Genetic Identification and Traceability of Insect Meals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Sample Processing and DNA Extractions
3. Results
3.1. DNA Fragment Selection for Genetic Identification
3.2. Analysis of the Insect Meals
4. Discussion
4.1. Suitability of the Selected DNA Region
4.2. Reliability of the PCR-Cloning Methodology
4.3. Νon-Targeted Genetic Analyses of Insect Meal Composition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kinyuru, J.N.; Mogendi, J.B.; Riwa, C.A.; Ndung’u, N.W. Edible Insects-A Novel Source of Essential Nutrients for Human Diet: Learning from Traditional Knowledge. Anim. Front. 2015, 5, 14–19. [Google Scholar] [CrossRef]
- Mastoraki, M.; Mollá Ferrándiz, P.; Vardali, S.C.; Kontodimas, D.C.; Kotzamanis, Y.P.; Gasco, L.; Chatzifotis, S.; Antonopoulou, E. A Comparative Study on the Effect of Fish Meal Substitution with Three Different Insect Meals on Growth, Body Composition and Metabolism of European Sea Bass (Dicentrarchus labrax L.). Aquaculture 2020, 528, 735511. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; Osuga, I.M.; Alaru, A.O.; Mwangi, D.M.; Githinji, M.; Subramanian, S.; Fiaboe, K.K.M.; Ekesi, S.; van Loon, J.J.A.; et al. Effect of Dietary Replacement of Fishmeal by Insect Meal on Growth Performance, Blood Profiles and Economics of Growing Pigs in Kenya. Animals 2019, 9, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Union. Regulation 2021/882/EC, 2021 Commission Regulation (EU) 2021/882—Of 1 June 2021. Off. J. Eur. Union 2021, 64, 16–20. [Google Scholar]
- European Union. Regulation 2017/893/EC, 2017 Commission Regulation (EU) 2017/893—Of 24 May 2017—Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provision. Off. J. Eur. Union 2017, 60, 92–116. [Google Scholar]
- European Union. European Commission Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animal. Off. J. Eur. Union 2021, 2016, 1–17. [Google Scholar]
- Payne, C.L.R.; Megido, R.C.; Dobermann, D.; Frédéric, F.; Shockley, M.; Sogari, G. Insects as Food in the Global North—The Evolution of the Entomophagy Movement. In Edible Insects in the Food Sector; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Yen, A.L. Edible Insects: Traditional Knowledge or Western Phobia? Entomol. Res. 2009, 39, 289–298. [Google Scholar] [CrossRef]
- Hubert, A. Industrial Insect Production as an Alternative Source of Animal Protein. Comptes Rendus Biol. 2019, 342, 276–277. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects. In Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect Meals in Fish Nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef] [Green Version]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [Green Version]
- Rumbos, C.I.; Oonincx, D.G.A.B.; Karapanagiotidis, I.T.; Vrontaki, M.; Gourgouta, M.; Asimaki, A.; Mente, E.; Athanassiou, C.G. Agricultural By-Products from Greece as Feed for Yellow Mealworm Larvae: Circular Economy at a Local Level. J. Insects Food Feed. 2022, 8, 9–22. [Google Scholar] [CrossRef]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Premalatha, M.; Abbasi, T.; Abbasi, T.; Abbasi, S.A. Energy-Efficient Food Production to Reduce Global Warming and Ecodegradation: The Use of Edible Insects. Renew. Sustain. Energy Rev. 2011, 15, 4357–4360. [Google Scholar] [CrossRef]
- Antonopoulou, E.; Panteli, N.; Feidantsis, K.; Mastoraki, M.; Koutsogeorgiou, E.I.; Grivaki, E.; Papagrigoriou, T.; Christias, S.P.; Chatzifotis, S.; Lazari, D.; et al. Carob (Ceratonia siliqua) as Functional Feed Is Beneficial in Yellow Mealworm (Tenebrio molitor) Rearing: Evidence from Growth, Antioxidant Status and Cellular Responses. Antioxidants 2022, 11, 1840. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the Nutritive Profile of Three Insect Meals and Their Effects to Replace Soya Bean in Broiler Diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, e662–e668. [Google Scholar] [CrossRef] [PubMed]
- Mastoraki, M.; Panteli, N.; Kotzamanis, Y.P.; Gasco, L.; Antonopoulou, E.; Chatzifotis, S. Nutrient Digestibility of Diets Containing Five Different Insect Meals in Gilthead Sea Bream (Sparus aurata) and European Sea Bass (Dicentrarchus labrax). Anim. Feed Sci. Technol. 2022, 292, 115425. [Google Scholar] [CrossRef]
- Bousdras, T.; Feidantsis, K.; Panteli, N.; Chatzifotis, S.; Piccolo, G.; Gasco, L.; Gai, F.; Antonopoulou, E. Dietary Tenebrio Molitor Larvae Meal Inclusion Exerts Tissue-Specific Effects on Cellular, Metabolic, and Antioxidant Status in European Sea Bass (Dicentrarchus labrax) and Gilthead Seabream (Sparus aurata). Aquac. Nutr. 2022, 2022, 9858983. [Google Scholar] [CrossRef]
- Li, Y.; Kortner, T.M.; Chikwati, E.M.; Belghit, I.; Lock, E.J.; Krogdahl, Å. Total Replacement of Fish Meal with Black Soldier Fly (Hermetia illucens) Larvae Meal Does Not Compromise the Gut Health of Atlantic Salmon (Salmo salar). Aquaculture 2020, 520, 734967. [Google Scholar] [CrossRef]
- Panteli, N.; Mastoraki, M.; Lazarina, M.; Chatzifotis, S.; Mente, E.; Kormas, K.A.; Antonopoulou, E. Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals. Microorganisms 2021, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio Molitor Larvae Meal on Growth Performance, in Vivo Nutrients Digestibility, Somatic and Marketable Indexes of Gilthead Sea Bream (Sparus aurata). Anim. Feed Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Abdel-Tawwab, M.; Khalil, R.H.; Metwally, A.A.; Shakweer, M.S.; Khallaf, M.A.; Abdel-Latif, H.M.R. Effects of Black Soldier Fly (Hermetia illucens L.) Larvae Meal on Growth Performance, Organs-Somatic Indices, Body Composition, and Hemato-Biochemical Variables of European Sea Bass, Dicentrarchus Labrax. Aquaculture 2020, 522, 735136. [Google Scholar] [CrossRef]
- Henry, M.A.; Gasco, L.; Chatzifotis, S.; Piccolo, G. Does Dietary Insect Meal Affect the Fish Immune System? The Case of Mealworm, Tenebrio Molitor on European Sea Bass, Dicentrarchus Labrax. Dev. Comp. Immunol. 2018, 81, 204–209. [Google Scholar] [CrossRef]
- Basto, A.; Matos, E.; Valente, L.M.P. Nutritional Value of Different Insect Larvae Meals as Protein Sources for European Sea Bass (Dicentrarchus labrax) Juveniles. Aquaculture 2020, 521, 735085. [Google Scholar] [CrossRef]
- Bosi, A.; Banfi, D.; Moroni, F.; Ceccotti, C.; Giron, M.C.; Antonini, M.; Giaroni, C.; Terova, G. Effect of Partial Substitution of Fishmeal with Insect Meal (Hermetia illucens) on Gut Neuromuscular Function in Gilthead Sea Bream (Sparus aurata). Sci. Rep. 2021, 11, 21788. [Google Scholar] [CrossRef] [PubMed]
- Fabrikov, D.; Vargas-García, M.D.C.; Barroso, F.G.; Sánchez-Muros, M.J.; Cacua Ortíz, S.M.; Morales, A.E.; Cardenete, G.; Tomás-Almenar, C.; Melenchón, F. Effect on Intermediary Metabolism and Digestive Parameters of the High Substitution of Fishmeal with Insect Meal in Sparus Aurata Feed. Insects 2021, 12, 965. [Google Scholar] [CrossRef] [PubMed]
- Fabrikov, D.; Sánchez-Muros, M.J.; Barroso, F.G.; Tomás-Almenar, C.; Melenchón, F.; Hidalgo, M.C.; Morales, A.E.; Rodriguez-Rodriguez, M.; Montes-Lopez, J. Comparative Study of Growth Performance and Amino Acid Catabolism in Oncorhynchus Mykiss, Tinca Tinca and Sparus Aurata and the Catabolic Changes in Response to Insect Meal Inclusion in the Diet. Aquaculture 2020, 529, 735731. [Google Scholar] [CrossRef]
- Håkenåsen, I.M.; Grepperud, G.H.; Hansen, J.Ø.; Øverland, M.; Ånestad, R.M.; Mydland, L.T. Full-Fat Insect Meal in Pelleted Diets for Weaned Piglets: Effects on Growth Performance, Nutrient Digestibility, Gastrointestinal Function, and Microbiota. Anim. Feed. Sci. Technol. 2021, 281, 115086. [Google Scholar] [CrossRef]
- Meyer, S.; Gessner, D.K.; Braune, M.S.; Friedhoff, T.; Most, E.; Höring, M.; Liebisch, G.; Zorn, H.; Eder, K.; Ringseis, R. Comprehensive Evaluation of the Metabolic Effects of Insect Meal from Tenebrio molitor L. In Growing Pigs by Transcriptomics, Metabolomics and Lipidomics. J. Anim. Sci. Biotechnol. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Józefiak, A.; Kozłowski, K.; Jankowski, J.; Józefiak, D. Tenebrio Molitor and Zophobas Morio Full-Fat Meals in Broiler Chicken Diets: Effects on Nutrients Digestibility, Digestive Enzyme Activities, and Cecal Microbiome. Animals 2019, 9, 1128. [Google Scholar] [CrossRef] [Green Version]
- Debode, F.; Marien, A.; Gérard, A.; Francis, F.; Fumière, O.; Berben, G. Development of Real-Time PCR Tests for the Detection of Tenebrio Molitor in Food and Feed. Food Addit. Contam. -Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 1421–1426. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Psarianos, M.; Rossi, G.; Schlüter, O.K. Edible Insect Processing Pathways and Implementation of Emerging Technologies. J. Insects Food Feed. 2021, 7, 877–900. [Google Scholar] [CrossRef]
- World Health Organisation. WHO Manual for Surveillance of Human Transmissible Spongiform Encephalopathies Including Variant Creutzfeldt-Jakob Disease; World Health Organisation: Geneva, Switzerland, 2003; p. 105. [Google Scholar]
- Marien, A.; Debode, F.; Aerts, C.; Ancion, C.; Francis, F.; Berben, G. Detection of Hermetia Illucens by Real-Time PCR. J. Insects Food Feed. 2018, 4, 115–122. [Google Scholar] [CrossRef]
- Zagon, J.; di Rienzo, V.; Potkura, J.; Lampen, A.; Braeuning, A. A Real-Time PCR Method for the Detection of Black Soldier Fly (Hermetia illucens) in Feedstuff. Food Control. 2018, 91, 440–448. [Google Scholar] [CrossRef]
- Tramuta, C.; Gallina, S.; Bellio, A.; Bianchi, D.M.; Chiesa, F.; Rubiola, S.; Romano, A.; Decastelli, L. A Set of Multiplex Polymerase Chain Reactions for Genomic Detection of Nine Edible Insect Species in Foods. J. Insect Sci. 2018, 18, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlachavas, A.; Karaiskou, N.; Kokokiris, L.; Zampeta, F.I.; Drosopoulou, E.; Triantafyllidis, A. Using Genetic Methods for Analysis of Fish Meals and Feeds Employed in Greek Mariculture. Aquac. Res. 2019, 50, 312–322. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Colmenero, M.; Martínez, J.L.; Roca, A.; Garcia-Vazquez, E. NGS Tools for Traceability in Candies as High Processed Food Products: Ion Torrent PGM versus Conventional PCR-Cloning. Food Chem. 2017, 214, 631–636. [Google Scholar] [CrossRef]
- Garino, C.; Zagon, J.; Braeuning, A. Insects in Food and Feed—Allergenicity Risk Assessment and Analytical Detection. EFSA J. 2019, 17, e170907. [Google Scholar] [CrossRef] [Green Version]
- Hillinger, S.; Saeckler, J.; Domig, K.J.; Dobrovolny, S.; Hochegger, R. Development of a DNA Metabarcoding Method for the Identification of Insects in Food. Foods 2023, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- Arrese, E.L.; Soulages, J.L. Insect Fat Body: Energy, Metabolism, and Regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Piskata, Z.; Pospisilova, E.; Borilova, G. Comparative Study of DNA Extraction Methods from Fresh and Processed Yellowfin Tuna Muscle Tissue. Int. J. Food Prop. 2017, 20, S430–S443. [Google Scholar] [CrossRef] [Green Version]
- Cantu, C.; Bucheli, S.; Houston, R. Comparison of DNA Extraction Techniques for the Recovery of Bovine DNA from Fly Larvae Crops. J. Forensic Sci. 2022, 67, 1651–1659. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Jeremy, R. Biological Identifications through DNA Barcodes. Proc. R. Soc. London. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Horreo, J.L.; Ardura, A.; Pola, I.G.; Martinez, J.L.; Garcia-Vazquez, E. Universal Primers for Species Authentication of Animal Foodstuff in a Single Polymerase Chain Reaction. J. Sci. Food Agric. 2013, 93, 354–361. [Google Scholar] [CrossRef]
- Meusnier, I.; Singer, G.A.C.; Landry, J.F.; Hickey, D.A.; Hebert, P.D.N.; Hajibabaei, M. A Universal DNA Mini-Barcode for Biodiversity Analysis. BMC Genom. 2008, 9, 4–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minoudi, S.; Karaiskou, N.; Avgeris, M.; Gkagkavouzis, K.; Tarantili, P.; Triantafyllidou, D.; Palilis, L.; Avramopoulou, V.; Tsikliras, A.; Barmperis, K.; et al. Seafood Mislabeling in Greek Market Using DNA Barcoding. Food Control. 2020, 113, 107213. [Google Scholar] [CrossRef]
- Kim, H.; Shin, S.E.; Ko, K.S.; Park, S.H. The Application of Mitochondrial COI Gene-Based Molecular Identification of Forensically Important Scuttle Flies (Diptera: Phoridae) in Korea. Biom. Res. Int. 2020, 2020, 6235848. [Google Scholar] [CrossRef]
- Jung, S.; Duwal, R.K.; Lee, S. COI Barcoding of True Bugs (Insecta, Heteroptera). Mol. Ecol. Resour. 2011, 11, 266–270. [Google Scholar] [CrossRef]
- Wang, J.F.; Jiang, L.Y.; Qiao, G.X. Use of a Mitochondrial COI Sequence to Identify Species of the Subtribe Aphidina (Hemiptera, Aphididae). Zookeys 2011, 122, 1–17. [Google Scholar] [CrossRef]
- Cai, J.; Wen, J.; Chang, Y.; Meng, F.; Guo, Y.; Yang, L.; Liang, L. Identification of Forensically Significant Beetles (Coleoptera: Staphylinoidae) Based on COI Gene in China. Rom. J. Leg. Med. 2011, 19, 211–218. [Google Scholar] [CrossRef]
- Poolprasert, P.; Senarat, S.; Dokchan, P. Use COI Gene Sequence for Species Identification of Webspinners (Embioptera) in Thailand. Khon Kaen Agric. J. 2020, 48, 755–764. [Google Scholar]
- Wilson, J.J. DNA Barcodes for Insects. Methods Mol. Biol. 2012, 858, 17–46. [Google Scholar] [CrossRef]
- Ferreira, S.A.; Andrade, R.; Gonçalves, A.R.; Sousa, P.; Paupério, J.; Fonseca, N.A. The InBIO Barcoding Initiative Database: DNA Barcodes of Portuguese Diptera 01. Biodivers. Data J. 2020, 8, e49985. [Google Scholar] [CrossRef] [Green Version]
- Gizzi, G.; Von Holst, C.; Baeten, V.; Berben, G.; van Raamsdonk, L. Determination of Processed Animal Proteins, Including Meat and Bone Meal, in Animal Feed. J. AOAC Int. 2004, 87, 1334–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, K.A.; Samson, R.A.; DeWaard, J.R.; Houbraken, J.; Lévesque, C.A.; Moncalvo, J.M.; Louis-Seize, G.; Hebert, P.D.N. Prospects for Fungus Identification Using CO1 DNA Barcodes, with Penicillium as a Test Case. Proc. Natl. Acad. Sci. USA 2007, 104, 3901–3906. [Google Scholar] [CrossRef]
- Dentinger, B.T.M.; Didukh, M.Y.; Moncalvo, J.M. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina). PLoS ONE 2011, 6, e25081. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, I. Yeast—Insect Associations: It takes guts. Yeast 2018, 35, 315–330. [Google Scholar] [CrossRef] [Green Version]
- Klunder, H.C.; Wolkers-Rooijackers, J.; Korpela, J.M.; Nout, M.J.R. Microbiological Aspects of Processing and Storage of Edible Insects. Food Control. 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Anselmo, A.; Veys, P.; Fumière, O.; Lecrenier, M.C.; Cordonnier, A.; Michez, D.; Baeten, V. Challenges Related to the Application of Analytical Methods to Control Insect Meals in the Context of European Legislation. Food Addit. Contam. -Part A 2023, 40, 699–710. [Google Scholar] [CrossRef]
Insect Meal (IM) | Declared Composition | Type of Processing | Origin |
---|---|---|---|
IM 1 | Hermetia illucens | Dried/Defatted | Baruth/Mark, Germany |
IM 2 | Hermetia illucens | Dried/Defatted | Baruth/Mark, Germany |
IM 3 | Hermetia illucens | Dried/Defatted | Baruth/Mark, Germany |
IM 4 | Hermetia illucens | Dried/Defatted | Baruth/Mark, Germany |
IM 5 | Hermetia illucens | Dried/Defatted | Nesle, France |
IM 6 | Musca domestica | Dried/Non-Defatted | Russia |
IM 7 | Musca domestica | Dried/Non-Defatted | Russia |
IM 8 | Tenebrio molitor | Freeze-dried/Non-Defatted | Ermelo, The Netherlands |
IM 9 | Tenebrio molitor | Air-dried/Non-Defatted | Benaki Phytopathological Ιnstitute |
Primers | Gene | Fragment Size | PCR Conditions | Reference |
---|---|---|---|---|
16S-HF | 16S rDNA | 80–125 bp | 95 °C–5 min/(95 °C–20 s, 58 °C–20 s, 72 °C–30 s) × 35 cycles/ 72 °C–20 min/20 °C–1 min | Horreo et al., 2013 [48] |
16S-HR | ||||
Uni-MinibarR1 | COI | 130 bp | 95 °C–2 min/(95 °C–1 min, 46 °C–1 min, 72 °C–30 s) × 5 cycles/ (95 °C–1 min, 53 °C–1 min, 72 °C–30 s) × 35 cycles/72 °C–5 min | Meusnier et al., 2008 [49] |
Uni-MinibarF1 | ||||
LepF1 | COI | 648 bp | 94 °C–1 min/(94 °C–1 min, 45 °C–1 min 30 s, 72 °C–1 min 15 s) × 6 cycles/(94 °C–1 min, 51 °C–1 min 30 s, 72 °C–1 min 15 s) × 36 cycles/72 °C–5 min | Hebert et al., 2004 [47] |
LepR1 |
Number of Samples/Stage of Life | Morphological Identification | Genetic Identification | Sequence Similarity with Deposited in NCBI Database |
---|---|---|---|
4/larvae | Hermetia illucens | Hermetia illucens | 100% |
4/larvae | Tenebrio molitor | Tenebrio molitor | 100% |
6/larvae | Musca domestica | Μuscina stabulans | 99.77% |
1/adult | - | Musca domestica | 100% |
1/adult | - | Sarcophaga africa | 100% |
Insect Meal (IM) | Declared Composition | Identified/ Amplified Clones | Result of Genetic Analysis |
---|---|---|---|
IM 1 | Hermetia illucens | 45/48 | Hermetia illucens |
IM 2 | Hermetia illucens | 49/53 | Hermetia illucens |
IM 3 | Hermetia illucens | 41/46 | Hermetia illucens |
IM 4 | Hermetia illucens | 42/48 | Hermetia illucens |
IM 5 | Hermetia illucens | 46/52 | Hermetia illucens |
IM 6 | Musca domestica | 47/51 | Musca domestica |
IM 7 | Musca domestica | 43/46 | Musca domestica |
IM 8 | Tenebrio molitor | 20/35 | Tenebrio molitor |
IM 9 | Tenebrio molitor | 34/39 | Tenebrio molitor |
Fungi species |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moulistanos, A.; Karaiskou, N.; Gkagkavouzis, K.; Minoudi, S.; Drosopoulou, E.; Ioannidou, C.; Panteli, N.; Zografou, S.; Karaouglanis, D.; Kotouzas, D.; et al. Genetic Identification and Traceability of Insect Meals. Insects 2023, 14, 610. https://doi.org/10.3390/insects14070610
Moulistanos A, Karaiskou N, Gkagkavouzis K, Minoudi S, Drosopoulou E, Ioannidou C, Panteli N, Zografou S, Karaouglanis D, Kotouzas D, et al. Genetic Identification and Traceability of Insect Meals. Insects. 2023; 14(7):610. https://doi.org/10.3390/insects14070610
Chicago/Turabian StyleMoulistanos, Aristotelis, Nikoleta Karaiskou, Konstantinos Gkagkavouzis, Styliani Minoudi, Elena Drosopoulou, Chrysanthi Ioannidou, Nikolas Panteli, Stella Zografou, Damianos Karaouglanis, Dimitrios Kotouzas, and et al. 2023. "Genetic Identification and Traceability of Insect Meals" Insects 14, no. 7: 610. https://doi.org/10.3390/insects14070610
APA StyleMoulistanos, A., Karaiskou, N., Gkagkavouzis, K., Minoudi, S., Drosopoulou, E., Ioannidou, C., Panteli, N., Zografou, S., Karaouglanis, D., Kotouzas, D., Kontodimas, D., Antonopoulou, E., & Triantafyllidis, A. (2023). Genetic Identification and Traceability of Insect Meals. Insects, 14(7), 610. https://doi.org/10.3390/insects14070610