RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Bioassay for Fenobucarb Resistance
2.3. RNA and DNA Extraction
2.4. Mutation Survey
2.5. RNA-Seq Analysis
2.6. Clean Read Assembly and Unigene Construction
2.7. Functional Annotation
2.8. Differential Gene Expression Analysis
2.9. Orthologous Cluster Analysis
3. Results
3.1. Bioassay
3.2. Mutation Analysis
3.3. Raw and Trimmed Data Statistics of RNA-seq
3.4. De Novo Assembly of Unigene Sets
3.5. ORF Prediction
3.6. Transcriptomic DEG Analysis
3.7. Orthologous Cluster
3.8. DEG Analysis of Detoxification Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Azzawi, T.N.I.; Khan, M.; Hussain, A.; Shahid, M.; Imran, Q.M.; Mun, B.-G.; Lee, S.-U.; Yun, B.-W. Evaluation of Iraqi rice cultivars for their tolerance to drought stress. Agronomy 2020, 10, 1782. [Google Scholar] [CrossRef]
- Sen, S.; Chakraborty, R.; Kalita, P. Rice-not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci. Technol. 2020, 97, 265–285. [Google Scholar] [CrossRef]
- Min, S.; Lee, S.W.; Choi, B.-R.; Lee, S.H.; Kwon, D.H. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stål), a migratory pest in Korea. J. Asia-Pac. Entomol. 2014, 17, 711–716. [Google Scholar] [CrossRef]
- Phatthalung, T.N.; Tangkananond, W. Rice grassy stunt virus-free and pathogenic rice plants affect the brown planthopper (Nilaparvata lugens Stål) life cycle. Agric. Nat. Resour. 2021, 55, 331–340. [Google Scholar]
- Phatthalung, T.N.; Tangkananond, W. The Infectivity Survival and Transmissibility of Rice ragged stunt virus from the Frozen-Infected Rice Leaves by the Brown Planthopper, Nilaparvata lugens Stål. Trends Sci. 2022, 19, 5097. [Google Scholar] [CrossRef]
- Yoo, J.-K.; Lee, S.-W.; Ahn, Y.-J.; Nagata, T.; Shono, T. Altered acetylcholinesterase as a resistance mechanism in the brown planthopper (Homoptera: Delphacidae), Nilaparvata lugens Stål. Appl. Entomol. Zool. 2002, 37, 37–41. [Google Scholar] [CrossRef]
- Kwon, D.H.; Cha, D.J.; Kim, Y.H.; Lee, S.W.; Lee, S.H. Cloning of the acetylcholinesterase 1 gene and identification of point mutations putatively associated with carbofuran resistance in Nilaparvata lugens. Pestic. Biochem. Physiol. 2012, 103, 94–100. [Google Scholar] [CrossRef]
- Khan, S.; Uddin, M.N.; Rizwan, M.; Khan, W.; Farooq, M.; Shah, A.S.; Subhan, F.; Aziz, F.; Rahman, K.U.; Khan, A. Mechanism of Insecticide Resistance in Insects/Pests. Pol. J. Environ. Stud. 2020, 29, 2023. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Luttrell, R. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris. Pest Manag. Sci. 2015, 71, 40–57. [Google Scholar] [CrossRef]
- Puinean, A.M.; Foster, S.P.; Oliphant, L.; Denholm, I.; Field, L.M.; Millar, N.S.; Williamson, M.S.; Bass, C. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet. 2010, 6, e1000999. [Google Scholar] [CrossRef]
- Zhou, W.-W.; Liang, Q.-M.; Xu, Y.; Gurr, G.M.; Bao, Y.-Y.; Zhou, X.-P.; Zhang, C.-X.; Cheng, J.; Zhu, Z.-R. Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stål) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLoS ONE 2013, 8, e56604. [Google Scholar] [CrossRef] [PubMed]
- Bass, C.; Puinean, A.M.; Andrews, M.; Cutler, P.; Daniels, M.; Elias, J.; Paul, V.L.; Crossthwaite, A.J.; Denholm, I.; Field, L.M. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neurosci. 2011, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Puggioni, V.; Chiesa, O.; Panini, M.; Mazzoni, E. Qualitative Sybr Green real-time detection of single nucleotide polymorphisms responsible for target-site resistance in insect pests: The example of Myzus persicae and Musca domestica. Bull. Entomol. Res. 2017, 107, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, L.; Gao, X. Characterisation of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag. Sci. 2011, 67, 335–340. [Google Scholar] [CrossRef]
- Holderman, C.J.; Swale, D.R.; Bloomquist, J.R.; Kaufman, P.E. Resistance to permethrin, β-cyfluthrin, and diazinon in Florida horn fly populations. Insects 2018, 9, 63. [Google Scholar] [CrossRef]
- Mao, K.; Ren, Z.; Li, W.; Cai, T.; Qin, X.; Wan, H.; Jin, B.R.; He, S.; Li, J. Carboxylesterase genes in nitenpyram-resistant brown planthoppers, Nilaparvata lugens. Insect Sci. 2021, 28, 1049–1060. [Google Scholar] [CrossRef]
- Bhatt, P.; Zhou, X.; Huang, Y.; Zhang, W.; Chen, S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 2021, 411, 125026. [Google Scholar] [CrossRef]
- Lu, K.; Li, Y.; Xiao, T.; Sun, Z. The metabolic resistance of Nilaparvata lugens to chlorpyrifos is mainly driven by the carboxylesterase CarE17. Ecotoxicol. Environ. Saf. 2022, 241, 113738. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- Lan, W.-S.; Cong, J.; Jiang, H.; Jiang, S.-R.; Qiao, C.-L. Expression and characterization of carboxylesterase E4 gene from peach–potato aphid (Myzus persicae) for degradation of carbaryl and malathion. Biotechnol. Lett. 2005, 27, 1141–1146. [Google Scholar] [CrossRef]
- Han, C.; Rahman, M.-M.; Shin, J.; Kim, J.H.; Lee, S.H.; Kwon, M.; Timm, A.E.; Ramasamy, S.; Lee, Y.; Kang, S. Exaptation of I4760M mutation in ryanodine receptor of Spodoptera exigua (Lepidoptera: Noctuidae): Lessons from museum and field samples. Pestic. Biochem. Physiol. 2023, 195, 105579. [Google Scholar] [CrossRef] [PubMed]
- Adelman, Z.N.; Kilcullen, K.A.; Koganemaru, R.; Anderson, M.A.; Anderson, T.D.; Miller, D.M. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population. PLoS ONE 2011, 6, e26228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Gujar, H.; Gordon, J.R.; Haynes, K.F.; Potter, M.F.; Palli, S.R. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 2013, 3, 1456. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Quevillon, E.; Silventoinen, V.; Pillai, S.; Harte, N.; Mulder, N.; Apweiler, R.; Lopez, R. InterProScan: Protein domains identifier. Nucleic Acids Res. 2005, 33, W116–W120. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Sun, J.; Lu, F.; Luo, Y.; Bie, L.; Xu, L.; Wang, Y. OrthoVenn3: An integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023, 51, W397–W403. [Google Scholar] [CrossRef] [PubMed]
- Muduli, L.; Pradhan, S.K.; Mishra, A.; Bastia, D.N.; Samal, K.C.; Agrawal, P.K.; Dash, M. Understanding brown planthopper resistance in rice: Genetics, biochemical and molecular breeding approaches. Rice Sci. 2021, 28, 532–546. [Google Scholar] [CrossRef]
- Oberemok, V.V.; Laikova, K.V.; Gninenko, Y.I.; Zaitsev, A.S.; Nyadar, P.M.; Adeyemi, T.A. A short history of insecticides. J. Plant Prot. Res. 2015, 55, 221–226. [Google Scholar] [CrossRef]
- Guedes, R.; Roditakis, E.; Campos, M.; Haddi, K.; Bielza, P.; Siqueira, H.; Tsagkarakou, A.; Vontas, J.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Kwon, D.H.; Min, S.; Lee, S.W.; Park, J.H.; Lee, S.H. Monitoring of carbamate and organophosphate resistance levels in Nilaparvata lugens based on bioassay and quantitative sequencing. J. Asia-Pac. Entomol. 2012, 15, 635–639. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Li, J.; Liu, M.; Liu, Z. Point mutations in acetylcholinesterase 1 associated with chlorpyrifos resistance in the brown planthopper, Nilaparvata lugens Stål. Insect Mol. Biol. 2017, 26, 453–460. [Google Scholar] [CrossRef]
- Wang, H.L.; Rao, Q.; Chen, Z.Z. Identifying potential insecticide resistance markers through genomic-level comparison of Bemisia tabaci (Gennadius) lines. Arch. Insect Biochem. Physiol. 2023, 114, e22034. [Google Scholar] [CrossRef]
- Pu, J.; Sun, H.; Wang, J.; Wu, M.; Wang, K.; Denholm, I.; Han, Z. Multiple cis-acting elements involved in up-regulation of a cytochrome P450 gene conferring resistance to deltamethrin in smal brown planthopper, Laodelphax striatellus (Fallén). Insect Biochem. Mol. Biol. 2016, 78, 20–28. [Google Scholar] [CrossRef]
- Tang, B.; Cheng, Y.; Li, Y.; Li, W.; Ma, Y.; Zhou, Q.; Lu, K. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Chemosphere 2020, 259, 127490. [Google Scholar] [CrossRef]
- Field, M.L.; Devonshire, L.A. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 1998, 330, 169–173. [Google Scholar] [CrossRef]
- Malathi, V.M.; Jalali, S.K.; Gowda, D.K.S.; Mohan, M.; Venkatesan, T. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper (Nilaparvata lugens) in South India. Insect Sci. 2017, 24, 35–46. [Google Scholar] [CrossRef]
Purpose | Primers | Sequence |
---|---|---|
For the mutation survey of Nl-EST1 | Nl-EST1_5UTR-F1 | TGCCGAGCCGTAGTTGATGAT |
Nl-EST1_5UTR-F2 | TCGAGCATCTATCCTGCCTCTT | |
Nl-EST1_ORF-R1 | GGCCATAGTTTCCAGCAAAGTC | |
Nl-EST1_ORF-R2 | GTCAGGGTCATCGAGGAAATCT | |
Nl-EST1_ORF-R3 | GCTCCTGGGAAGTTCTTCTTCA | |
Nl-EST1_3UTR-R1 | GCCTACCTACCGTACTCAATTTTAATG | |
For the mutation survey of ACE1, G119A | Nl-ace1_G119A-F | CATGACTCGCACATCCTCAACA |
Nl-ace1_G119A-R | CTGCATGCTGACAAGTATGACG | |
For the mutation survey of ACE1, F331H | Nl-ace1_F331H-F | GGTCGTTGGCGACGAAAAACTT |
Nl-ace1_F331H-R | TGTAGAAACTCGTCCCGGTTGA |
Strains | LC50 Values (mg/L) (95% CI) | χ2 Log10 (Dose) | Resistance Ratio |
---|---|---|---|
BPH80 | 3.08 (2.69–3.51) | 228.72 | 1 |
BPH15 | 10.06 (9.08–12.36) | 551.7222 | 3.27 |
BPH19 | 73.98 (65.69–83.01) | 441.83 | 24.02 |
Assembly | No. of Genes | No. of Transcripts | GC (%) | N50 | Avg. Contig Length (bp) | Total Assembled Bases (bp) |
---|---|---|---|---|---|---|
merge | 119,664 | 148,234 | 41 | 896 | 611 | 73,153,339 |
BPH80 | 75,069 | 92,362 | 40 | 816 | 579 | 43,504,047 |
BPH15 | 69,319 | 79,691 | 38 | 765 | 560 | 38,844,156 |
BPH19 | 93,427 | 111,118 | 41 | 860 | 600 | 56,127,492 |
Assembly | Total Unigene | ORF Predicted Unigene | Single ORF Predicted Unigene | Multiple ORF Predicted Unigene |
---|---|---|---|---|
merge | 119,664 | 30,788 (25.73%) | 30,064 (97.65%) | 724 (2.35%) |
BPH80 | 75,069 | 18,593 (24.77%) | 18,349 (98.69%) | 244 (1.31%) |
BPH15 | 69,319 | 15,880 (22.91%) | 15,721 (99.0%) | 159 (1.0%) |
BPH19 | 93,427 | 26,147 (27.99%) | 25,721 (98.37%) | 426 (1.63%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Han, C.; Choi, N.; Kim, J. RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens. Insects 2024, 15, 743. https://doi.org/10.3390/insects15100743
Khan M, Han C, Choi N, Kim J. RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens. Insects. 2024; 15(10):743. https://doi.org/10.3390/insects15100743
Chicago/Turabian StyleKhan, Murtaza, Changhee Han, Nakjung Choi, and Juil Kim. 2024. "RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens" Insects 15, no. 10: 743. https://doi.org/10.3390/insects15100743
APA StyleKhan, M., Han, C., Choi, N., & Kim, J. (2024). RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens. Insects, 15(10), 743. https://doi.org/10.3390/insects15100743