | 222/422 |
Method of Collection | Sample Number | Morphological Identification | Molecular Identification | Percentage Identity (%) | Accession Number |
---|---|---|---|---|---|
Residual Morning Fauna | 157 | An. gambiae | An. gambiae | 99.23 | MG753747 |
55 | An. gambiae | An. gambiae | 99.61 | MT375222 | |
31 | An. gambiae | An. gambiae | 99.61 | MT375222 | |
60 | An. gambiae | An. gambiae | 99.61 | MG753701 | |
98 | An. gambiae | An. arabiensis | 99.81 | MK628484 | |
136 | An. gambiae | An. arabiensis | 99.81 | MK628484 | |
67 | An. funestus | An. funestus | 99.61 | MT375219 | |
257 | An. funestus | An. cf. rivulorum | 98.07 | MT375227 | |
15 (Abdomen) | Engorged An. gambiae | Homo sapiens | 99.75–99.83 | KM101695 | |
74 (Abdomen) | |||||
76 (Abdomen) | |||||
BG-Sentinel | 45 | Culex sp. | Culex nebulosus | 98.74–100 | |
163 | Culex sp. | ||||
186 | Culex sp. | ||||
230 | Culex sp. | ||||
235 | Culex sp. | ||||
238 | Culex sp. | ||||
285 | Culex sp. | ||||
286 | Culex sp. | ||||
291 | Culex sp. | ||||
305 | Culex sp. | ||||
318 | Culex sp. | ||||
324 | Culex sp. | ||||
340 | Culex sp. | ||||
346 | Culex sp. | ||||
232 | Culex sp. | Culex cinereus | 100 |
Mosquitoes Species Morphologically Identified | Number of Specimens Collected | Number of Specimens with Legs | Number of Spectra of Good Quality | Number of Spectra Added to Database | MALDI-TOF MS Identification | Log Score Value (Average) |
---|---|---|---|---|---|---|
An. gambiae | 207 | 175/207 (84.54%) | 83/175 | 6 | An. gambiae (64) | [1.71–2.46] (2.03) |
An. coluzzii (12) | [1.75–2.19] (1.89) | |||||
An. arabiensis (1) | 1.81 | |||||
An. rufipes | 2 | 1/2 (50%) | / | / | ||
An. funestus | 12 | 11/12 (91.66%) | 10/11 | 2 | An.funestus (7) | [1.71–1.93] (1.78) |
An. cf. rivulorum (1) | 1.99 | |||||
An. nili | 1 | 1/1 (100%) | / | / | ||
An. ziemanni | 3 | 3/3 (100%) | / | / | ||
M. uniformis | 24 | 20/24 (83.33%) | 3/20 | / | Lutzia tigripes (3) | [1.74–1.87] (1.77) |
Culex sp. | 391 | 368/391 (94.11%) | 231/368 | 15 | Culex nebulosus (211) | [1.70–2.36] (2.03) |
Culex quinquefasciatus (2) | [2.21–2.31] (2.26) | |||||
Culex duttoni (1) | 1.77 | |||||
Culex perfescus (1) | 1.95 | |||||
Culex tritaeniorhynchus (1) | 1.75 | |||||
Aedes sp. | 5 | 3/5 (60%) | 2/3 | / | Aedes aegypti (2) | [1.93–2] (1.97) |
Total | 645 | 582/645 (90.23%) | 329/582 | 23 |
Mosquito Species or Genus | Number of Specimens Collected | Number of Spectra of Good Quality | Number of Spectra Added in Database | Identification of Mosquito Blood Meal Sources by MALDI-TOF MS | Log Score Value (Average) |
---|---|---|---|---|---|
Engorged An. gambiae | 146 | 115/146 | 3 | Human (92) | [1.70–2.54] (2.02) |
Cow (4) | [1.70–1.89] (1.75) | ||||
Dog (2) | [1.76–1.87] (1.81) | ||||
Goat (1) | 2.04 | ||||
Sheep (1) | 1.85 | ||||
75% Human/25% Dog (2) | [2.10–2.11] (2.10) | ||||
75% Human/25% Sheep (10) | [1.93–2.31] (2.17) | ||||
Engorged An. funestus | 10 | 7/10 | / | Human (4) | [1.85–2.09] (2) |
Cow (2) | [1.86–2.01] (1.93) | ||||
Bat (1) | 1.77 | ||||
Engorged An. rufipes | 1 | 1/1 | / | Human (1) | 2.19 |
Total | 157 | 123/157 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fall, F.K.; Diarra, A.Z.; Bouganali, C.; Sokhna, C.; Parola, P. Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. Insects 2023, 14, 785. https://doi.org/10.3390/insects14100785
Fall FK, Diarra AZ, Bouganali C, Sokhna C, Parola P. Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. Insects. 2023; 14(10):785. https://doi.org/10.3390/insects14100785
Chicago/Turabian StyleFall, Fatou Kiné, Adama Zan Diarra, Charles Bouganali, Cheikh Sokhna, and Philippe Parola. 2023. "Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals" Insects 14, no. 10: 785. https://doi.org/10.3390/insects14100785
APA StyleFall, F. K., Diarra, A. Z., Bouganali, C., Sokhna, C., & Parola, P. (2023). Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. Insects, 14(10), 785. https://doi.org/10.3390/insects14100785