Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mosquito-Borne Diseases
3. Control Strategies for Mosquito-Borne Diseases
3.1. Chemical Control Strategies
3.1.1. Long-Lasting Insecticide-Treated Nets
3.1.2. Indoor Residual Spraying
3.1.3. Peridomestic Space Spraying
3.1.4. Mosquito Repellents
3.2. Biological Control
3.2.1. Genetic Modification
3.2.2. Fungi
3.2.3. Fish
3.2.4. Protozoans
3.2.5. Bacterial Agents
3.2.6. Insect Growth Regulators
3.2.7. Wolbachia spp.
3.2.8. Asaia spp.
3.2.9. Spinosyns
3.2.10. Bacterial-Based Feeding Deterrents and Repellents
3.3. Mechanical Control
3.3.1. Eave Tubes
3.3.2. Attractive Sugar Baits
3.4. Insecticide Resistance among Mosquitoes
4. Green Synthesized Plant-Based Metallic Nanoparticles as a Mosquito Control Strategy
4.1. Green Metallic Nanoparticles as Repellents
4.2. Green Metallic Nanoparticles as Ovicides
4.3. Green Metallic Nanoparticles with Larvicidal and Pupicidal Properties
4.4. Green Metallic Nanoparticles as Adulticides
4.5. Nanoparticles as Mosquito Longevity and Fecundity Reducers and Mosquito Oviposition Deterrents
4.6. Possible Mechanisms of Action of Mosquitocidal Green Metallic Nanoparticles
4.7. Non-Target Effects of Mosquitocidal Green Metallic Nanoparticles
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhimal, M.; Ahrens, B.; Kuch, U. Climate change and spatiotemporal distributions of vector-borne diseases in Nepal—A systematic synthesis of literature. PLoS ONE 2015, 10, e0129869. [Google Scholar] [CrossRef] [PubMed]
- Ramalho-Ortigao, M.; Gubler, D.J. Human Diseases Associated with Vectors (Arthropods in Disease Transmission); Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 30, pp. 1063–1069. [Google Scholar]
- Benelli, G.; Jeffries, C.L.; Walker, T. Biological control of mosquito vectors: Past, present, and future. Insects 2016, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Mehlhorn, H. Declining malaria, rising of dengue and Zika virus: Insights for mosquito vector control. Parasitol. Res. 2016, 115, 1747–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, S.K.; Elahi, A.; Gadugu, S.; Prasad, A.K. Zika virus outbreak: An overview of the experimental therapeutics and treatment. VirusDisease 2016, 27, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batool, K.; Alam, I.; Wu, S.; Liu, W.; Zhao, G.; Chen, M.; Wang, J.; Xu, J.; Huang, T.; Pan, X.; et al. Transcriptomic analysis of Aedes aegypti in response to mosquitocidal Bacillus thuringiensis LLP29 Toxin. Sci. Rep. 2018, 8, 12650. [Google Scholar] [CrossRef] [Green Version]
- Suganya, P.; Vaseeharan, B.; Vijayakumar, S.; Balan, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Biopolymer zein-coated gold nanoparticles: Synthesis, antibacterial potential, toxicity and histopathological effects against the Zika virus vector Aedes aegypti. J. Photochem. Photobiol. B Biol. 2017, 173, 404–411. [Google Scholar] [CrossRef]
- Magro, M.; Bramuzzo, S.; Baratella, D.; Ugolotti, J.; Zoppellaro, G.; Chemello, G.; Olivetto, I.; Ballarin, C.; Radaelli, G.; Arcaro, B.; et al. Self-assembly of chlorin-e6 on γ-Fe2O3 nanoparticles: Application for larvicidal activity against Aedes aegypti. J. Photochem. Photobiol. B Biol. 2019, 194, 21–31. [Google Scholar] [CrossRef]
- Duran, N.; Islan, G.A.; Duran, M.; Castro, G.R. Nanobiotechnology solutions against Aedes aegypti. SAE Int. J. Mater. Manuf. 2015, 9, 158–170. [Google Scholar]
- Benelli, G.; Pavela, R.; Iannarelli, R.; Petrelli, R.; Cappellacci, L.; Cianfaglione, K.; Afshar, F.; Nicoletti, A.; Canale, A.; Maggi, F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017, 96, 186–195. [Google Scholar] [CrossRef]
- Nicolini, A.M.; McCracken, K.E.; Yoon, J.Y. Future developments in biosensors for field-ready Zika virus diagnostics. J. Biol. Eng. 2017, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Sanfelice, V. Mosquito-borne disease and newborn health. Health Econ. 2022, 31, 73–93. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Bortel, W.V.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasit Vectors 2012, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovezan-Borges, A.C.; Valente-Neto, F.; Urbieta, G.L.; Laurence, S.G.W.; de Oliveira Roque, F. Global trends in research on the effects of climate change on Aedes aegypti: International collaboration has increased, but some critical countries lag behind. Parasit Vectors 2022, 15, 346. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, A.; Jain, A.; Davies, H.; Periera, L.; Maki, J.N.; Gomes, E.; Felgner, P.L.; Srivastava, S.; Pantakar, S.; Rathod, P.K.; et al. Hospital-derived antibody profiles of malaria patients in Southwest India. Malar. J. 2019, 18, 138. [Google Scholar] [CrossRef]
- Awasthi, G.; Das, A. Genetics of chloroquine-resistant malaria: A haplotypic view. Mem. Inst. Oswaldo Cruz. 2013, 108, 947–961. [Google Scholar] [CrossRef]
- WHO. World Malaria Report; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/malaria (accessed on 1 November 2022).
- Memvanga, P.B.; Nkanga, C.I. Liposomes for malaria management: The evolution from 1980 to 2020. Malar. J. 2021, 20, 327. [Google Scholar] [CrossRef]
- McDonald, E.; Mathis, S.; Martin, S.W.; Erin Staples, J.; Fischer, M.; Lindsey, N.P. Surveillance for West Nile virus disease—United States, 2009–2018. Am. J. Transplant. 2021, 21, 1959–1974. [Google Scholar] [CrossRef]
- Ahlers, L.R.H.; Goodman, A.G. The immune responses of the animal hosts of West Nile virus: A comparison of insects, birds, and mammals. Front. Cell. Infect. Microbiol. 2018, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile virus in Africa: An underestimated threat. PLoS Negl. Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef]
- Kain, M.P.; Bolker, B.M. Predicting West Nile virus transmission in North American bird communities using phylogenetic mixed effects models and eBird citizen science data. Parasit Vectors 2019, 12, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.K.; Bhattacharjee, S. Dengue virus: Epidemiology, biology, and disease aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Clyde, K.; Kyle, J.L.; Harris, E. Recent advances in Deciphering Viral and host determinants of Dengue Virus replication and pathogenesis. J. Virol. 2006, 80, 11418–11431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigot, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanawa, J.D.; Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Coffeng, L.E.; Brady, O.J.; Hay, S.I.; Bedi, N.; Bensenor, I.M.; Castañeda-Orjuela, C.A.; et al. The global burden of dengue: An analysis from the global burden of disease study 2013. Lancet Infect. Dis. 2016, 16, 712–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mboussou, F.; Ndumbi, P.; Ngom, R.; Kassamali, Z.; Ogundiran, O.; Beek, J.; Williams, G.S.; Okot, C.; Hamblion, E.L.; Impouma, B.; et al. Infectious disease outbreaks in the African region: Overview of events reported to the World Health Organization in 2018. Epidemiol. Infect. 2019, 147, e307. [Google Scholar] [CrossRef] [Green Version]
- Kamgang, B.; Vazeille, M.; Yougang, A.P.; Tedjou, A.N.; Wilson-Bahun, T.A.; Mousson, L.; Wondji, C.S.; Failloux, A.B. Potential of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to transmit yellow fever virus in urban areas in Central Africa. Emerg. Microbes Infect. 2019, 8, 1636–1641. [Google Scholar] [CrossRef] [Green Version]
- Valentine, M.J.; Murdock, C.C.; Kelly, P.J. Sylvatic cycles of arboviruses in non-human primates. Parasit Vectors 2019, 12, 463. [Google Scholar] [CrossRef]
- Cavalcante, K.R.L.J.; Tauil, P.L. Risk of re-emergence of urban yellow fever in Brazil. Epidemiol. Serv. Saude Brasília 2017, 26, 617–620. [Google Scholar] [CrossRef]
- Couto-Lima, D.; Madec, Y.; Bersot, M.I.; Campos, S.S.; Motta, M.D.A.; Dos Santos, F.B.; Vazeille, M.; Vasconcelos, P.; Lourenço-de-Oliveira, R.; Failloux, A.B. Potential risk of re-emergence of urban transmission of Yellow Fever virus in Brazil facilitated by competent Aedes populations. Sci. Rep. 2017, 7, 4848. [Google Scholar] [CrossRef] [Green Version]
- Câmara, F.P.; Gomes, A.L.B.B.; Carvalho, L.M.F.; Castello, L.G.V. Dynamic behavior of sylvatic yellow fever in Brazil (1954–2008). Rev. Soc. Bras. Med. Trop. 2011, 44, 297–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. A Global Strategy to Eliminate Yellow Fever Epidemics 2017–2026; WHO: Geneva, Switzerland, 2018; Available online: www.who.int/csr/disease/yellowfev/eye-strategy/en/ (accessed on 1 November 2022).
- Ross, B.Y.R.W. The Newala Epidemic: The virus: Isolation, pathogenic properties and relationship to the epidemic. Epidemiol. Infect. 1956, 54, 177–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, L.A.; Dermody, T.S. Chikungunya virus: Epidemiology, replication, disease mechanisms, and prospective intervention strategies. J. Clin. Investig. 2017, 127, 737–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, V.; Pépin, M.; Plée, L.; Lancelot, R. Rift valley fever—A threat for Europe? Eurosurveillance 2010, 15, 18–28. [Google Scholar] [CrossRef]
- Ahmed, A.; Ali, Y.; Elduma, A.; Eldigail, M.H.; Mhmoud, R.A.; Mohamed, N.S.; Ksiazek, T.G.; Dietrich, I.; Weaver, C.S. Unique outbreak of Rift valley fever in Sudan, 2019. Emerg. Infect. Dis. 2020, 26, 3030–3033. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, E.H.; Fall, G.; Gaye, A.; Bob, N.S.; Talla, C.; Diagne, C.T.; Diallo, D.; Ba, Y.; Dia, I.; Kohl, A.; et al. Vector competence of Aedes vexans (Meigen), Culex poicilipes (Theobald) and Cx. quinquefasciatus Say from Senegal for West and East African lineages of Rift Valley fever virus. Parasit Vectors 2016, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Métras, R.; Cavalerie, L.; Dommergues, L.; Mérot, P.; Edmunds, W.J.; Keeling, M.J.; Cêtre-Sossah, C.; Cardinale, C. The epidemiology of Rift Valley Fever in Mayotte: Insights and perspectives from 11 Years of Data. PLoS Negl. Trop. Dis. 2016, 10, e0004783. [Google Scholar] [CrossRef] [Green Version]
- Bird, B.H.; Ksiazek, T.G.; Nichol, S.T.; MacLachlan, N.J. Rift Valley fever virus. J. Am. Vet. Med. Assoc. 2009, 234, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Al-Afaleq, A.I.; Hussein, M.F. The status of rift valley fever in animals in Saudi Arabia: A mini review. Vector-Borne Zoonotic Dis. 2011, 11, 1513–1520. [Google Scholar] [CrossRef]
- Abushoufa, F.; Arikan, A.; Sanlidag, T.; Guvenir, M.; Guler, E.; Suer, K. Absence of Zika Virus seroprevalence among blood donors in Northern Cyprus. J. Infect. Dev. Ctries. 2021, 15, 1032–1034. [Google Scholar] [CrossRef]
- Gatherer, D.; Kohl, A. Zika virus: A previously slow pandemic spreads rapidly through the Americas. J. Gen. Virol. 2016, 97, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Ezinwa, N. Mosquito-borne diseases. Prim. Care Clin. Off. Pract. 2018, 45, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Plourde, A.R.; Bloch, E.M. A literature review of zika virus. Emerg. Infect. Dis. 2016, 22, 1185–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika Virus in Gabon (Central Africa)—2007: A new threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [Green Version]
- Brent, C.; Dunn, A.; Savage, H.; Faraji, A.; Rubin, M.; Risk, I.; Garcia, W.; Cortese, M.; Novosad, S.; Krow-Lucal, E.R.; et al. Preliminary findings from an investigation of Zika Virus infection in a oatient with no known risk factors. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 981–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourens, G.B.; Ferrell, D.K. Lymphatic Filariasis. Nurs. Clin. N. Am. 2019, 54, 181–192. [Google Scholar] [CrossRef]
- Cano, J.; Rebollo, M.P.; Golding, N.; Pullan, R.L.; Crellen, T.; Soler, A.; Kelly-Hope, L.A.; Lindsay, S.W.; Hay, S.I.; Bockarie, M.J.; et al. The global distribution and transmission limits of Lymphatic filariasis: Past and present. Parasit Vectors 2014, 7, 466. [Google Scholar] [CrossRef]
- Bhunu, C.P.; Mushayabasa, S. Transmission dynamics of Lymphatic Filariasis: A mathematical approach. Int. Sch. Res. Not. 2012, 2012, 930130. [Google Scholar] [CrossRef] [Green Version]
- Turner, H.C.; Bettis, A.A.; Chu, B.K.; McFarland, D.A.; Hooper, P.J.; Mante, S.D.; Fitzpatrick, C.; Bradley, M.H. Investment success in public health: An analysis of the cost-effectiveness and cost-benefit of the global programme to eliminate Lymphatic Filariasis. Clin. Infect. Dis. 2017, 64, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Gritsun, T.S.; Lashkevich, V.A.; Goulda, E.A. Tick-borne encephalitis. Med. Ther. Pediatr. 2003, 18, 145–151. [Google Scholar] [CrossRef]
- Bogovic, P. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases 2015, 3, 430. [Google Scholar] [CrossRef] [PubMed]
- Okumu, F.; Moore, S. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: A review of possible outcomes and an outline of suggestions for the future. Malar. J. 2011, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Tungu, P.K.; Michael, E.; Sudi, W.; Kisinza, W.W.; Rowland, M. Efficacy of interceptor® G2, a long-lasting insecticide mixture net treated with chlorfenapyr and alpha-cypermethrin against Anopheles funestus: Experimental hut trials in north-eastern Tanzania. Malar. J. 2021, 20, 180. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.; Richardson, M.; Lengeler, C. Insecticide-treated nets for preventing malaria. Cochrane Database Syst. Rev. 2018, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Kim, D. A Meta-regression analysis of the effectiveness of mosquito nets for malaria control: The value of Long-Lasting Insecticide Nets. Int. J. Environ. Res. Public Health 2018, 15, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arroz, J.A.H.; Candrinho, B.; Mendis, C.; Varela, P.; Pinto, J.; Martins, R.O. Effectiveness of a new long-Lasting insecticidal nets delivery model in two rural districts of Mozambique: A before–after study. Malar. J. 2018, 17, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hounkonnou, C.; Djènontin, A.; Egbinola, S.; Houngbegnon, P.; Bouraima, A. Impact of the use and efficacy of long-lasting insecticidal net on malaria infection during the first trimester of pregnancy—A pre-conceptional cohort study in southern. BMC Public Health 2018, 18, 683. [Google Scholar] [CrossRef] [Green Version]
- Trape, J.; Tall, A.; Diagne, N.; Ndiath, O.; Ly, A.B.; Faye, J.; Dieye-Ba, F.; Roucher, C.; Bouganali, C.; Badiane, C.; et al. Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: A longitudinal study. Lancet Infect Dis. 2011, 11, 925–932. [Google Scholar] [CrossRef]
- Sougoufara, S.; Thiaw, O.; Harry, M.; Bouganali, C. The impact of periodic distribution campaigns of long-lasting insecticidal-treated bed nets on malaria vector dynamics and human exposure in Dielmo, Senegal. Am. J. Trop. Med. Hyg. 2018, 98, 1343–1352. [Google Scholar] [CrossRef] [Green Version]
- Soleimani-Ahmadi, M.; Vatandoost, H.; Shaeghi, M.; Raeisi, A.; Abedi, F.; Eshraghian, M.R. Field evaluation of permethrin long-lasting insecticide treated nets (Olyset ®) for malaria control in an endemic area, Southeast of Iran. Acta Trop. 2012, 123, 146–153. [Google Scholar] [CrossRef]
- Wilke, A.B.B.; Medeiros-Sousa, A.R.; Ceretti-Junior, W.; Marrelli, M.T. Mosquito populations dynamics associated with climate variations. Acta Trop. 2017, 166, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Rowland, M.; Webster, J.; Saleh, P.; Chandramohan, D.; Freeman, T.; Pearcy, B.; Durrani, N.; Rab, A.; Mohammed, N. Prevention of malaria in Afghanistan through social marketing of insecticide-treated nets: Evaluation of coverage and effectiveness by cross-sectional surveys and passive surveillance. Trop. Med. Int. Health 2002, 7, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girond, F.; Madec, Y.; Kesteman, T.; Randrianarivelojosia, M.; Randremanana, R.; Randriamampionona, L.; Randrianasolo, L.; Ratsitorahina, M.; Herbreteau, V.; Hedje, J.; et al. Evaluating effectiveness of mass and continuous long-lasting insecticidal net distributions over time in Madagascar: A sentinel surveillance based epidemiological study. EClinicalMedicine 2018, 1, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manrique-Saide, P.; Dean, N.E.; Halloran, M.E.; Longini, I.M.; Collins, M.H.; Waller, L.A.; Gomez-Dantes, H.; Lenhart, A.; Hladish, T.J.; Che-Mendoza, A.; et al. The TIRS trial: Protocol for a cluster randomized controlled trial assessing the efficacy of preventive targeted indoor residual spraying to reduce Aedes-borne viral illnesses in Merida, Mexico. Trials 2020, 21, 839. [Google Scholar] [CrossRef]
- Hladish, T.J.; Pearson, C.A.B.; Patricia Rojas, D.; Gomez-Dantes, H.; Halloran, M.E.; Vazquez-Prokopec, G.M.; Longini, I.M. Forecasting the effectiveness of indoor residual spraying for reducing dengue burden. PLoS Negl. Trop. Dis. 2018, 12, e0006570. [Google Scholar] [CrossRef] [PubMed]
- Nathan, M.B.; Gigliol, M.E.C. Eradication of Aedes aegypti on Cayman Brac and little Cayman, West Indies, with Abate (Temephos) in 1970–197l. Bull. Pan. Am. Health Organ. 1982, 16, 28–39. [Google Scholar]
- Dunbar, M.W.; Correa-Morales, F.; Dzul-Manzanilla, F.; Medina-Barreiro, A.; Bibiano-Marín, W.; Morales-Ríos, E.; Vadillo-Sanchez, J.; Loppez-Monroy, B.; Ritchie, S.A.; Lenhart, A.; et al. Efficacy of novel indoor residual spraying methods targeting pyrethroid-resistant Aedes aegypti within experimental houses. PLoS Negl. Trop. Dis. 2019, 13, e0007203. [Google Scholar] [CrossRef]
- Wubishet, M.K.; Berhe, G.; Adissu, A.; Tafa, M.S. Effectiveness of long-lasting insecticidal nets in prevention of malaria among individuals visiting health centres in Ziway-Dugda District, Ethiopia: Matched case–control study. Malar. J. 2021, 20, 301. [Google Scholar] [CrossRef]
- Dahmana, H.; Mediannikov, O. Mosquito-borne diseases emergence/resurgence and how to effectively control it biologically. Pathogens 2020, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Oxborough, R.M.; Kitau, J.; Jones, R.; Feston, E.; Matowo, J.; Mosha, F.W.; Rowland, M.W. Long-lasting control of Anopheles arabiensis by a single spray application of micro-encapsulated pirimiphos-methyl (Actellic® 300 CS). Malar. J. 2014, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Esu, E.; Lenhart, A.; Smith, L.; Horstick, O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; Systematic review. Trop. Med. Int. Health 2010, 15, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Boyce, W.M.; Lawler, S.P.; Schultz, J.M.; McCauley, S.J.; Kimsey, L.S.; Niemela, M.K.; Nielsen, C.F.; Reisen, W.K. Nontarget effects of the mosquito adulticide pyrethrin applied aerially during a West Nile virus outbreak in an urban California environment. J. Am. Mosq. Control Assoc. 2007, 23, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, D.; Wijayapala, S.; Vankar, P.S. Effective mosquito repellent from plant based formulation. Int. J. Mosq. Res. 2018, 5, 19–24. [Google Scholar]
- Naseem, S.; Malik, M.F.; Munir, T. Mosquito management: A review. J. Entomol. Zool. Stud. 2016, 4, 73–79. [Google Scholar]
- Balaji, A.P.B.; Ashu, A.; Manigandan, S.; Sastry, T.P.; Mukherjee, A.; Chandrasekaran, N. Polymeric nanoencapsulation of insect repellent: Evaluation of its bioefficacy on Culex quinquefasciatus mosquito population and effective impregnation onto cotton fabrics for insect repellent clothing polymeric nanoencapsulation of insect repellent. J. King Saud Univ.—Sci. 2017, 29, 517–527. [Google Scholar] [CrossRef]
- Okoro, O.J.; Nnamonu, E.I.; Ezewudo, B.I.; Okoye, I.C. Application of genetically modified mosquitoes (Anopheles Species) in the control of malaria transmission. Asian J. Biotechnol. Genet Eng. 2018, 1, 1–16. [Google Scholar]
- Wilke, A.B.B.; Marrelli, M.T. Genetic control of mosquitoes: Population suppression strategies. Rev. Inst. Med. Trop. 2012, 54, 287–292. [Google Scholar] [CrossRef]
- Yamada, H.; Kraupa, C.; Lienhard, C.; Parker, A.G.; Maiga, H.; de Oliveira Carvalho, D.; Zheng, M.; Wallner, T.; Bouyer, J. Mosquito mass rearing: Who’s eating the eggs? Parasite 2019, 26, 75. [Google Scholar] [CrossRef]
- Scholte, E.J.; Knols, B.G.J.; Samson, R.A.; Takken, W. Entomopathogenic fungi for mosquito control: A review. J. Insect Sci. 2004, 4, 19. [Google Scholar] [CrossRef]
- Silva, L.E.I.; Paula, A.R.; Ribeiro, A.; Butt, T.M.; Silva, C.P.; Samuels, R.I. A new method of deploying entomopathogenic fungi to control adult Aedes aegypti mosquitoes. J. Appl. Entomol. 2018, 142, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Woo, R.M.; Choi, C.J.; Shin, T.Y.; Gwak, W.S.; Woo, S.D. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity. AMB Express. 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Lovett, B.; Bilgo, E.; Diabateb, A.; Leger, R.S. A review of progress toward field application of transgenic mosquitocidal entomopathogenic fungi. Pest Manag. Sci. 2019, 75, 2316–2324. [Google Scholar] [CrossRef] [PubMed]
- Noskov, Y.A.; Polenogova, O.V.; Yaroslavtseva, O.N.; Belevich, O.E.; Yurchenko, Y.A.; Chertkova, E.A.; Kryukova, N.A.; Kryukov, V.; Glupov, V.V. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae. PeerJ 2019, 7, e7931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louca, V.; Lucas, M.C.; Green, C.; Majambere, S.; Fillinger, U.; Lindsay, S.W. Role of fish as predators of mosquito larvae on the floodplain of the Gambia River. J. Med. Entomol. 2009, 46, 546–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahman, L.K.; Chandra, R. Biological Control of Culex quinquefasciatus Say (Diptera: Culicidae) Larvae. J. Biol. Control 2016, 30, 25–28. [Google Scholar] [CrossRef]
- Sareein, N.; Phalaraksh, C.; Rahong, P.; Techakijvej, C.; Seok, S.; Bae, Y.J. Relationships between predatory aquatic insects and mosquito larvae in residential areas in northern Thailand. J. Vector Ecol. 2019, 44, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Früh, L.; Kampen, H.; Schaub, G.A.; Werner, D. Predation on the invasive mosquito Aedes japonicus (Diptera: Culicidae) by native copepod species in Germany. J. Vector Ecol. 2019, 44, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Digma, J.R.; Sumalde, A.C.; Salibay, C.C. (Diptera: Culicidae) on three mosquito vectors of arboviruses in the Philippines. Biol. Control 2019, 137, 104009. [Google Scholar] [CrossRef]
- Schiller, A.; Allen, M.; Coffey, J.; Fike, A.; Carballo, F. Updated methods for the production of Toxorhynchites rutilus septentrionalis (Diptera, Culicidae) for use as biocontrol agent against container breeding pest mosquitoes in Harris County, Texas. J. Insect Sci. 2019, 19, 8. [Google Scholar] [CrossRef] [Green Version]
- Baré, J.; Sabbe, K.; Van Wichelen, J.; Van Gremberghe, I.; D’Hondt, S.; Houf, K. Diversity and habitat specificity of free-living protozoa in commercial poultry houses. Appl. Environ. Microbiol. 2009, 75, 1417–1426. [Google Scholar] [CrossRef] [Green Version]
- Das, B.P. Chilodonella uncinata—A protozoa pathogenic to mosquito larvae. Curr. Sci. 2001, 2, 483–489. [Google Scholar]
- Dhanasekaran, D.; Thangaraj, R. Microbial secondary metabolites are an alternative approach against insect vector to prevent zoonotic diseases. Asian Pac. J. Trop. Dis. 2014, 4, 253–261. [Google Scholar] [CrossRef]
- Valtierra-De-Luis, D.; Villanueva, M.; Berry, C.; Caballero, P. Potential for Bacillus thuringiensis and other bacterial toxins as biological control agents to combat Dipteran Pests of medical and agronomic importance. Toxins 2020, 12, 773. [Google Scholar] [CrossRef]
- Derua, Y.A.; Kahindi, S.C.; Mosha, F.W.; Kweka, E.J.; Atieli, H.E.; Wang, X.; Zhou, G.; Lee, M.; Githeko, A.K.; Yan, G. Microbial larvicides for mosquito control: Impact of long-lasting formulations of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on non-target organisms in western Kenya highlands. Ecol. Evol. 2018, 8, 7563–7573. [Google Scholar] [CrossRef] [Green Version]
- Saliha, B.; Wafa, H.; Laid, O.M. Effect of Bacillus thuringiensis var krustaki on the mortality and development of Culex pipiens (Diptera; Cullicidae). Int. J. Mosq. Res. 2017, 4, 20–23. [Google Scholar]
- Pener, M.P.; Dhadialla, T.S. An Overview of insect growth disruptors; Applied Aspects. Adv. Insect Phys. 2012, 43, 161–162. [Google Scholar]
- Orlova, M.V.; Smirnova, T.A.; Ganushkina, L.A.; Yacubovich, V.Y.; Azizbekyan, R.R. Insecticidal activity of Bacillus laterosporus. Appl. Environ. Microbiol. 1998, 64, 2723–2725. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.M.A.; Razdan, R.K.; Sreehari, U. Laboratory and field evaluation of Hilmilin against mosquitoes. J. Am. Mosq. Control Assoc. 2005, 21, 432–436. [Google Scholar] [CrossRef]
- Dennehy, T.J.; Degain, B.A.; Harpold, V.S.; Zaborac, M.; Morin, S.; Fabrick, J.A.; Nichols, R.L.; Brown, J.K.; Byrne, F.J.; Li, X. Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World. J. Econ. Entomol. 2010, 103, 2174–2186. [Google Scholar] [CrossRef]
- Manoj, R.R.S.; Latrofa, M.S.; Epis, S.; Otranto, D. Wolbachia: Endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021, 14, 245. [Google Scholar] [CrossRef]
- Hadji, E.; Niang, A.; Bassene, H.; Fenollar, F.; Mediannikov, O. Biological control of mosquito-borne diseases: The potential of Wolbachia-based interventions in an IVM framework. J. Trop. Med. 2018, 2018, 1470459. [Google Scholar]
- Zug, R.; Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 2012, 7, e38544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunbiyi, T.S.; Eromon, P.; Oluniyi, P.; Ayoade, F.; Oloche, O.; Oguzie, J.U.; Folarin, O.; Haappi, C.; Komolafe, I. First report of Wolbachia from field populations of Culex mosquitoes in South-Western Nigeria. Afr. Zool. 2019, 54, 181–185. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, X.; Xi, Z.; Bourtzis, K.; Gilles, J.R.L. Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS ONE 2015, 10, e0121126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubert, D.A.; Walker, T.; Carrington, L.B.; De Bruyne, J.T.; Kien, D.H.; Hoang, N.L.T.; Chau, N.V.; Iturbe-Ormaetxe, I.; Simmons, C.P.; O’Neill, S.L. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog. 2016, 12, e1005434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, C.; Rocha, M.; Dias, F.; Mansur, S.B.; Caragata, E.P.; Moreira, L. Wolbachia blocks currently circulating Zika Virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe 2016, 19, 771–774. [Google Scholar] [CrossRef] [Green Version]
- Favia, G.; Ricci, I.; Marzorati, M.; Negri, I.; Alma, A.; Sacchi, L.; Bandi, C.; Daffonchio, D. Bacteria of the Genus Asaia: A potential paratransgenic weapon against malaria. Adv. Exp. Med. Biol. 2008, 627, 49–59. [Google Scholar] [PubMed]
- Favia, G.; Ricci, I.; Damiani, C.; Raddadi, N.; Crotti, E.; Marzorati, M.; Rizzi, A.; Urso, R.; Brusetti, L.; Borin, S.; et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 2007, 104, 9047–9905. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, A.; Damiani, C.; Mancini, M.V.; Valzano, M.; Ramirez, J.L.; Favia, G. Asaia activates immune genes in mosquito eliciting an Anti-Plasmodium response: Implications in malaria control. Front. Genet. 2019, 10, 8361. [Google Scholar] [CrossRef] [Green Version]
- Mitraka, E.; Stathopoulos, S.; Siden-Kiamos, I.; Christophides, G.K.; Louis, C. Asaia accelerates larval development of Anopheles gambiae. Pathog. Glob. Health 2013, 107, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Bongio, N.J.; Lampe, D.J. Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. Bacteria using a novel native secretion signal. PLoS ONE 2015, 10, e0143541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Jacobs-Lorena, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 2013, 31, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Shane, J.L.; Grogan, C.L.; Cwalina, C.; Lampe, D.J. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat. Commun. 2018, 9, 4127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rami, A.; Raz, A.; Zakeri, S.; Dinparast, N. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: Steps toward applying paratransgenic tools against malaria. Parasit Vectors 2018, 11, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertlein, M.B.; Mavrotas, C.; Jousseaume, C.; Lysandrou, M.; Thompson, G.D.; Jany, W.; Ritchie, S.A. A review of spinosad as a natural product for larval mosquito control. J. Am. Mosq. Control Assoc. 2010, 26, 67–87. [Google Scholar] [CrossRef]
- Mertz, F.P.R.; Yao, R.C. Saccharopolyspora spinosa sp. nov. isolated from soil collected in a sugar mill rum still. Int. J. Syst. Bacteriol. 1990, 40, 34–39. [Google Scholar] [CrossRef]
- Marina, C.F.; Bond, J.G.; Muñoz, J.; Valle, J.; Chirino, N.; Williams, T. Spinosad: A biorational mosquito larvicide for use in car tires in southern Mexico. Parasit Vectors 2012, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Van Roey, K.; Sokny, M.; Denis, L.; Van den Broeck, N.; Heng, S.; Siv, S.; Sluydts, V.; Sochantha, T.; Coosemans, M.; Durnez, L. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses. PLoS Negl. Trop. Dis. 2014, 8, e3326. [Google Scholar] [CrossRef]
- Dormont, L.; Mulatier, M.; Carrasco, D.; Cohuet, A. Mosquito Attractants. J. Chem. Ecol. 2021, 47, 351–393. [Google Scholar] [CrossRef]
- Sternberg, E.D.; Ng’Habi, K.R.; Lyimo, I.N.; Kessy, S.T.; Farenhorst, M.; Thomas, M.B.; Knols, B.G.; Mnyone, L.L. Eave tubes for malaria control in Africa: Initial development and semi-field evaluations in Tanzania. Malar. J. 2016, 15, 447. [Google Scholar] [CrossRef] [Green Version]
- Wanzirah, H.; Tusting, L.S.; Arinaitwe, E.; Katureebe, A.; Maxwell, K.; Rek, J.; Bottomley, C.; Staedke, S.G.; Kamya, M.; Dorsey, G.; et al. Mind the gap: House structure and the risk of malaria in Uganda. PLoS ONE 2015, 10, e0117396. [Google Scholar] [CrossRef] [Green Version]
- Lwetoijera, D.W.; Kiware, S.S.; Mageni, Z.D.; Dongus, S.; Harris, C.; Devine, G.J.; Majambere, S. A need for better housing to further reduce indoor malaria transmission in areas with high bed net coverage. Parasit Vectors 2013, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Tenywa, F.C.; Nelson, H.; Kambagha, A.; Ashura, A.; Bakari, I.; Mruah, D.; Simba, A.; Bedford, A. Attractive toxic sugar baits for controlling mosquitoes: A qualitative study in Bagamoyo, Tanzania. Malar. J. 2018, 17, 22. [Google Scholar]
- Müller, G.C.; Beier, J.C.; Traore, S.F.; Toure, M.B.; Traore, M.M.; Bah, S.; Doumbia, S.; Schlein, Y. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods. Malar. J. 2010, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Allan, S.A. Susceptibility of adult mosquitoes to insecticides in aqueous sucrose baits. J. Vector Ecol. 2011, 36, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G. Studies on insecticide resistance in Anopheline mosquitos. Bull. World Health Organ. 1958, 18, 579–621. [Google Scholar] [PubMed]
- Tantely, M.L.; Tortosa, P.; Alout, H.; Berticat, C.; Berthomieu, A.; Rutee, A.; Dehecq, J.S.; Makoundou, P.; Labbé, P.; Pasteur, N.; et al. Insecticide resistance in Culex pipiens and Aedes albopictus mosquitoes from La Réunion Island. Insect Biochem. Mol. Biol. 2010, 40, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Sumarnrote, A.; Overgaard, H.J.; Marasri, N.; Fustec, B.; Thanispong, K.; Chareonviriyaphap, T.; Corbel, V. Status of insecticide resistance in Anopheles mosquitoes in Ubon Ratchathani province, Northeastern Thailand. Malar. J. 2017, 16, 299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadouléton, A.; Badirou, K.; Agbanrin, R.; Jöst, H.; Attolou, R.; Srinivasan, R.; Padonou, G.; Akogbéto, M. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasites Vectors 2015, 8, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbel, V.; N’Guessan, R.; Brengues, C.; Chandre, F.; Djogbenou, L.; Martin, T.; Akogbéto, M.; Hougard, J.M.; Rowland, M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 2007, 101, 207–216. [Google Scholar] [CrossRef]
- Norris, L.C.; Norris, D.E. Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia. J. Vector Ecol. 2011, 36, 411–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owuor, K.O.; Machani, M.G.; Mukabana, W.R.; Munga, S.O.; Yan, G.; Ochomo, E.; Afrane, Y.A. Insecticide resistance status of indoor and outdoor resting malaria vectors in a highland and lowland site in Western Kenya. PLoS ONE 2021, 16, e0240771. [Google Scholar] [CrossRef] [PubMed]
- Mahyoub, J.A.; Aziz, A.T.; Panneerselvam, C.; Murugan, K.; Roni, M.; Trivedi, S.; Nicoletti, M.; Hawas, U.V.; Shaher, F.M.; Bamakhrama, M.A.; et al. Seagrasses as Sources of Mosquito Nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in Dengue and Zika Virus vector Aedes aegypti. J. Clust. Sci. 2017, 28, 565–580. [Google Scholar] [CrossRef]
- Maurya, P.; Sharma, P.; Mohan, L.; Verma, M.M.; Srivastava, C.N. Larvicidal efficacy of Ocimum basilicum extracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pac. J. Trop. Dis. 2012, 2, 110–116. [Google Scholar] [CrossRef]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Plant extracts as potential mosquito larvicides. Indian J. Med. Res. 2012, 135, 581–598. [Google Scholar] [PubMed]
- Pavela, R.; Maggi, F.; Iannarelli, R.; Benelli, G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop. 2019, 193, 236–271. [Google Scholar] [CrossRef]
- Piplani, M.; Bhagwat, D.P.; Singhvi, G.; Sankaranarayanan, M.; Balana-Fouce, R.; Vats, T.; Chander, S. Plant-based larvicidal agents: An overview from 2000 to 2018. Exp. Parasitol. 2019, 199, 92–103. [Google Scholar] [CrossRef]
- Sharma, P.; Mohan, L.; Srivastava, C.N. Phytoextract-induced developmental deformities in malaria vector. Bioresour. Technol. 2006, 97, 1599–1604. [Google Scholar] [CrossRef]
- Rahuman, A.A.; Gopalakrishnan, G.; Venkatesan, P.; Geetha, K. Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2008, 102, 867–873. [Google Scholar] [CrossRef]
- Maurya, P.; Sharma, P.; Mohan, L.; Batabyal, L.; Srivastava, C.N. Evaluation of the toxicity of different phytoextracts of Ocimum basilicum against Anopheles stephensi and Culex quinquefasciatus. J. Asia Pac. Entomol. 2009, 12, 113–115. [Google Scholar] [CrossRef]
- Singh, R.K.; Dhiman, R.C.; Mittal, P.K. Mosquito larvicidal properties of Momordica charantia Linn (Family: Cucurbitaceae). J. Vector Borne Dis. 2006, 43, 88–91. [Google Scholar] [PubMed]
- Raghavendra, K.; Singh, S.P.; Subbarao, S.K.; Dash, A.P. Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J. Med. Res. 2009, 130, 74–77. [Google Scholar] [PubMed]
- Rodrigues, A.M.S.; De Paula, J.E.; Roblot, F.; Fournet, A.; Espíndola, L.S. Larvicidal activity of Cybistax antisyphilitica against Aedes aegypti larvae. Fitoterapia 2005, 76, 755–757. [Google Scholar] [CrossRef] [PubMed]
- Maurya, P.; Mohan, L.; Sharma, P.; Batabyal, L.; Srivastava, C.N. Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol. Res. 2007, 37, 153–156. [Google Scholar] [CrossRef]
- Maniafu, B.M.; Wilber, L.; Ndiege, I.O.; Wanjala, C.C.; Akenga, T.A. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae. Mem. Inst. Oswaldo Cruz. 2009, 104, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaraj, C.; Abdul Rahuman, A.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kandan, P.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T. Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Trop. Biomed. 2010, 27, 211–219. [Google Scholar]
- Al-Doghairi, M.; El-Nadi, A.; Elhag, E.; Al-Ayedh, H. Effect of Solenostemma argel on oviposition, egg hatchability and viability of Culex pipens L. larvae. Phyther. Res. 2004, 18, 335–338. [Google Scholar] [CrossRef]
- Chowdhury, N.; Chatterjee, S.K.; Laskar, S.; Chandra, G. Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J. Pest Sci. 2009, 82, 13–18. [Google Scholar] [CrossRef]
- Ghosh, A.; Chandra, G. Biocontrol efficacy of Cestrum diurnum L. (Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Nat. Prod. Res. 2006, 20, 371–379. [Google Scholar] [CrossRef]
- Ghosh, A.; Chowdhury, N.; Chandra, G. Laboratory evaluation of a phytosteroid compound of mature leaves of Day Jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol. Res. 2008, 103, 271–277. [Google Scholar] [CrossRef]
- Chowdhury, N.; Ghosh, A.; Chandra, G. Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement. Altern. Med. 2008, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azmi, M.A.; Naqvi, S.N.H.; Ahmad, I.; Tabassum, R.; Anbreen, B. Toxicity of Neem leaves extract (NLX) compared with Malathion (57 E.C.) against late 3rd instar larvae of Culex fatigans (Wild Strain) by WHO Method. Turkish J. Zool. 1998, 22, 3. [Google Scholar]
- Chaithong, U.; Choochote, W.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Chaiyasit, D.; Champakaew, D.; Tuetun, B.; Pitasawat, B. Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J. Vector Ecol. 2006, 31, 138–144. [Google Scholar] [CrossRef]
- De Omena, M.C.; Navarro, D.M.A.F.; de Paula, J.E.; Luna, J.S.; Ferreira de Lima, M.R.; Sant’Ana, A.E.G. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour. Technol. 2007, 98, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Mgbemena, I.C. Comparative evaluation of larvicidal potentials of three plant extracts on Aedes aegypti. J. Am. Sci. 2010, 6, 435–440. [Google Scholar]
- Mullai, K.; Jebanesan, A.; Pushpanathan, T. Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (Cucurbitaceae) against the malarial vector, Anopheles stephensi liston (Diptera: Culicidae). Eur. Rev. Med. Pharmacol. Sci. 2008, 12, 1–7. [Google Scholar]
- Govindarajan, M.; Jebanesan, A.; Pushpanathan, T.; Samidurai, K. Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera:Culicidae). Parasitol. Res. 2008, 103, 691–695. [Google Scholar] [CrossRef]
- Matasyoh, J.C.; Wathuta, E.M.; Kariuki, S.T.; Chepkorir, R.; Kavulani, J. Aloe plant extracts as alternative larvicides for mosquito control. Afr. J. Biotechnol. 2008, 7, 912–915. [Google Scholar]
- Rawani, A.; Ghosh, A.; Chandra, G. Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol. Res. 2010, 107, 1235–1240. [Google Scholar] [CrossRef]
- Saxena, R.C.; Dixit, O.P.; Sukumaran, P. Laboratory assessment of indigenous plant extracts for anti-juvenile hormone activity in Culex quinquefasciatus. Indian J. Med. Res. 1992, 95, 204–206. [Google Scholar]
- Promsiri, S.; Naksathit, A.; Kruatrachue, M.; Thavara, U. Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci. 2006, 13, 179–188. [Google Scholar] [CrossRef]
- Andrade-Ochoa, S.; Sánchez-Aldana, D.; Chacón-Vargas, K.F.; Rivera-Chavira, B.E.; Sánchez-Torres, L.E.; Camacho, A.D.; Nogueda-Torres, B.; Nevarez-Moorillon, G.V. Oviposition deterrent and larvicidal and pupaecidal activity of seven essential oils and their major components against Culex quinquefasciatus say (Diptera: Culicidae): Synergism–antagonism effects. Insects 2018, 9, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas-Olivos, A.; Solano-Gómez, R.; Granados-Echegoyen, C.; Santiago-Santiago, L.A.; García-Dávila, J.; Pérez-Pacheco, R.; Lagunez-Rivera, L. Larvicidal effect of Clinopodium macrostemum essential oil extracted by microwave-assisted hydrodistillation against Culex quinquefasciatus (Diptera: Culicidae). Rev. Soc. Bras. Med. Trop. 2018, 51, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Vasantha-Srinivasan, P.; Thanigaivel, A.; Edwin, E.S.; Ponsankar, A.; Senthil-Nathan, S.; Selin-Rani, S.; Kalaivani, K.; Hunter, W.B.; Duraipandiyan, V.; Al-Dhabi, N.A. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. Environ. Sci. Pollut. Res. 2018, 25, 10434–10446. [Google Scholar] [CrossRef] [PubMed]
- Ravi Kiran, S.; Sita Devi, P. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol. Res. 2007, 101, 413–418. [Google Scholar] [CrossRef]
- Perez, D.; Iannacone, J. Insecticidal effect of Paullinia clavigera var. bullata Simpson (Sapindaceae) and Tradescantia zebrina Hort exBosse (Commelinaceae) in the control of Anopheles benarrochi Gabaldon, Cova García y López, 1941, main vector of malaria in Ucayali, Peru. Ecol. Apl. 2016, 3, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Wangrawa, D.W.; Badolo, A.; Ilboudo, Z.; Guelbéogo, W.M.; Kiendrébeogo, M.; Nébié, R.C.H.; Sagnon, N.; Sanon, A. Insecticidal activity of local plants essential oils against laboratory and field strains of Anopheles gambiae s. l. (Diptera: Culicidae) from Burkina Faso. J. Econ. Entomol. 2018, 111, 2844–2853. [Google Scholar] [CrossRef]
- Balasubramani, S.; Sabapathi, G.; Moola, A.K.; Solomon, R.V.; Venuvanalingam, P.; Bollipo Diana, R.K. Evaluation of the leaf essential oil from Artemisia vulgaris and its larvicidal and repellent activity against Dengue Fever Vector Aedes aegypti—An experimental and molecular docking investigation. ACS Omega 2018, 3, 15657–15665. [Google Scholar] [CrossRef] [Green Version]
- Sanei-Dehkordi, A.; Gholami, S.; Abai, M.R.; Sedaghat, M.M. Essential oil composition and larvicidal evaluation of Platycladus orientalis against two Mosquito Vectors, Anopheles stephensi and Culex pipiens. J. Arthropod. Borne Dis. 2018, 12, 101–107. [Google Scholar] [CrossRef]
- Granados-Echegoyen, C.A.; Chan-Bacab, M.J.; Ortega-Morales, B.O.; Vásquez-López, A.; Lagunez-Rivera, L.; Diego-Nava, F.; Gaylarde, C. Argemone mexicana (Papaverales: Papavaraceae) as an alternative for mosquito control: First report of larvicidal activity of flower extract. J. Med. Entomol. 2019, 56, 261–267. [Google Scholar] [CrossRef]
- Muturi, E.J.; Ramirez, J.L.; Zilkowski, B.; Flor-Weiler, L.B.; Rooney, A.P. Ovicidal and larvicidal effects of garlic and Asafoetida essential oils against West Nile virus vectors. J. Insect Sci. 2018, 18, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osanloo, M.; Sedaghat, M.M.; Sanei-Dehkordi, A.; Amani, A. Plant-Derived Essential Oils; Their Larvicidal Properties and Potential application for control of mosquito-borne diseases. Galen. Med. J. 2019, 8, 1532. [Google Scholar] [CrossRef]
- Benelli, G.; Maggi, F.; Pavela, R.; Murugan, K.; Govindarajan, M.; Vaseeharan, B.; Petrelli, R.; Cappellacci, L.; Kumar, S.; Hofer, A.; et al. Mosquito control with green nanopesticides: Towards the One Health approach? A review of non-target effects. Environ. Sci. Pollut. Res. 2018, 25, 10184–10206. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—A brief review. Enzyme Microb Technol. 2016, 95, 58–68. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.J.; Zhang, D.; Yang, D.C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Khalaj, M.; Kamali, M.; Costa, M.E.V.; Capela, I. Green synthesis of nanomaterials—A scientometric assessment. J. Clean Prod. 2020, 267, 122036. [Google Scholar] [CrossRef]
- Chandramohan, B.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Chandirasekar, R.; Dinesh, D.; Kumar, P.M.; Kovendan, K.; Suresh, U.; Subramaniam, J.; et al. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: Genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol. Res. 2016, 115, 1015–1025. [Google Scholar] [CrossRef]
- Alijani, H.Q.; Pourseyedi, S.; Torkzadeh Mahani, M.; Khatami, M. Green synthesis of zinc sulfide (ZnS) nanoparticles using Stevia rebaudiana Bertoni and evaluation of its cytotoxic properties. J. Mol. Struct. 2019, 1175, 214–218. [Google Scholar] [CrossRef]
- Bouafia, A.; Laouini, S.E. Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Mater. Lett. 2020, 265, 127364. [Google Scholar] [CrossRef]
- Cherian, R.S.; Sandeman, S.; Ray, S.; Savina, I.N.; Ashtami, J.; Mohanan, P.V. Green synthesis of pluronic stabilized reduced graphene oxide: Chemical and biological characterization. Colloids Surf. B Biointerfaces 2019, 179, 94–106. [Google Scholar] [CrossRef]
- Shaika, S.; Mkizea, L.; Khumaloa, M.; Singha, N. Green synthesis of nano-silver particles from leaf and stem extracts of Iboza (Tetradenia Riparia). Afr. J. Tradit Complement Altern. Med. 2015, 12, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Balčiūnaitienė, A.; Štreimikytė, P.; Puzerytė, V.; Viškelis, J.; Štreimikytė-Mockeliūnė, Ž.; Maželienė, Ž.; Sakalauskienė, V.; Viškelis, P. Antimicrobial activities against opportunistic pathogenic bacteria using green synthesized silver nanoparticles in Plant and Lichen Enzyme-Assisted Extracts. Plants 2022, 11, 1833. [Google Scholar] [CrossRef]
- Memvanga, P.B.; Tona, G.L.; Mesia, G.K.; Lusakibanza, M.M.; Cimanga, R.K. Antimalarial activity of medicinal plants from the Democratic Republic of Congo: A review. J. Ethnopharmacol. 2015, 169, 76–98. [Google Scholar] [CrossRef]
- Luzala, M.M.; Muanga, C.K.; Kyana, J.; Safari, J.B.; Zola, E.N.; Mbusa, G.V.; Nuapia, Y.B.; Liesse, J.M.; Nkanga, C.I.; Krause, R.W.; et al. A critical review of the antimicrobial and antibiofilm activities of green-synthesized plant-based metallic nanoparticles. Nanomaterials 2022, 12, 144. [Google Scholar] [CrossRef]
- Goodsell, D. Bionanotechnology: Lessons from Nature; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Benelli, G.; Lukehart, C.M. Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J. Clust. Sci. 2017, 28, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Lather, V.; Pandita, D. Green synthesis of therapeutic nanoparticles: An expanding horizon. Nanomedicine 2015, 10, 2451–2471. [Google Scholar] [CrossRef]
- Schreck, C.E. Techniques for the evaluation of insect repellents: A critical review. Annu. Rev. Entomol. 1977, 22, 101–119. [Google Scholar] [CrossRef]
- Sundararajan, B.; Sathishkumar, G.; Seetharaman, P.; Kumar, A.K.; Duraisamy, S.M.; Mutayran, A.A.S.; Seshadri, V.D.; Thomas, A.; Ranjitha, K.; Bollipo, D.; et al. Biosynthesized gold nanoparticles integrated ointment base for repellent activity against Aedes aegypti L. Neotrop. Entomol. 2022, 51, 151–159. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S.; Oyebamiji, A.K.; Olugbeko, S.C. Mosquito repellent and antibacterial efficiency of facile and low-cost silver nanoparticles synthesized using the leaf extract of Morinda citrifolia. Plasmonics 2021, 16, 1645–1656. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In vitro characterization and mosquito (Aedes aegypti) repellent activity of essential-oils-loaded nanoemulsions. AAPS PharmSciTech. 2009, 10, 1234–1242. [Google Scholar] [CrossRef]
- Idris, M.; Datti, Y. Phytochemical screening and mosquito repellent activity of the stem bark extracts of Euphorbia balsamifera (Ait). ChemSearch J. 2014, 5, 46–51. [Google Scholar]
- Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Rajan, H.V.; Vijaykumar, S.D.; Saravanan, M. Evaluation of larvicidal and repellent activity of nanocrystal emulsion synthesized from F. glomerata and Neem oil against mosquitoes. J. Clust. Sci. 2019, 30, 1649–1661. [Google Scholar] [CrossRef]
- WHO/CDS/WHOPES. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; 2005; Volume 10, pp. 1–41. Available online: http://whqlibdoc.who.int/hq/2005/WHO_CDS_WHOPES_GCDPP_2005.13.pdf?ua=1 (accessed on 1 November 2022).
- Su, T.; Mulla, M.S. Ovicidal activity of neem products (Azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 1998, 14, 204–209. [Google Scholar] [PubMed]
- Balasubramanian, T.J. Ovicidal, larvicidal and pupicidal efficacy of silver nanoparticles synthesized by Bacillus marisflavi against the chosen mosquito species. PLoS ONE 2021, 16, e0260253. [Google Scholar]
- Roopan, S.M.; Mathew, R.S.; Mahesh, S.S.; Titus, D.; Aggarwal, K.; Bhatia, N.; Damodharan, K.I.; Elumalai, K.; Samuel, J.J. Environmental friendly synthesis of zinc oxide nanoparticles and estimation of its larvicidal activity against Aedes aegypti. Int. J. Environ. Sci. Technol. 2019, 16, 8053–8060. [Google Scholar] [CrossRef]
- Subramaniam, J.; Murugan, K.; Panneerselvam, C.; Kovendan, K.; Madhiyazhagan, P.; Dinesh, D.; Dinesh, D.; Kumar, P.M.; Chandramohan, B.; Suresh, U.; et al. Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: High antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ. Sci. Pollut. Res. 2016, 23, 7543–7558. [Google Scholar] [CrossRef]
- Madhiyazhagan, P.; Murugan, K.; Kumar, A.N.; Nataraj, T.; Dinesh, D.; Panneerselvam, C.; Subramaniam, J.; Kumar, P.M.; Suresh, U.; Roni, M.; et al. Sargassum muticum-synthesized silver nanoparticles: An effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res. 2015, 114, 4305–4317. [Google Scholar] [CrossRef]
- Velayutham, K.; Rahuman, A.A.; Rajakumar, G.; Roopan, S.M.; Elango, G.; Kamaraj, C.; Marimuthu, S.; Iyappan, M.; Siva, C. Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac. J. Trop. Med. 2013, 6, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Saini, H.; Kumar, D.; Pasi, S.; Agrawal, V. Bioengineering of Piper longum L. extract mediated silver nanoparticles and their potential biomedical applications. Mater. Sci. Eng. C 2019, 104, 109984. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, G.; Agrawal, V. Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol. Res. 2018, 117, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Suman, T.Y.; Elumalai, D.; Kaleena, P.K.; Rajasree, R.S.R. GC-MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind. Crop. Prod. 2013, 47, 239–245. [Google Scholar] [CrossRef]
- Selvan, S.M.; Anand, K.V.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G.; Subramanian, K.S.; Kannan, M.; Raja, K. Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET Nanobiotechnol. 2018, 12, 1042–1046. [Google Scholar] [CrossRef]
- Tahir, A.; Quispe, C.; Herrera-Bravo, J.; Iqbal, H.; Haq, Z.; Anum, F.; Javed, Z.; Sehar, A.; Sharifi-Rad, J. Green synthesis, characterization and antibacterial, antifungal, larvicidal and anti-termite activities of copper nanoparticles derived from Grewia asiatica L. Bull. Natl. Res. Cent. 2022, 46, 188. [Google Scholar] [CrossRef]
- Vivekanandhan, P.; Swathy, K.; Thomas, A.; Krutmuang, P.; Kweka, E.J. Green copper nano-pesticide synthesized by using Annona Squamosa L.; seed and their efficacy on insect pest as well as non-target species. Int. J. Plant. Anim. Environ. Sci. 2021, 11, 456–473. [Google Scholar] [CrossRef]
- Rajakumar, G.; Rahuman, A.; Roopan, S.M.; Chung, I.M. Efficacy of larvicidal activity of green synthesized titanium dioxide nano-particles using Mangifera indica extract against blood-feeding parasites. Parasitol. Res. 2014, 114, 571–581. [Google Scholar] [CrossRef]
- Gandhi, P.R.; Jayaseelan, C.; Kamaraj, C.; Rajasree, S.R.R.; Regina, R. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J. Appl. Biomed. 2018, 16, 378–386. [Google Scholar] [CrossRef]
- Suman, T.Y.; Rajasree, S.R.R.; Elumalai, D.; Kaleena, P.K. Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pac. J. Trop. Dis. 2015, 5, 224–230. [Google Scholar] [CrossRef]
- Rajakumar, G.; Rahuman, A.A.; Jayaseelan, C.; Santhoshkumar, T. Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol. Res. 2014, 113, 469–479. [Google Scholar] [CrossRef]
- Gandhi, P.R.; Jayaseelan, C.; Vimalkumar, E.; Mary, R.R. Larvicidal and pediculicidal activity of synthesized TiO2 nanoparticles using Vitex negundo leaf extract against blood feeding parasites. J. Asia Pac. Entomol. 2016, 19, 1089–1094. [Google Scholar] [CrossRef]
- Sowndarya, P.; Ramkumar, G.; Shivakumar, M.S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1490–1495. [Google Scholar] [CrossRef] [Green Version]
- Cittrarasu, V.; Kaliannan, D.; Dharman, K.; Maluventhen, V. Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 2021, 11, 1032. [Google Scholar] [CrossRef]
- Farag, S.; El-Sayed, A.; Abdel-Haleem, D. Larvicidal efficacy of Nigella Sativa seeds oil and it’s nanoparticles against Culex Pipiens and Musca Domestica. J. Egypt Soc. Parasitol. 2020, 50, 215–220. [Google Scholar] [CrossRef]
- Meenambigai, K.; Kokila, R.; Chandhirasekar, K.; Thendralmanikandan, A. Green synthesis of selenium nanoparticles mediated by Nilgirianthus ciliates leaf extracts for antimicrobial activity on food borne pathogenic microbes and pesticidal activity against Aedes aegypti with molecular docking. Biol. Trace Elem. Res. 2021, 200, 2948–2962. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.H.; Selim, T.A.; Alruhaili, M.H.; Selim, S. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using Prickly Pear Peel Waste. J. Funct. Biomater. 2022, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-Anbr, M.N.; Khaled, J.M.; Benelli, G. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B Biol. 2018, 178, 249–258. [Google Scholar] [CrossRef]
- Faisal, S.; Jan, H.; Shah, S.; Khan, A.; Akbar, M.T.; Rizwan, M.; Jan, F.; Wadidullah; Akhtar, N.; Khattak, A.; et al. Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega 2021, 6, 9709–9722. [Google Scholar] [CrossRef] [PubMed]
- Elango, G.; Mohana, S.; Al-dhabi, N.A.; Valan, M.; Irukatla, K.; Elumalai, K. Coir mediated instant synthesis of Ni-Pd nanoparticles and its significance over larvicidal, pesticidal and ovicidal activities. J. Mol. Liq. 2016, 223, 1249–1255. [Google Scholar] [CrossRef]
- Minal, S.P.; Prakash, S. Laboratory analysis of Au–Pd bimetallic nanoparticles synthesized with Citrus limon leaf extract and its efficacy on mosquito larvae and non-target organisms. Sci. Rep. 2020, 10, 21610. [Google Scholar] [CrossRef]
- Nadeem, F.; Fozia, F.; Aslam, M.; Ahmad, I.; Ahmad, S.; Ullah, R.; Almutairi, M.H.; Aleya, L.; Abdal-Daim, M.M. Characterization, antiplasmodial and cytotoxic activities of green synthesized Iron Oxide nanoparticles using Nephrolepis exaltata aqueous extract. Molecules 2022, 27, 4931. [Google Scholar] [CrossRef] [PubMed]
- Angajala, G.; Ramya, R.; Subashini, R. In-vitro anti-inflammatory and mosquito larvicidal efficacy of nickel nanoparticles phytofabricated from aqueous leaf extracts of Aegle marmelos Correa. Acta Trop. 2021, 135, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Elango, G.; Roopan, S.M.; Dhamodaran, K.I.; Elumalai, K.; Al-Dhabi, N.A.; Arasu, M.V. Spectroscopic investigation of biosynthesized nickel nanoparticles and its larvicidal, pesticidal activities. J. Photochem. Photobiol. B Biol. 2016, 162, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, B.; Kumari, B.D. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Chowdhury, S.; Mondal, N.K.; Shaikh, W.A.; Debnath, P.; Chakraborty, S. Insecticidal and fungicidal performance of bio-fabricated silver and gold nanoparticles. Int. J. Environ. Sci. Technol. 2022, 19, 1573–1592. [Google Scholar] [CrossRef]
- Murugan, K.; Benelli, G.; Panneerselvam, C.; Subramaniam, J.; Jeyalalitha, T.; Dinesh, D.; Nicoletti, M.; Hwang, J.S.; Suresh, U.; Madhiyazhagan, P. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Sutthanont, N.; Attrapadung, S.; Nuchprayoon, S. Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects 2019, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- WHO. Report of the Informal Consultation on the Evaluation and Testing of Insectivides. 1996. Available online: https://apps.who.int/iris/handle/10665/65962 (accessed on 25 October 2022).
- Govindan, L.; Anbazhagan, S.; Altemimi, A.B.; Lakshminarayanan, K.; Kuppan, S.; Pratap-Singh, A.; Kandasamy, M. Efficacy of antimicrobial and larvicidal activities of green synthesized silver nanoparticles using leaf extract of Plumbago auriculata lam. Plants 2020, 9, 1577. [Google Scholar] [CrossRef]
- Elumalai, K.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Pandiyan, J.; Baabu, P.M.K.; Kaliyamoorthy, K.; Marimuthu, G. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J. Biol. Sci. 2020, 27, 2917–2928. [Google Scholar] [CrossRef]
- Suresh, U.; Murugan, K.; Barnard, D.R.; Panneerselvam, C. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2015, 114, 1551–1562. [Google Scholar] [CrossRef]
- Hasaballah, A.I.; Gobaara, I.M.M.; El-Naggar, H.A. Larvicidal activity and ultrastructural abnormalities in the ovaries of the housefly “Musca domestica” induced by the soft coral “Ovabunda macrospiculata” synthesized ZnO nanoparticles. Egypt J. Aquat. Biol. Fish. 2021, 25, 721–738. [Google Scholar] [CrossRef]
- WHO. Instructions for Determining Susceptibility or Resistance of Mosquito larvae to Insecticides; WHO: Geneva, Switzerland, 1981; p. 5. [Google Scholar]
- Kumar, R.; Nattuthurai, N.; Gopinath, P.; Mariappan, T. Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitol. Res. 2015, 114, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.; Dhiman, R.C. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal (Ficus religiosa) synthesized nano-particles. Parasite Epidemiol. Control 2020, 11, e00166. [Google Scholar] [CrossRef]
- Thomas, A.; Mazigo, H.D.; Manjurano, A.; Morona, D.; Kweka, E.J. Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasit Vectors 2017, 10, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waris, M.; Nasir, S.; Abbas, S.; Azeem, M.; Ahmad, B.; Khan, N.A.; Hussain, B.; Al-Ghanim, K.A.; Al-Misned, F.; Mulahim, N.; et al. Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes aegypti L. Saudi J. Biol. Sci. 2020, 27, 2403–2409. [Google Scholar] [CrossRef]
- Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ajibade, S.E.; Ojo, S.A.; Gueguim-Kana, E.B.; et al. Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: Antibacterial and antioxidant activities and application as a paint additive. J. Taibah Univ. Sci. 2016, 10, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Waris, M.; Nasir, S.; Rasule, A.; Yousaf, I. Evaluation of larvicidal efficacy of Ricinus communis (castor) plant extract and synthesized green siver nanoparticles against Aedes albopictus. J. Arthropod. Borne Dis. 2020, 14, 162–172. [Google Scholar] [PubMed]
- Lateef, A.; Azeez, M.A.; Asafa, T.B.; Yekeen, T.A.; Akinboro, A.; Oladipo, I.C.; Azeez, L.; Ojo, S.A.; Gueguim-Kana, E.B.; Beukes, L.S. Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: Its antimicrobial, antioxidant and larvicidal activities. J. Nanostruct. Chem. 2016, 6, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Hwang, J.S. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol. Res. 2013, 112, 981–990. [Google Scholar] [CrossRef]
- Sivapriyajothi, S.; Mahesh, P.; Kovendan, K.; Subramaniam, J.; Murugan, K. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J. Entomol. Acarol. Res. 2014, 46, 77. [Google Scholar] [CrossRef] [Green Version]
- Morejón, B.; Pilaquinga, F.; Domenech, F.; Ganchala, D.; Debut, A.; Neira, M. Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to control Aedes aegypti L. (Diptera: Culicidae). J. Nanotechnol. 2018, 2018, 6917938. [Google Scholar] [CrossRef] [Green Version]
- Murugan, K.; Dinesh, D.; Paulpandi, M.; Althbyani, A.D.M.; Subramaniam, J.; Madhiyazhagan, P.; Wang, L.; Suresh, U.; Kumar, P.M.; Mohan, J.; et al. Nanoparticles in the fight against mosquito-borne diseases: Bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2015, 114, 4349–4361. [Google Scholar] [CrossRef] [PubMed]
- Hasaballah, A.I.; El-Naggar, H.A.; Abdelbary, S.; Bashar, M.A.E.; Selim, T.A. Eco-friendly synthesis of zinc oxide nanoparticles by marine sponge, Spongia officinalis: Antimicrobial and insecticidal activities against the mosquito vectors, Culex pipiens and Anopheles pharoensis. Bionanoscience 2022, 12, 89–104. [Google Scholar] [CrossRef]
- Nityasree, B.R.; Chalannavar, R.K.; Kouser, S.; Divakar, M.S.; Gani, R.S.; Sowmyashree, K.; Malabadi, R.B. Bioinspired synthesis of zinc oxide nanoparticles by using leaf extract of Solanum lycopersicum L. for larvicidal activity of Aedes aegypti L. Adv. Nat. Sci. Nanosci. Nanotechnol. 2021, 12, 15009. [Google Scholar]
- Bhakyaraj, K.; Kumaraguru, S.; Gopinath, K.; Sabitha, V.; Kaleeswarran, P.R.; Karthika, V.; Sudha, A.; Muthukumaran, U.; Jayakumar, K.; Mohan, S.; et al. Eco-friendly synthesis of palladium nanoparticles using Melia azedarach leaf extract and their evaluation for antimicrobial and larvicidal activities. J. Clust. Sci. 2017, 28, 463–476. [Google Scholar] [CrossRef]
- Khandagle, A.; Morey, R. Silver nanoparticles of Eucalyptis grandis as a possible insecticide against mosquito vectors. Egypt Acad. J. Biol. Sci. 2020, 13, 73–82. [Google Scholar] [CrossRef]
- Murugan, K.; Samidoss, C.M.; Panneerselvam, C.; Higuchi, A.; Roni, M.; Suresh, U.; Chandramohan, B.; Subramaniam, J.; Madhiyazhagan, P.; Dinesh, D.; et al. Seaweed-synthesized silver nanoparticles: An eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol. Res. 2015, 114, 4087–4097. [Google Scholar] [CrossRef]
- Govindarajan, M.; Kadaikunnan, S.; Alharbi, N.S.; Benelli, G. Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: Larvicidal potential against Zika virus, dengue, and malaria vector mosquitoes. Nanomed. Biotechnol. 2017, 45, 1317–1325. [Google Scholar] [CrossRef] [Green Version]
- Balaraman, P.; Balasubramanian, B.; Liu, W.C.; Kaliannan, D.; Durai, M.; Kamyab, H.; Alwetaishi, M.; Maluventhen, V.; Ashokkumar, V.; Chelliapan, S.; et al. Sargassum myriocystum-mediated TiO2-nanoparticles and their antimicrobial, larvicidal activities and enhanced photocatalytic degradation of various dyes. Environ. Res. 2022, 204, 112278. [Google Scholar] [CrossRef]
- Gutiérrez-Ramírez, J.A.; Betancourt-Galindo, R.; Aguirre-Uribe, L.A.; Cerna-Chávez, E.; Sandoval-Rangel, A.; Ángel, E.C.-d.; Chacón-Hernández, J.C.; García-López, J.I.; Hernández-Juárez, A. Insecticidal effect of zinc oxide and titanium dioxide nano-particles against bactericera cockerelli sulc. (hemiptera: Triozidae) on tomato Solanum lycopersicum. Agronomy 2021, 11, 1460. [Google Scholar] [CrossRef]
- Shukla, G.; Gaurav, S.S.; Singh, A. Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). Int. Nano. Lett. 2020, 10, 131–139. [Google Scholar] [CrossRef]
- Abbott, W.S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Roni, M.; Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Nicoletti, M.; Madhiyazhagan, P.; Dinesh, D.; Suresh, U.; Khater, H.F.; Wei, H.; et al. Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf. 2015, 121, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, C.; Murugan, K.; Roni, M.; Aziz, A.T.; Suresh, U.; Rajaganesh, R.; Madhiyazhagan, P.; Subramaniam, J.; Dinesh, D.; Nicoletti, M.; et al. Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol. Res. 2016, 115, 997–1013. [Google Scholar] [CrossRef]
- Rajaganesh, R.; Murugan, K.; Panneerselvam, C.; Jayashanthini, S.; Aziz, A.T.; Roni, M.; Suresh, U.; Trivedi, S.; Rehman, H.; Higuchi, A.; et al. Fern-synthesized silver nanocrystals: Towards a new class of mosquito oviposition deterrents? Res. Vet. Sci. 2016, 109, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Marzouq, M.; Govindarajan, M.; Senthilmurugan, S.; Vijayan, P.; Benelli, G. Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: Toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors. J. Asia Pac. Entomol. 2017, 20, 157–164. [Google Scholar]
- Barik, T.K.; Kamaraju, R.; Gowswami, A. Silica nanoparticle: A potential new insecticide for mosquito vector control. Parasitol. Res. 2012, 111, 1075–1083. [Google Scholar] [CrossRef]
- Foldbjerg, R.; Jiang, X.; Miclăuş, T.; Chen, C.; Autrup, H.; Beer, C. Silver nanoparticles—Wolves in sheep’s clothing? Toxicol. Res. 2015, 4, 563–575. [Google Scholar] [CrossRef]
- Benelli, G. Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases? Asian Pac. J. Trop. Biomed. 2016, 6, 353–354. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, P.; Singh, H.; Agrawal, V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: Prospects and challenges. Environ. Sci. Pollut. Res. 2020, 27, 25987–26024. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef]
- Shahzad, K.; Manzoor, F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021, 44, 1–11. [Google Scholar] [CrossRef]
- Armstrong, N.; Ramamoorthy, M.; Lyon, D.; Jones, K.; Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 2013, 8, e53186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouad, H.; Hongjie, L.; Hosni, D.; Wei, J.; Abbas, G.; Ga’al, H.; Jianchu, M. Controlling Aedes albopictus and Culex pipiens pallens using silver nanoparticles synthesized from aqueous extract of Cassia fistula fruit pulp and its mode of action. Artif. Cells Nanomedicine Biotechnol. 2018, 46, 558–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalimuthu, K.; Panneerselvam, C.; Chou, C.; Tseng, L.C.; Murugan, K.; Tsai, K.H.; Alarfaj, A.A.; Higuchi, A.; Canale, A.; Hwang, J.S.; et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process. Saf. Environ. Prot. 2017, 109, 82–96. [Google Scholar] [CrossRef]
- Nalini, M.; Lena, M.; Sumathi, P.; Sundaravadivelan, C. Effect of phyto-synthesized silver nanoparticles on developmental stages of malaria vector, Anopheles stephensi and dengue vector, Aedes aegypti. Egypt J. Basic Appl. Sci. 2017, 4, 212–218. [Google Scholar] [CrossRef] [Green Version]
- Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm-forming pathogenic bacteria. J. Photochem. Photobiol. B 2017, 174, 133–143. [Google Scholar] [CrossRef]
- Banumathi, B.; Vaseeharan, B.; Ishwarya, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol. Res. 2017, 116, 1637–1651. [Google Scholar] [CrossRef]
- Hong, T.K.; Perumalsamy, H.; Jang, K.H.; Na, E.S.; Ahn, Y.J. Ovicidal and larvicidal activity and possible mode of action of phenylpropanoids and ketone identified in Syzygium aromaticum bud against Bradysia procera. Pestic. Biochem. Physiol. 2018, 145, 29–38. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant. Sci. 2016, 21, 1000–1007. [Google Scholar] [CrossRef]
- Benelli, G.; Govindarajan, M.; Senthilmurugan, S.; Vijayan, P.; Kadaikunnan, S.; Alharbi, N.S.; Khaled, J.M. Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): Toxicity on non-target mosquito natural enemies. Environ. Sci. Pollut. Res. 2018, 25, 10283–10293. [Google Scholar] [CrossRef]
- Patil, C.D.; Patil, V.P.; Bipinchandra, K.S.; Salunkhe, R.B. Larvicidal activity of silver nanoparticles synthesized using 279 rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol. Res. 2012, 110, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Benelli, G. Facile biosynthesis of silver nanoparticles using Barleria cristata: Mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol. Res. 2016, 115, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.M.; Murugan, K.; Madhiyazhagan, P.; Kovendan, K.; Amerasan, D.; Chandramohan, B.; Dinesh, D.; Suresh, U.; Nicoletti, M.; Alsalhi, M.S.; et al. Biosynthesis, characterization, and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol. Res. 2016, 115, 751–759. [Google Scholar] [CrossRef]
- Haldar, K.M.; Haldar, B.; Chandra, G. Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol. Res. 2013, 112, 1451–1459. [Google Scholar] [CrossRef] [PubMed]
- Subarani, S.; Sabhanayakam, S. Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res. 2013, 112, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Ramanibai, R.; Velayutham, K. Bioactive compound synthesis of Ag nanoparticles from leaves of Plumbago auriculata zedarach and its control for mosquito larvae. Res. Vet. Sci. 2015, 98, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Hoti, S.L.; Rajeswary, M.; Benelli, G. One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: An eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol. Res. 2016, 115, 2685–2695. [Google Scholar] [CrossRef] [Green Version]
- Rawani, A.; Ghosh, A.; Chandra, G. Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop. 2013, 128, 613–622. [Google Scholar] [CrossRef]
- Murugan, K.; Aruna, P.; Panneerselvam, C.; Madhiyazhagan, P.; Paulpandi, M.; Subramaniam, J.; Rajaganesh, R.; Wei, H.; Alsalhi, M.S.; Devanesan, S.; et al. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro), and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 2016, 115, 651–662. [Google Scholar] [CrossRef]
- Jaganathan, A.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Dinesh, D.; Vadivalagan, C.; Aziz, A.T.; Chandramohan, B.; Suresh, U.; Rajaganesh, R.; et al. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 2016, 65, 276–284. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Yoo, J.; Lee, J.S.; Park, J.W.; Jung, J. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: The difference between metal ions and nanoparticles. Mar. Pollut. Bull. 2014, 85, 526–531. [Google Scholar] [CrossRef]
- Fabrega, J.; Luoma, S.N.; Tyler, C.R.; Galloway, T.S.; Lead, J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int. 2011, 37, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Tyagi, B.K.; Chandrasekaran, N.; Mukherjee, A. Biological nanopesticides: A greener approach towards the mosquito vector control. Environ. Sci. Pollut. Res. 2017, 1, 10151–10163. [Google Scholar] [CrossRef] [PubMed]
- Pilaquinga, F.; Morejo, B.; Pi, N.; Debut, A. Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS ONE 2019, 14, e0224109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suganya, A.; Murugan, K.; Kovendan, K.; Mahesh Kumar, P.; Hwang, J.S. Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol. Res. 2013, 112, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Rahuman, A.A.; Rajakumar, G. Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol. Res. 2011, 109, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Ga’al, H.; Fouad, H.; Mao, G.; Tian, J.; Jianchu, M. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, S.; Srinivasan, M.; Mohanraj, J. Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property. J. Parasit. Dis. 2016, 40, 991–996. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Raza, M.A.; Manzoor, F.; Kanwal, Z.; Riaz, S.; Iqbal, M.J.; Naseem, S. Biosynthesis, characterization and anti-dengue vector activity of silver nanoparticles prepared from Azadirachta indica and Citrullus colocynthis: Biosynthesis of silver nanoparticles. R. Soc. Open Sci. 2020, 7, 200540. [Google Scholar] [CrossRef]
- Sultana, N.; Raul, P.K.; Goswami, D.; Das, D. Bio-nanoparticle assembly: A potent on-site biolarvicidal agent against mosquito vectors. RSC Adv. 2020, 10, 9356–9368. [Google Scholar] [CrossRef]
- Amarasinghe, L.D.; Wickramarachchi, P.A.S.R.; Aberathna, A.A.A.U.; Sithara, W.S. Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae ). Heliyon 2020, 6, e04322. [Google Scholar] [CrossRef]
- Lourthuraj, A.A.; Selvam, M.M.; Hussain, M.S.; Abdel-Warith, A.W.A.; Younis, E.M.I.; Al-Asgah, N.A. Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from Cleistanthus collinus. Saudi J. Biol. Sci. 2020, 27, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, S.; Tripathi, P. A facile and rapid method for green synthesis of Achyranthes aspera stem extract-mediated silver nano-composites with cidal potential against Aedes aegypti L. Saudi J. Biol. Sci. 2019, 26, 698–708. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, P.; Vikram, K.; Singh, H. Fabrication and characterization of noble crystalline silver nanoparticles from Pimenta dioica leave extract and analysis of chemical constituents for larvicidal applications. Saudi J. Biol. Sci. 2022, 29, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, D.; Hemavathi, M.; Deepaa, C.V.; Kaleena, P.K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol. Control 2017, 2, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Seetharaman, P.; Krishnan, M.; Gnanasekar, S.; Sivaperumal, S. Carica papaya (Papaya) latex: A new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech 2018, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.A.; Ammani, K.; Jobina, R.; Parasuraman, P.; Siddhardha, B. Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L. (Euphorbiaceae) leaf extract against Aedes aegypti. IET Nanobiotechnol. 2016, 10, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Ali, Z.A.; Roslan, M.A.; Yahya, R.; Sulaiman, W.Y.W.; Puteh, R. Eco-friendly synthesis of silver nanoparticles and its larvicidal property against fourth instar larvae of Aedes aegypti. IET Nanobiotechnol. 2017, 11, 152–156. [Google Scholar] [CrossRef]
- Sundaravadivelan, C.; Nalini Padmanabhan, M.; Sivaprasath, P.; Kishmu, L. Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol. Res. 2013, 112, 303–311. [Google Scholar] [CrossRef]
- Suresh, G.; Gunasekar, P.H.; Kokila, D.; Prabhu, D.; Dinesh, D.; Ravichandran, N.; Ramesh, B.; Koodalingam, A.; Vijaiyan, S.G. Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 127, 61–66. [Google Scholar] [CrossRef]
- Kamalakannan, S.; Ramar, M.; Arumugam, P.; Kovendan, K.; Chandramohan, B.; Thomaz, D.V.; Mani, P.; Raja, S.; Murugan, K. Exploration of distinctive Menyanthes trifoliata as generated green nanoparticles: Report their lethal toxicity against Aedes aegypti. Am. J. Innov. Res. Appl. Sci. 2019, 7, 186–198. [Google Scholar]
- Alhag, S.K.; Al-Mekhlafi, F.A.; Abutaha, N.; Abd Al Galil, F.M.; Wadaan, M.A. Larvicidal potential of gold and silver nanoparticles synthesized using Acalypha fruticosa leaf extracts against Culex pipiens (Culicidae: Diptera). J. Asia Pac. Entomol. 2021, 24, 184–189. [Google Scholar] [CrossRef]
- Suresh, U.; Murugan, K.; Panneerselvam, C.; Rajaganesh, R.; Roni, M.; Thabiani, A.; Ahmed, H.; Al-aoh, N.; Trivedi, S.; Rehman, H.; et al. Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiol. Mol. Plant Pathol. 2017, 101, 225–235. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. A Facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: Ovicidal and larvicidal potential on malaria, Dengue and Filariasis mosquito vectors. J. Clust. Sci. 2017, 28, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Govindarajan, M. Green-synthesized mosquito oviposition attractants and ovicides: Towards a nanoparticle- based ‘Lure and Kill’ Approach ? J. Clust. Sci. 2017, 28, 287–308. [Google Scholar] [CrossRef]
- Vincent, S.; Kovendan, K.; Chandramohan, B.; Kamalakannan, S.; Kumar, P.M.; Vasugi, C.; Praseeja, C.; Subramaniam, J.; Govindarajan, M.; Murugan, K.; et al. Swift fabrication of silver nanoparticles using Bougainvillea glabra: Potential against the Japanese Encephalitis Vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J. Clust. Sci. 2017, 28, 37–58. [Google Scholar] [CrossRef]
- Mohamed, R.; Thameem, S.; Govindarajan, M.; Alshebly, M.M.; Alqahtani, F.S.; Amsath, A.; Benelli, G. One pot green synthesis of colloidal silver nanocrystals using the Ventilago maderaspatana leaf extract: Acute toxicity on Malaria, Zika Virus and Filariasis Mosquito Vectors. J. Clust. Sci. 2017, 28, 369–392. [Google Scholar]
- Azarudeen, R.M.S.T.; Govindarajan, M.; Amsath, A.; Muthukumaran, U.; Benelli, G. Single-step biofabrication of silver nano-crystals using Naregamia alata: A cost effective and eco-friendly control tool in the fight against Malaria, Zika Virus and St. Louis Encephalitis Mosquito Vectors. J. Clust. Sci. 2017, 28, 179–203. [Google Scholar] [CrossRef] [Green Version]
- Mahyoub, J.A.; Alghamdi, K.; Alkenani, N. Synthesis of silver nanoparticle using Juniperus procera and it’ s larvicidal activity against dengue and zika viruses vector Aedes aegypti imosquito. Life Sci. J. 2018, 15, 12–16. [Google Scholar]
- Veerakumar, K.; Govindarajan, M. Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera:Culicidae). Parasitol. Res. 2014, 5, 1775–1785. [Google Scholar] [CrossRef] [PubMed]
- Veerakumar, K.; Govindarajan, M. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasite Epidemiol. Control 2015, 2015, 4085–4096. [Google Scholar] [CrossRef]
- Veerakumar, K.; Govindarajan, M.; Rajeswary, M.; Muthukumaran, U. Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol. Res. 2014, 120, 1929. [Google Scholar] [CrossRef]
- Priyadarshini, K.A.; Nicoletti, M. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston ( Diptera: Culicidae). Parasitol. Res. 2012, 111, 997–1006. [Google Scholar] [CrossRef]
- Madhiyazhagan, P.; Barnard, D.R. Green synthesis of silver nanoparticles for the control of mosquito vectors of Malaria, Filariasis, and Dengue. Vector-Borne Zoonotic Dis. 2012, 12, 262–268. [Google Scholar]
- Gnanadesigan, M.; Anand, M.; Ravikumar, S.; Maruthupandy, M.; Vijayakumar, V.; Selvam, S.; Dineshkumar, M.; Kumaraguru, A.K. Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. Asian Pac. J. Trop. Med. 2011, 4, 799–803. [Google Scholar] [CrossRef] [Green Version]
- Marimuthu, S.; Rahuman, A.A.; Rajakumar, G. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. 2011, 108, 1541–1549. [Google Scholar] [CrossRef]
- Rajakumar, G.; Rahuman, A.A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. 2011, 118, 196–203. [Google Scholar] [CrossRef]
- Santhoshkumar, T.; Rahuman, A.A. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 2011, 108, 693–702. [Google Scholar] [CrossRef]
- Veerakumar, K.; Govindarajan, M. Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2013, 112, 4073–4085. [Google Scholar] [CrossRef]
- Rajagopal, G.; Nivetha, A.; Sundar, M.; Panneerselvam, T. Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications. Heliyon 2021, 7, e07360. [Google Scholar] [CrossRef]
- Narayanan, M.; Devi, P.G.; Natarajan, D.; Kandasamy, S.; Devarayan, K.; Alsehli, M.; Elfasakhany, A.; Pugazhendhi, A. Green synthesis and characterization of titanium dioxide nanoparticles using leaf extract of Pouteria campechiana and larvicidal and pupicidal activity on Aedes aegypti. Environ. Res. 2021, 200, 111333. [Google Scholar] [CrossRef]
- Narayanan, M.; Vigneshwari, P.; Natarajan, D. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ. Res. 2021, 200, 111335. [Google Scholar] [CrossRef]
- Yazhiniprabha, M.; Vaseeharan, B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater. Sci. Eng. C 2019, 103, 109763. [Google Scholar] [CrossRef]
- Krishnan, M.; Ranganathan, K.; Maadhu, P.; Thangavelu, P.; Kundan, S.; Arjunan, N. Leaf extract of Dillenia indica as a source of selenium nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings 2020, 10, 626. [Google Scholar] [CrossRef]
- Fadl, A.M.; El-Kholy, E.M.S.; Abulyazid, I.; Shoman, A.A.; Awad, H.H.; Mohammed, H.S. Radiation-assisted green synthesis and characterization of selenium nanoparticles, and larvicidal effects on Culex pipiens complex. J. Clust. Sci. 2021, 33, 2601–2615. [Google Scholar] [CrossRef]
- Soni, N.; Dhiman, R.C. Larvicidal activity of Zinc oxide and titanium dioxide nanoparticles synthesis using Cuscuta reflexa extract against malaria vector (Anopheles stephensi). Egypt J. Basic Appl. Sci. 2020, 7, 342–352. [Google Scholar] [CrossRef]
- Amuthavalli, P.; Hwang, J.S.; Dahms, H.U.; Wang, L.; Anitha, J.; Vasanthakumaran, M.; Gandhi, A.D.; Murugan, K.; Subramaniam, J.; Paulpandi, M.; et al. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci. Rep. 2021, 11, 8837. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Alarjani, K.M.; Rajeswari, V.D. Enhancing malaria control using Lagenaria siceraria and its mediated zinc oxide nanoparticles against the vector Anopheles stephensi and its parasite Plasmodium falciparum. Sci. Rep. 2020, 10, 21568. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A.; Arasu, M.V. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials 2018, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Ramkumar, G.; Shivakumar, M.S.; Alshehri, M.A.; Panneerselvam, C.; Sayed, S. Larvicidal potential of Cipadessa baccifera leaf extract-synthesized zinc nanoparticles against three major mosquito vectors. Green Process. Synth. 2022, 11, 757–765. [Google Scholar] [CrossRef]
- Roopan, S.M.; Bharathi, A.; Kumar, R.; Khanna, V.G.; Prabhakarn, A. Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf. B Biointerfaces 2012, 92, 209–212. [Google Scholar] [CrossRef]
- Aly, M.Z.Y.; Osman, K.S.M.; Omar, E.M.; Mahmoud, M.A. Recent, eco-friendly approach for controlling Culex pipiens (L.) using novel synthesized cadmium sulphide nanoparticles of Ocimum basillicum extract. Egypt J. Aquat. Biol. Fish. 2021, 25, 359–377. [Google Scholar]
- Hajra, A.; Dutta, S.; Kumar, N. Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J. Parasit. Dis. 2016, 40, 1519–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.; Uwa, P. Eco-friendly synthesis of iron nanoparticles using Uvaria chamae: Characterization and biological activity. Inorg. Nano-Metal. Chem. 2019, 49, 431–442. [Google Scholar] [CrossRef]
- Arasu, M.V.; Arokiyaraj, S.; Viayaraghavan, P.; Kumar, T.S.J.; Duraipandiyan, V.; Al-Dhabi, N.A.; Kaviyarasu, K. One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J. Photochem. Photobiol. B Biol. 2019, 190, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Naresh Kumar, A.; Jeyalalitha, T.; Murugan, K.; Madhiyazhagan, P. Bioefficacy of plant-mediated gold nanoparticles and Anthocepholus cadamba on filarial vector, Culex quinquefasciatus (Insecta: Diptera: Culicidae). Parasitol. Res. 2013, 112, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Lamayi, D.W.; Abba, E.; Shehu, Z.; Adam, M.M. Nanoinsecticidal Efficacy of Ag/Ni Bimetallic Nanoparticles (BMNPs) on Lymphatic Filariasis Vector. Asian J. Res. Infect. Dis. 2020, 5, 14–21. [Google Scholar] [CrossRef]
- Danbature, W.L.; Shehu, Z.; Yoro, M. Silver-Cobalt bimetallic nanoparticles as a nanotechnological method for control of Culex quinquefasciatus-borne diseases. Curr. Adv. Chem. Biochem. 2021, 1, 1–9. [Google Scholar]
Materials | Operative Conditions for Synthesis | Shape and Size | Activity and Species | Origin of Mosquitoes | LC50 a | Ref | ||
---|---|---|---|---|---|---|---|---|
Plants | Metal Precursors | |||||||
1 | Syzgium cumini seed (aqueous extract 5%) | Zn(CH3COO)2 1 mM | Ratio 20:80 Incubation time: 45 min Temperature: 60 °C | Spherical, 50–60 nm (TEM, SEM) b,c | Larvicidal and Ovicidal (Ae. aegypti) | Wild populations | 51.94 | [201] |
2 | Ficus racemosa, bark (aqueous extract 10%) | AgNO3 1 mM | Ratio 8:2 Incubation time: 10 min Temperature: room | Cylindrical, 250.06 nm (TEM) | Larvicidal (Cx. quinquefasciatus and Cx. gelidus) | Wild populations | 12.00 11.21 | [204] |
3 | Piper longum L. leaves (aqueous, chloroformic, ethyl acetate, hexane, methanolic extracts 10%) | AgNO3 1 mM | Ratio 9:1 Incubation time: 20 min Temperature: 40 ± 2 °C pH 7.5 | Spherical, 25–32 nm (HR-TEM, FE-SEM) d,e | Larvicidal (Ae. aegypti, An. stephensi and Cx quinquefasciatus) | Laboratory strains | 8.97 | [205] |
4 | Holarrhena antidysenterica (L.) bark (aqueous extract 4%) | AgNO3 1 mM | Ratio 9:1 Incubation time: 5 min Temperature: 50 ± 2 °C pH 7.5 | Spherical, 32 nm (FE-SEM, TEM) | Larvicidal (Ae. aegypti L. and Cx. quinquefasciatus) | Laboratory strains | 9.3 | [206] |
5 | Ammannia baccifera aerial parts (aqueous extract 8%) | AgNO3 1 mM | Ratio 40:3 Incubation time: 30 min Temperature: room | Triangular and hexagonal, 10–30 nm (TEM, SEM) | Larvicidal (An. subpictus and Cx. quinquefasciatus) | Laboratory strains | 29.54 22.32 | [207] |
6 | Tridax procumbens leaves (aqueous extract 10%) | CuSO4 1 mM | Ratio 4:9 Incubation time: 4 h Temperature: 80 °C | Spherical 16 nm (FE-SEM) | Larvicidal (Ae. aegypti) | Wild populations | 4.21 | [208] |
7 | Grewia asiatica leaves (aqueous extract 10%) | CuSO4.5H2O 1 mM | Ratio1:9 Incubation time: 60 min Temperature: 70 °C | Spherical 60–80 nm (SEM) | Larvicidal (Ae. aegypti) | NM | 100 | [209] |
8 | Annona squamosa seeds (aqueous extract 15%) | CuSO4 1 mM | Ratio 1:3 Temperature: 28 ± 2 °C Incubation time: 24 h | Spherical 5.99–24.48 nm (TEM) | Larvicidal (An. stephensi) | Laboratory strains | 170 | [210] |
9 | Mangifera indica, leaves (aqueous extract 10%) | TiO(OH)2 5 mM | Ratio 1:17 Incubation time: 24 h Temperature: 37 °C | Spherical 30 ± 5 nm (TEM) | Larvicidal (An. subpictus and Cx. quinquefasciatus) | Wild populations | 5.84 4.31 | [211] |
10 | Momordica charantia leaves (aqueous extract 10%) | TiCl4 5 mM | Ratio1:4 Incubation time: 15 min Temperature: room | Irregular 70 nm (HR-TEM) | Larvicidal and pupicidal (An. stephensi) | Wild populations | 3.43 | [212] |
11 | Morinda citrifolia roots (aqueous extract 8%) | TiO(OH)2 5 mM | Ratio 1:4 Incubation time: 4 h Temperature: 50 °C | Spherical, oval, and triangular 20.46–39.20 nm (TEM) | Larvicidal (An. stephensi, Ae. Aegypti and Cx. quinquefasciatus) | NM | 5.03 16.29 21.64 | [213] |
12 | Solanum trilobatum leaves (aqueous extract 10%) | TiO(OH)2 5 mM | Ratio 1:4 Incubation time: 24 h Temperature: Room | Spherical ~70 nm (SEM) | Larvicidal (An. subpictus) | Wild populations | 0.97 0.99 0.99 | [214] |
13 | Vitex negundo, leaves (aqueous extract 10%) | TiCl4 5 mM | Ratio 1:4 Incubation time: 15 min Temperature: Room | Spherical ~93.3 nm (SEM) | Larvicidal (An. subpictus and Cx. quinquefasciatus) | Wild populations | 7.52 7.23 | [215] |
14 | Clausena dentate, leaves (aqueous extract 10%) | H2SeO3 1 mM | Ratio 3:22 Incubation time: 24 h Temperature: 37 °C | Spherical, 46–78 nm (SEM) | Larvicidal (An. stephensi, Ae. aegypti and Cx. quinquefasciatus) | Laboratory strains | 240.71 104.13 99.60 | [216] |
15 | Ceropegia bulbosa, tuber (aqueous extract 10%) | H2SeO3 40 mM | Ratio 1:4 Incubation time: 24 h Temperature: 37 °C | Spherical 55.9 nm (HR-TEM) | Larvicidal (An. albopictus) | Laboratory strains | 250 | [217] |
16 | Nigella sativa, seed (aqueous extract 5%) | H2SeO3 0,01 mM | Ratio 1:1 Incubation time: 1 h Temperature: 60 °C | Clusters, 55–75 nm (SEM) | Larvicidal (Cx. pipiens) | Laboratory strains | 17.39 | [218] |
17 | Nilgirianthus ciliates leaves (aqueous extract 5%) | H2SeO3 30 mM | Ratio 1:4 Incubation time: 24 h Temperature: 30 ± 2 °C | Spherical 100 nm (FE-SEM) | Larvicidal (Ae. aegypti) | Wild populations | 0.92 | [219] |
18 | Opuncia ficus-indica peel (aqueous extract 10%) | Na2SeO3 2 mM | Ratio 1:9 Incubation time: 24 h Temperature: 37 °C | Spherical 10–87 nm (TEM) | Larvicidal (Cx. pipiens) | Laboratory strains | 75.41 | [220] |
19 | Ulva lactuta seaweed (aqueous extract 10%) | Zn(CH3COO)2. 2H2O 1 mM | Ratio 5:95 Incubation time: 4 h Temperature: 70 °C | Sponge-like 10–50 nm (TEM) | Larvicidal (Ae. aegypti) | Wild populations | 38 | [221] |
20 | Myristica fragrans fruit (aqueous extract 10%) | Zn(NO3)2.6H2O | Ratio 6% (w/v) Incubation time: 60 °C Temperature: 2 h | Semispherical, hexagonal 43.3–83.1 nm (TEM, SEM, DLS) f | Larvicidal (Ae. aegypti) | NM | 5 | [222] |
21 | Cocos nucifera fruits (methanol extract 4%) | Pd(OAc)2 1 mM | Ratio 1:1 Incubation time: 6 h Temperature: 60 °C | Spherical 32 ± 3 nm (TEM) | Larvicidal and ovicidal (Ae. aegypti) | Wild populations | 288.88 | [223] |
22 | Citrus limon leaves (aqueous extract 10%) | PdCl2 1 mM | Ratio 1:9 Incubation time: 24 h Temperature 29 °C | Spherical, 1.5–18.5 nm (TEM) | Larvicidal (An. stephensi) | Wild populations | 5.12–10.83 | [224] |
23 | Nephrolepis exaltata whole plant (aqueous extract 10%) | FeCl3.6H2O 0.01 M | Ratio 9:1 Incubation time: 2 h Temperature: 60 °C pH: 8 | Spherical 30–70 nm (TEM) | Larvicidal (An. stephensi) | Wild populations | 25 | [225] |
24 | Aegle marmelos, leaves (aqueous extract 10%) | NiCl2 1 mM | Ratio 1:4 Incubation time: 5 h Temperature: 60 °C | Triangular 80–100 nm (SEM) | Larvicidal (An. stephensi, Ae. aegypti and Cx. quinquefasciatus) | Wild populations | 534.83 595.23 520.83 | [226] |
25 | Cocos nucifera, fruits (aqueous extract 1%) | Ni (OAc)2 1 mM | Ratio 1:4 Incubation time: 7 h Temperature: 60 °C | Cubical 47 nm (TEM) | Larvicidal (Ae. aegypti) | Wild populations | 259.24 | [227] |
26 | Artemisia vulgaris, leaves (aqueous extract 10%) | HAuCl4 1 mM | Ratio 1:9 Incubation time: 24 h Temperature: 37 °C | Spherical, triangular, and hexagonal 50–100 nm (TEM) | Larvicidal (Ae. aegypti) | Laboratory strains | 74.42 | [228] |
27 | Moringa oleifera, leaves (aqueous extract 2.5%) | HAuCl4.3H2O 1 mM | Ratio 1:10 Incubation time: 24 h Temperature: 37 °C | Spherical, oval, triangular, and pentagonal 10–60 nm (TEM) | Larvicidal (Cx. quinquefasciatus) | Laboratory strains | 8.24 | [229] |
28 | Cymbopogon citrates, leaves (aqueous extract 5%) | HAuCl4 1 mM | Ratio 1:10 Incubation time: 72 h Temperature: 25 °C | Spherical, triangular, hexagonal, and rod 20–50 nm (TEM) | Larvicidal (An. stephensi and Ae. aegypti) | Wild populations | 18.50–41.52 | [230] |
29 | Curcuma zedoaria, roots (essential oil) | AgNO3 5 mM | Ratio NM Incubation time: NM Temperature: NM pH 7 (NaOH 0.1%) | Globular 92.44 nm (SEM) | Larvicidal (Cx. quinquefasciatus) | Laboratory strains and wild populations | 36.32 | [231] |
30 | Halodule uninervis Leaves (aqueous extract 10%) | AgNO3 1 mM | NM g | Cubic, 20–35 nm (SEM) | Larvicidal (Ae. aegypti) | Wild populations | 12.56 | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onen, H.; Luzala, M.M.; Kigozi, S.; Sikumbili, R.M.; Muanga, C.-J.K.; Zola, E.N.; Wendji, S.N.; Buya, A.B.; Balciunaitiene, A.; Viškelis, J.; et al. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. Insects 2023, 14, 221. https://doi.org/10.3390/insects14030221
Onen H, Luzala MM, Kigozi S, Sikumbili RM, Muanga C-JK, Zola EN, Wendji SN, Buya AB, Balciunaitiene A, Viškelis J, et al. Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. Insects. 2023; 14(3):221. https://doi.org/10.3390/insects14030221
Chicago/Turabian StyleOnen, Hudson, Miryam M. Luzala, Stephen Kigozi, Rebecca M. Sikumbili, Claude-Josué K. Muanga, Eunice N. Zola, Sébastien N. Wendji, Aristote B. Buya, Aiste Balciunaitiene, Jonas Viškelis, and et al. 2023. "Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles" Insects 14, no. 3: 221. https://doi.org/10.3390/insects14030221
APA StyleOnen, H., Luzala, M. M., Kigozi, S., Sikumbili, R. M., Muanga, C. -J. K., Zola, E. N., Wendji, S. N., Buya, A. B., Balciunaitiene, A., Viškelis, J., Kaddumukasa, M. A., & Memvanga, P. B. (2023). Mosquito-Borne Diseases and Their Control Strategies: An Overview Focused on Green Synthesized Plant-Based Metallic Nanoparticles. Insects, 14(3), 221. https://doi.org/10.3390/insects14030221