Quality Characteristics of Black Soldier Flies Produced by Different Substrates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Larvae Rearing Control
2.2. Larval Growing Performance
2.3. Substrates
2.4. Chemical Composition Analysis
2.5. Larval Convergence Efficiency Evaluation
2.6. Fatty Acid Composition
2.7. Statistical Analysis
3. Results
3.1. Larvae Growing Performance
3.2. Nutrient Composition of BSF Larvae
3.3. Larval Convergence Efficiency
3.4. Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ido, A.; Ali, M.F.Z.; Takahashi, T.; Miura, C.; Miura, T. Growth of yellowtail (Seriola quinqueradiata) fed on a diet including partially or completely defatted black soldier fly (Hermetia illucens) larvae meal. Insects 2021, 12, 722. [Google Scholar] [CrossRef]
- Ko, H.S.; Kim, Y.H.; Kim, J.S. The produced mealworm meal through organic wastes as a sustainable protein source for weanling pigs. J. Anim. Sci. Technol. 2020, 62, 365–373. [Google Scholar] [CrossRef]
- Hosseindoust, A.; Mun, J.; Ha, S.H.; Kim, J. Effects of meal processing of black soldier fly on standardized amino acids digestibility in pigs. J. Anim. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Hong, J.; Kim, Y.Y. Insect as feed ingredients for pigs. Anim. Biosci. 2022, 35, 347–355. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, T.-K.; Cha, J.Y.; Jang, H.W.; Yong, H.I.; Choi, Y.-S. How to develop strategies to use insects as animal feed: Digestibility, functionality, safety, and regulation. J. Anim. Sci. Technol. 2022, 64, 409–431. [Google Scholar] [CrossRef]
- English, G.; Wanger, G.; Colombo, S.M. A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. J. Agric. Food Res. 2021, 5, 100164. [Google Scholar] [CrossRef]
- Naser El Deen, S.; van Rozen, K.; Elissen, H.; van Wikselaar, P.; Fodor, I.; van der Weide, R.; Hoek-van den Hil, E.F.; Rezaei Far, A.; Veldkamp, T. Bioconversion of different waste streams of animal and vegetal origin and manure by black soldier fly larvae Hermetia illucens. (Diptera: Stratiomyidae). Insects 2023, 14, 204. [Google Scholar] [CrossRef]
- Choi, Y.; Hosseindoust, A.; Goel, A.; Lee, S.; Jha, P.K.; Kwon, I.K.; Chae, B.J. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. Asian-Australas. J. Anim. Sci. 2017, 30, 64–70. [Google Scholar] [CrossRef]
- Yakti, W.; Förster, N.; Müller, M.; Mewis, I.; Ulrichs, C. Hemp waste as a substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) rearing. Insects 2023, 14, 183. [Google Scholar] [CrossRef]
- Kar, S.K.; Schokker, D.; Harms, A.C.; Kruijt, L.; Smits, M.A.; Jansman, A.J.M. Local intestinal microbiota response and systemic effects of feeding black soldier fly larvae to replace soybean meal in growing pigs. Sci. Rep. 2021, 11, 15088. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the rearing substrate on total protein and amino acid composition in black soldier fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Seyedalmoosavi, M.M.; Mielenz, M.; Veldkamp, T.; Daş, G.; Metges, C.C. Growth efficiency, intestinal biology, and nutrient utilization and requirements of black soldier fly (Hermetia illucens) larvae compared to monogastric livestock species: A review. J. Anim. Sci. Biotechnol. 2022, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- Hopkins, I.; Newman, L.P.; Gill, H.; Danaher, J. The influence of food waste rearing substrates on black soldier fly larvae protein composition: A systematic review. Insects 2021, 12, 608. [Google Scholar] [CrossRef]
- Cammack, J.A.; Tomberlin, J.K. The impact of diet protein and carbohydrate on select life-history traits of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects 2017, 8, 56. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.; et al. Nutritional composition of black soldier fly larvae (Hermetia illucens) and its potential uses as alternative protein sources in animal diets: A Review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef]
- Kim, C.H.; Ryu, J.; Lee, J.; Ko, K.; Lee, J.Y.; Park, K.Y.; Chung, H. Use of black soldier fly larvae for food waste treatment and energy production in asian countries: A review. Processes 2021, 9, 161. [Google Scholar] [CrossRef]
- Georgescu, B.; Boaru, A.M.; Muntean, L.; Sima, N.; Struți, D.I.; Păpuc, T.A.; Georgescu, C. Modulating the fatty acid profiles of Hermetia illucens larvae fats by dietary enrichment with different oilseeds: A sustainable way for future use in feed and food. Insects 2022, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Analytical Chemists. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists International: Rockville, MD, USA, 2007; Volume 1. [Google Scholar]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Dubois, T.; Ekesi, S.; van Loon, J.J.A.; Dicke, M. Black soldier fly larval meal in feed enhances growth performance, carcass yield and meat quality of finishing pigs. J. Insects Food Feed. 2021, 7, 433–447. [Google Scholar] [CrossRef]
- Recharla, N.; Kim, K.; Park, J.; Jeong, J.; Jeong, Y.; Lee, H.; Hwang, O.; Ryu, J.; Baek, Y.; Oh, Y.; et al. Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol. 2017, 59, 28. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Srikanth, B.H.; Kumari, K. Determining the black soldier fly larvae performance for plant-based food waste reduction and the effect on biomass yield. Waste Manag. 2021, 130, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 2020, 4, txaa104. [Google Scholar] [CrossRef]
- Tansil, F.; Pezzali, J.G.; Cargo-Froom, C.; Huber, L.-A.; Kiarie, E.G.; Courtney-Martin, G.; Levesque, C.L.; Shoveller, A.K. Evaluation of standardized ileal digestibility of amino acids and metabolic availability of methionine, using the indicator amino acid oxidation method, in black soldier fly larvae (Hermetia illucens) meal fed to growing pigs. J. Anim. Sci. 2023, 101, skac420. [Google Scholar] [CrossRef]
- Arabzadeh, G.; Delisle-Houde, M.; Tweddell, R.J.; Deschamps, M.H.; Dorais, M.; Lebeuf, Y.; Derome, N.; Vandenberg, G. Diet composition influences growth performance, bioconversion of black soldier fly larvae: Agronomic value and In Vitro biofungicidal activity of derived frass. Agronomy 2022, 12, 1765. [Google Scholar] [CrossRef]
- Eggink, K.M.; Donoso, I.G.; Dalsgaard, J. Optimal dietary protein to carbohydrate ratio for black soldier fly (Hermetia illucens) larvae. J. Insects Food Feed. 2023, 1–10. [Google Scholar] [CrossRef]
- Kim, B.; Bang, H.T.; Kim, K.H.; Kim, M.J.; Jeong, J.Y.; Chun, J.L.; Ji, S.Y. Evaluation of black soldier fly larvae oil as a dietary fat source in broiler chicken diets. J. Anim. Sci. Technol. 2020, 62, 187–197. [Google Scholar] [CrossRef]
- Kim, Y.B.; Kim, D.H.; Jeong, S.B.; Lee, J.W.; Kim, T.H.; Lee, H.G.; Lee, K.W. Black soldier fly larvae oil as an alternative fat source in broiler nutrition. Poult. Sci. 2020, 99, 3133–3143. [Google Scholar] [CrossRef]
- Müller, A.; Wolf, D.; Gutzeit, H.O. The black soldier fly, Hermetia illucens—A promising source for sustainable production of proteins, lipids and bioactive substances. Z. Naturforsch. C J. Biosci. 2017, 72, 351–363. [Google Scholar] [CrossRef] [PubMed]
Substrates | Food Waste | Tofu By-Product | Vegetables |
---|---|---|---|
Dry matter, % | 17.72 | 24.1 | 11.1 |
Crude protein, % | 20.2 | 29.2 | 11.2 |
Ether extract, % | 19.36 | 13.1 | 8.6 |
Ash, % | 7.66 | 7.42 | 5.9 |
Specification | Food Waste | Tofu By-Product | Vegetables | p-Value | |
---|---|---|---|---|---|
Larval weight | d 12.5 | 165.8 ± 1.42 b | 199.9 ± 1.58 a | 105.4 ± 0.65 c | 0.009 |
At harvest | 192.9 ± 1.66 b | 199.9 ± 1.58 a | 179.1 ± 1.12 c | <0.001 | |
Larval length, mm | 15.88 ± 0.18 a | 16.25 ± 0.27 a | 14.61 ± 0.22 b | 0.002 | |
Larval width, mm | 2.93 ± 0.03 | 3.00 ± 0.02 | 2.93 ± 0.02 | 0.081 | |
Development, d | 14.0 ± 0.74 b | 12.5 ± 0.66 b | 20.4 ± 1.08 a | <0.001 | |
Larvae yield, % | 79.7 ± 0.87 ab | 77.5 ± 0.68 b | 82.2 ± 0.71 a | 0.001 |
Specification | Food Waste | Tofu By-Product | Vegetables | p-Value |
---|---|---|---|---|
DM, % | 40.99 ± 1.56 ab | 42.94 ± 1.48 a | 37.98 ± 1.11 b | 0.019 |
Gross energy, MJ | 18.25 ± 0.21 | 18.43 ± 0.30 | 17.69 ± 0.21 | 0.053 |
Crude protein, % | 39.52 ± 0.94 b | 43.54 ± 0.88 a | 37.65 ± 0.96 b | <0.001 |
Ether extract, % | 38.07 ± 0.78 a | 37.03 ± 0.81 a | 34.45 ± 0.48 b | 0.001 |
Ash, % | 7.16 ± 0.39 | 7.28 ± 0.43 | 7.77 ± 0.41 | 0.421 |
Chitin, % | 8.06 ± 0.54 | 8.68 ± 0.62 | 7.12 ± 0.52 | 0.080 |
Specification 2 | Food Waste | Tofu By-Product | Vegetables | p-Value |
---|---|---|---|---|
BCR, % | 12.10 ± 0.34 b | 13.58 ± 0.29 a | 9.88 ± 0.21 c | <0.001 |
WR, % | 66.54 ± 0.77 b | 71.35 ± 0.46 a | 51.90 ± 0.76 c | <0.001 |
PCR, % | 11.30 ± 0.28 b | 8.69 ± 0.19 c | 21.44 ± 0.46 a | <0.001 |
LCR, % | 11.35 ± 0.28 c | 16.48 ± 0.35 b | 25.55 ± 0.55 a | <0.001 |
Protein yield, kg/c | 1.25 ± 0.03 b | 1.45 ± 0.03 a | 1.05 ± 0.02 c | <0.001 |
Lipid yield, kg/c | 1.20 ± 0.03 b | 1.23 ± 0.03 a | 0.96 ± 0.02 c | <0.001 |
Specification 2 | Food Waste | Tofu By-Product | Vegetables | SEM 3 | p-Value |
---|---|---|---|---|---|
Fatty acid, % of FAME | |||||
C10:0 | 1.584 ± 0.099 | 1.576 ± 0.203 | 1.581 ± 0.134 | 0.068 | 0.392 |
C12:0 | 20.972 ± 0.910 b | 22.300 ± 1.276 a | 21.431 ± 0.839 ab | 0.420 | 0.013 |
C14:0 | 2.371 ± 0.173 | 2.352 ± 0.367 | 2.36 ± 0.219 | 0.115 | 0.386 |
C14:1 | 0.168 ± 0.015 | 0.168 ± 0.034 | 0.168 ± 0.021 | 0.011 | 0.996 |
C15:0 | 0.058 ± 0.005 | 0.063 ± 0.010 | 0.058 ± 0.007 | 0.003 | 0.764 |
C15:1 | 0.066 ± 0.004 | 0.066 ± 0.010 | 0.068 ± 0.007 | 0.003 | 0.758 |
C16:0 | 8.858 ± 0.175 | 8.873 ± 0.388 | 8.860 ± 0.233 | 0.125 | 0.539 |
C16:1 | 3.222 ± 0.281 b | 3.378 ± 0.615 a | 3.250 ± 0.406 b | 0.035 | 0.855 |
C18:0 | 1.843 ± 0.080 | 1.832 ± 0.168 | 1.835 ± 0.116 | 0.057 | 0.478 |
C18:1 | 25.966 ± 0.427 ab | 26.558 ± 1.368 a | 24.138 ± 1.334 b | 0.483 | 0.031 |
C18:2n6 | 25.003 ± 0.786 | 25.467 ± 0.656 | 25.319 ± 0.487 | 0.280 | 0.251 |
C18:3n3 | 2.380 ± 0.049 ab | 2.431 ± 0.100 a | 2.301 ± 0.113 b | 0.037 | 0.027 |
C18:4 | 0.508 ± 0.037 | 0.502 ± 0.078 | 0.506 ± 0.054 | 0.026 | 0.967 |
C20:1 | 0.408 ± 0.018 | 0.415 ± 0.036 | 0.412 ± 0.025 | 0.012 | 0.815 |
C20:4n6 | 0.322 ± 0.011 | 0.321 ± 0.022 | 0.322 ± 0.014 | 0.007 | 0.991 |
C20:5n3 | 1.723 ± 0.026 | 1.722 ± 0.053 | 1.722 ± 0.035 | 0.018 | 0.998 |
C22:6n3 | 0.225 ± 0.010 | 0.221 ± 0.020 | 0.219 ± 0.014 | 0.007 | 0.896 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseindoust, A.; Ha, S.H.; Mun, J.Y.; Kim, J.S. Quality Characteristics of Black Soldier Flies Produced by Different Substrates. Insects 2023, 14, 500. https://doi.org/10.3390/insects14060500
Hosseindoust A, Ha SH, Mun JY, Kim JS. Quality Characteristics of Black Soldier Flies Produced by Different Substrates. Insects. 2023; 14(6):500. https://doi.org/10.3390/insects14060500
Chicago/Turabian StyleHosseindoust, Abdolreza, Sang Hun Ha, Jun Young Mun, and Jin Soo Kim. 2023. "Quality Characteristics of Black Soldier Flies Produced by Different Substrates" Insects 14, no. 6: 500. https://doi.org/10.3390/insects14060500
APA StyleHosseindoust, A., Ha, S. H., Mun, J. Y., & Kim, J. S. (2023). Quality Characteristics of Black Soldier Flies Produced by Different Substrates. Insects, 14(6), 500. https://doi.org/10.3390/insects14060500