Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Entomopathogenic Fungi Exposure
2.3. Phenoloxidase Activity Assay
2.4. Reverse Transcriptase Quantitative PCR (RT-qPCR) Detection and Quantification
2.5. Survival
2.6. Statistical Analysis
3. Results
3.1. Survival
3.2. Microbial Loads
3.3. Total Phenoloxidase (PO) Activity
3.4. Gene Expression
3.4.1. Prophenoloxidase (proPO)
3.4.2. Immune Signaling Pathways
3.4.3. Stress Response-Detoxification
3.4.4. Antimicrobial Effector Molecules
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hesketh, H.; Roy, H.; Eilenberg, J.; Pell, J.; Hails, R. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. BioControl 2010, 55, 55–73. [Google Scholar] [CrossRef]
- Roy, H.E.; Steinkraus, D.; Eilenberg, J.; Hajek, A.; Pell, J.K. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 2006, 51, 331–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, M.; Jaronski, S. Mass production of entomogenous fungi for biological control of insects. In Fungi in Biological Control Systems; Burge, M.N., Ed.; Manchester University Press: Manchester, UK, 1988; pp. 61–85. [Google Scholar]
- Jaronski, S. Mass production of entomopathogenic fungi—State of the art. In Mass Production of Beneficial Organisms: Invertebrates and Entomopathogens; Morales-Ramos, J.A., Guadalupe Rojas, M., Shapiro-Ilan, D.I., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 357–413. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Jackson, M.A.; Dunlap, C.A.; Jaronski, S.T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 2010, 55, 129–145. [Google Scholar] [CrossRef]
- Ortiz-Urquiza, A.; Luo, Z.; Keyhani, N.O. Improving mycoinsecticides for insect biological control. Appl. Microbiol. Biotechnol. 2015, 99, 1057–1068. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S. Insect pathogenic fungi: Genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 2017, 62, 73–90. [Google Scholar] [CrossRef]
- Lovett, B.; St. Leger, R.J. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 2018, 74, 781–789. [Google Scholar] [CrossRef]
- Zhao, H.; Lovett, B.; Fang, W. Chapter Five–Genetically engineering entomopathogenic fungi. In Advances in Genetics; Lovett, B., St. Leger, R.J., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 137–163. [Google Scholar] [CrossRef]
- Butt, T.; Goettel, M. Bioassays of entomogenous fungi. In Bioassays of Entomopathogenic Microbes and Nematodes; Navon, A., Ascher, K.R.S., Eds.; CABI Publishing: New York, NY, USA, 2000; pp. 141–195. [Google Scholar]
- Xu, L.; Zhang, Y.; Zhang, S.; Deng, J.; Lu, M.; Zhang, L.; Zhang, J. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. Dev. Comp. Immunol. 2018, 88, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, P.; Cui, F.; Kang, L. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. PLoS Pathog. 2013, 9, e1003102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinsley, M.; Blanford, S.; Jiggins, F. Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 2006, 132, 767–773. [Google Scholar] [CrossRef] [Green Version]
- Pham, L.N.; Dionne, M.S.; Shirasu-Hiza, M.; Schneider, D.S. A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 2007, 3, e26. [Google Scholar] [CrossRef]
- Lu, H.-L.; Leger, R.S. Insect immunity to entomopathogenic fungi. Adv. Genet. 2016, 94, 251–285. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Wang, S. Interaction of entomopathogenic fungi with the host immune system. Dev. Comp. Immunol. 2018, 83, 96–103. [Google Scholar] [CrossRef]
- Kanost, M.R.; Jiang, H.; Yu, X.Q. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol. Rev. 2004, 198, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L.; Dunlap, C.A.; Muturi, E.J.; Barletta, A.B.; Rooney, A.P. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Neglected Trop. Dis. 2018, 12, e0006433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, J.L.; Muturi, E.J.; Dunlap, C.; Rooney, A.P. Strain-specific pathogenicity and subversion of phenoloxidase activity in the mosquito Aedes aegypti by members of the fungal entomopathogenic genus Isaria. Sci. Rep. 2018, 8, 9896. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, J.L.; Muturi, E.J.; Barletta, A.B.; Rooney, A.P. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Dev. Comp. Immunol. 2019, 95, 1–9. [Google Scholar] [CrossRef]
- Lemaitre, B.; Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007, 25, 697–743. [Google Scholar] [CrossRef] [Green Version]
- Valanne, S.; Wang, J.-H.; Rämet, M. The Drosophila toll signaling pathway. J. Immun. 2011, 186, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Uvell, H.; Engström, Y. A multilayered defense against infection: Combinatorial control of insect immune genes. Trends Genet. 2007, 23, 342–349. [Google Scholar] [CrossRef]
- Lavine, M.; Chen, G.; Strand, M. Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens. Insect Biochem. Mol. Biol. 2005, 35, 1335–1346. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-X.; Zhong, X.; Yi, H.-Y.; Yu, X.-Q. Manduca sexta gloverin binds microbial components and is active against bacteria and fungi. Dev. Comp. Immunol. 2012, 38, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Vilcinskas, A.; Kanost, M.R. Immunity in lepidopteran insects. In Invertebrate Immunity; Söderhäll, K., Ed.; Springer: New York, NY, USA, 2010; pp. 181–204. [Google Scholar] [CrossRef]
- Langen, G.; Imani, J.; Altincicek, B.; Kieseritzky, G.; Kogel, K.-H.; Vilcinskas, A. Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol. Chem. 2006, 387, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Geng, T.; Hou, C.; Huang, Y.; Qin, G.; Guo, X. Bombyx mori cecropin A has a high antifungal activity to entomopathogenic fungus Beauveria bassiana. Gene 2016, 583, 29–35. [Google Scholar] [CrossRef]
- Lu, D.; Geng, T.; Hou, C.; Qin, G.; Gao, K.; Guo, X. Expression profiling of Bombyx mori gloverin2 gene and its synergistic antifungal effect with cecropin A against Beauveria bassiana. Gene 2017, 600, 55–63. [Google Scholar] [CrossRef]
- Cerenius, L.; Lee, B.L.; Söderhäll, K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29, 263–271. [Google Scholar] [CrossRef]
- Jones, D.; Jones, G.; Hammock, B. Growth parameters associated with endocrine events in larval Trichoplusia ni (Hübner) and timing of these events with developmental markers. J. Insect Physiol. 1981, 27, 779–788. [Google Scholar] [CrossRef]
- Herde, M.; Howe, G.A. Host plant-specific remodeling of midgut physiology in the generalist insect herbivore Trichoplusia ni. Insect Biochem. Mol. Biol. 2014, 50, 58–67. [Google Scholar] [CrossRef]
- Tak, J.-H.; Isman, M.B. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pestic. Biochem. Physiol. 2016, 133, 20–25. [Google Scholar] [CrossRef]
- Kolosov, D.; Donly, C.; MacMillan, H.; O’Donnell, M.J. Transcriptomic analysis of the Malpighian tubules of Trichoplusia ni: Clues to mechanisms for switching from ion secretion to ion reabsorption in the distal ileac plexus. J. Insect Physiol. 2019, 112, 73–89. [Google Scholar] [CrossRef]
- Jones, D.; Jones, G.; Rudnicka, M.; Click, A.; Reck-Malleczewen, V.; Iwaya, M. Pseudoparasitism of host Trichoplusia ni by Chelonus spp. as a new model system for parasite regulation of host physiology. J. Insect Physiol. 1986, 32, 315–328. [Google Scholar] [CrossRef]
- Freitak, D.; Wheat, C.W.; Heckel, D.G.; Vogel, H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol. 2007, 5, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitak, D.; Heckel, D.G.; Vogel, H. Bacterial feeding induces changes in immune-related gene expression and has trans-generational impacts in the cabbage looper (Trichoplusia ni). Front. Zool. 2009, 6, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, E.; Kolosov, D.; O’Donnell, M.J.; Erlandson, M.A.; McNeil, J.N.; Donly, C. The effect of diet on midgut and resulting changes in infectiousness of AcMNPV baculovirus in the cabbage looper, Trichoplusia ni. Front. Physiol. 2018, 9, 1348. [Google Scholar] [CrossRef] [Green Version]
- Tamez-Guerra, P.; McGuire, M.R.; Behle, R.W.; Shasha, B.S.; Galn Wong, L.J. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. J. Econ. Entomol. 2000, 93, 219–225. [Google Scholar] [CrossRef]
- Tamez-Guerra, P.; Damas, G.; Iracheta, M.M.; Oppert, B.; Gomez-Flores, R.; Rodríguez-Padilla, C. Differences in susceptibility and physiological fitness of Mexican field Trichoplusia ni strains exposed to Bacillus thuringiensis. J. Econ. Entomol. 2006, 99, 937–945. [Google Scholar] [CrossRef]
- Behle, R.W.; Compton, D.L.; Laszlo, J.A.; Shapiro-Ilan, D.I. Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia. J. Econ. Entomol. 2009, 102, 1759–1766. [Google Scholar] [CrossRef]
- Hay, W.T.; Behle, R.W.; Berhow, M.A.; Miller, A.C.; Selling, G.W. Biopesticide synergy when combining plant flavonoids and entomopathogenic baculovirus. Sci. Rep. 2020, 10, 6806. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.M.M.; Behle, R.W. Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Sci. Technol. 2017, 27, 461–474. [Google Scholar] [CrossRef]
- Ericsson, J.D.; Janmaat, A.F.; Lowenberger, C.; Myers, J.H. Is decreased generalized immunity a cost of Bt resistance in cabbage loopers Trichoplusia ni? J. Invertebr. Pathol. 2009, 100, 61–67. [Google Scholar] [CrossRef]
- Janmaat, A.F.; Myers, J. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. R. Soc. B 2003, 270, 2263–2270. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef] [PubMed]
- Sadd, B.; Holman, L.; Armitage, H.; Lock, F.; Marland, R.; Siva-Jothy, M.T. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 2006, 19, 321–325. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yang, X.; Tetreau, G.; Song, X.; Coutu, C.; Hegedus, D.; Blissard, G.; Fei, Z.; Wang, P. A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni. Mol. Ecol. Resour. 2019, 19, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Bao, K.; Chen, W.; Wang, P.; Fei, Z.; Blissard, G.W. Transcriptional responses of the Trichoplusia ni midgut to oral infection by the baculovirus Autographa californica Multiple Nucleopolyhedrovirus. J. Virol. 2019, 93, e00353-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, A.S.; Blanford, S.; Jenkins, N.; Thomas, M.B.; Read, A.F. Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: Technique validation and first applications. J. Invertebr. Pathol. 2009, 100, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Motulsky, H.J.; Brown, R.E. Detecting outliers when fitting data with nonlinear regression–a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wraight, S.P.; Ramos, M.E.; Avery, P.B.; Jaronski, S.T.; Vandenberg, J.D. Comparative virulence of Beauveria bassiana isolates against lepidopteran pests of vegetable crops. J. Invertebr. Pathol. 2010, 103, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Ignoffo, C.; Garcia, C.; Kroha, M.; Couch, T. Use of larvae of Trichoplusia ni to bioassay conidia of Beauveria bassiana. J. Econ. Entomol. 1982, 75, 275–276. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, Y.; Shen, D.; Hong, F.; Wang, G.; An, C. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 2015, 128, 64–72. [Google Scholar] [CrossRef]
- Boguś, M.I.; Kędra, E.; Bania, J.; Szczepanik, M.; Czygier, M.; Jabłoński, P.; Pasztaleniec, A.; Samborski, J.; Mazgajska, J.; Polanowski, A. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. J. Invertebr. Pathol. 2007, 53, 909–922. [Google Scholar] [CrossRef]
- Stączek, S.; Zdybicka-Barabas, A.; Pleszczyńska, M.; Wiater, A.; Cytryńska, M. Aspergillus niger α-1,3-glucan acts as a virulence factor by inhibiting the insect phenoloxidase system. J. Invertebr. Pathol. 2020, 171, 107341. [Google Scholar] [CrossRef]
- Vertyporokh, L.; Wojda, I. Immune response of Galleria mellonella after injection with non-lethal and lethal dosages of Candida albicans. J. Invertebr. Pathol. 2020, 170, 107327. [Google Scholar] [CrossRef]
- Zdybicka-Barabas, A.; Mak, P.; Jakubowicz, T.; Cytryńska, M. Lysozyme and defense peptides as suppressors of phenoloxidase activity in Galleria mellonella. Arch. Insect Biochem. Physiol. 2014, 87, 1–12. [Google Scholar] [CrossRef]
- Geng, T.; Lu, F.; Wu, H.; Lou, D.; Tu, N.; Zhu, F.; Wang, S. Target antifungal peptides of immune signalling pathways in silkworm, Bombyx mori, against Beauveria bassiana. Insect Mol. Biol. 2021, 30, 102–112. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Lu, Y.; Gong, Y.; Zhu, M.; Chen, F.; Liang, Z.; Zhu, L.; Kuang, S.; Hu, X.; et al. Immune signaling pathways activated in response to different pathogenic micro-organisms in Bombyx mori. Mol. Immunol. 2015, 65, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Lv, D.-D.; Huang, Y.-X.; Hou, C.-X.; Qin, G.-X.; Guo, X.-J. JAK/STAT signaling pathway-mediated immune response in silkworm (Bombyx mori) challenged by Beauveria bassiana. Gene 2016, 595, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.-H.; Xing, L.-S.; Lin, Z.; Saha, T.T.; Wang, C.; Jiang, H.; Zou, Z. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genom. 2015, 16, 321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.-L.; Yang, K.-H.; Wang, S.-S.; Li, X.-L.; Liu, J.; Yu, Y.-X.; Liu, X.-S. Infection of the entomopathogenic fungus Metarhizium rileyi suppresses cellular immunity and activates humoral antibacterial immunity of the host Spodoptera frugiperda. Pest Manag. Sci. 2022, 78, 2828–2837. [Google Scholar] [CrossRef]
Target | Gene ID | Primer Sequence | Reference |
---|---|---|---|
Tollo | XP_026733502.1 | ACTCGACTGCAAAGCGAAAT | Present study |
TAAACCGTGTGGGGAACATT | |||
Toll 7 | XP_026744547.1 | ATCTCAAAACAGGGTCGCGT | |
AACACAGGTGATCGCTCAGG | |||
NF-kappa-B inhibitor cactus-like | XP_026732956.1 | GAGCTTCTTGGTGACCTGCT | |
AGTGCTTACAAGCGCTGCTC | |||
Dorsal/Dif | XP_026732895.1 | CCGCCTACAGGTTCCCTAAC | |
CCGGCGAGTACATCCTTTCA | |||
Relish | XP_026737640.1 | CTCCCTTGATCAGGCACAAT | |
CCCTGAGGAACACCCTCATA | |||
IKK-β | XP_026741558.1 | TGTTACAGACCTGCCGGAAC | |
CTTTGAGGCCCGAACAGGAT | |||
STAT5B | XP_026748140.1 | GTGGACAATCACCACGACAG | |
CTGTTCCAGTCGCAGTTCAA | |||
JUN | XP_026743727.1 | CGTGCTCCTTTAGCTTGACC | |
CTCCAAGCTGGAAGACAAGG | |||
JNK | XP_026741510.1 | AACGTGTGAGGGGTTCGTAG | |
TGTTACCGCCCAGCTTTATC | |||
Catalase | XP_026730481.1 | GACCTCAAAGATTCTCCTGGCT | |
AGAGCTGGTCCATTCTTGCC | |||
Cecropin | XP_026734190.1 | TAGCCAAAATTGGAGCGAAG | |
AACCAGCTAGAGCGCCAATA | |||
Defensin | EU016385.1 | CAATAAGCAGTGAAGCCTTGG | [37] |
GCATATGCCGTAGTTGTAGCC | |||
Lysozyme | EU016396.1 | ATGCGCCAAGAAGATCTACAA | |
GTTTAGCATTTGCTGATGTCG | |||
Gallerimycin | EU016388.1 | TGCATTGCCAGTTGTAGACAG | |
ATAGCCTCAAGCTCATCACCA | |||
Gloverin | EU016389.1 | CTTGATGTCCACAAGCAGGTT | |
CAAAGGTCTTGTCCAGATTGC | |||
ProPO activating enzyme (PPOAE) | EU016397.1 | AAGTCGGAAGAAGAGGTCGAG | |
CTGGCGTGTAACATGATCCTT | |||
ProPO subunit 1 (PPO1) | XP_026730296.1 | GCTCCATGTATGCCAAGTGTT | Present study |
TTGGCCTTTCCATGAATGAT | |||
ProPO subunit 2 (PPO2) | XP_026731374.1 | TCGTGGCGAACTTTTCTTCT | |
AGACTGTCCAGCTTCGGAAA | |||
Ribosomal protein S18 | EU016398.1 | TGTCCTATTTGTCGGGATGAG | [37] |
TGGTCCCATGCTCTTTCTATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duffield, K.R.; Rosales, A.M.; Muturi, E.J.; Behle, R.W.; Ramirez, J.L. Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. Insects 2023, 14, 667. https://doi.org/10.3390/insects14080667
Duffield KR, Rosales AM, Muturi EJ, Behle RW, Ramirez JL. Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. Insects. 2023; 14(8):667. https://doi.org/10.3390/insects14080667
Chicago/Turabian StyleDuffield, Kristin R., Alayna M. Rosales, Ephantus J. Muturi, Robert W. Behle, and José L. Ramirez. 2023. "Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections" Insects 14, no. 8: 667. https://doi.org/10.3390/insects14080667
APA StyleDuffield, K. R., Rosales, A. M., Muturi, E. J., Behle, R. W., & Ramirez, J. L. (2023). Increased Phenoloxidase Activity Constitutes the Main Defense Strategy of Trichoplusia ni Larvae against Fungal Entomopathogenic Infections. Insects, 14(8), 667. https://doi.org/10.3390/insects14080667